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Linear equations over integers and polynomial rings

Does the following equation have solutions x1, x2, x3 ∈ Z?

4x1 + 12x2 + 6x3 = 7. (1)

No, 2 | LHS but 2 ∤ RHS .

Does the following equation have solutions x1, x2, x3 ∈ N∗?

2x1 + 3x2 + 6x3 = −4. (2)

No, LHS > 0 but RHS < 0.

Does the following equation have solution f1, f2, f3 ∈ Z[X ]?

(X − 1) · f1 + (X 2 − X ) · f2 + (−X + 1) · f3 = X . (3)

No, X − 1 | LHS but X − 1 ∤ RHS .
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Linear equations over polynomial semirings

Let Pos be the set of polynomials “positive everywhere”.

Pos := {f ∈ Z[X ] | f (x) > 0 for all x ∈ R}.

Does the following equation have solutions f1, f2, f3 ∈ Pos?

X 2 · f1 + (−X 2 − 2X ) · f2 + (X + 3) · f3 = 0. (4)

No, evaluate at X = −1, we have LHS > 0.

1 · f1(−1) + 1 · f2(−1) + 2 · f3(−1) = 0.

Does the following equation have solutions f1, f2, f3 ∈ N[X ]∗?

X · f1 + (X 2 − 1) · f2 + (−X 2 + 3X ) · f3 = 0. (5)

No, evaluate at X = 2, we have LHS > 0.

If no solution, does a “certificate” always exist? Decidability?
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Main result

Given B ⊆ R, let Pos(B) be the set of polynomials “positive on B”.

Pos(B) := {f ∈ Z[X ] | f (x) > 0 for all x ∈ B}.

Given h1, . . . , hn ∈ Z[X ], we want to solve the equation

h1f1 + h2f2 + · · ·+ hnfn = 0 (6)

over Pos(B).

Theorem

Equation (6) has no solution over Pos(B) if and only if:

there exists t ∈ B, such that hi (t) ≥ 0 for all i and hi (t) > 0 for at
least one i ,

or there exists t ∈ B, such that hi (t) ≤ 0 for all i and hi (t) < 0 for
at least one i .

(Pólya’s theorem) Connection with N[X ]∗: Equation (6) has solution
over N[X ]∗ if and only if it has solution over Pos(R≥0).
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Field semiorderings (Prestel, 1970s)

Definition (Set linear ordering)

A linear ordering of a set S is a binary relation that satisfies

(i) Reflexivity: a ≤ a,

(ii) Transitivity: a ≤ b, b ≤ c =⇒ a ≤ c ,

(iii) Antisymmetry: a ≤ b, b ≤ a =⇒ a = b,

(iv) Totality: a ≤ b or b ≤ a.

Examples: (Z,≤), (Zn,≤lex).

If the set S is a field F , we want ≤ to be compatible with + and (·)2.

Definition (Field Semiordering)

A semiordering of a field F is a linear ordering ≤ that satisfies

(i) Compatibility with addition: a ≤ b =⇒ a+ c ≤ b + c ,

(ii) Compatibility with one: 0 ≤ 1,

(iii) Compatibility with squares: 0 ≤ a =⇒ 0 ≤ ab2.

Example: (Q,≤), (R,≤).
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Why care about semiordering?

Observation (Positive set of a semiordering)

”≤” is a semiordering of F if and only if P := {a > 0 | a ∈ F} satisfies

(i) Compatibility with addition: P + P ⊆ P,

(ii) Compatibility with one: 0 ̸∈ P,

(iii) Compatibility with squares: P · (F 2 \ {0}) ⊆ P.

(iv) Antisymmetry: P ∩ −P = ∅.
(v) Totality: P ∪ −P = F \ {0}.

Main motivation:
If h1f1 + h2f2 + · · ·+ hnfn = 0 has no solutions fi ∈ Pos(B), then

P := {h1f1 + h2f2 + · · ·+ hnfn | fi ∈ Pos(B)}

is “almost” the positive set of a semiordering of the field R(X ).
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Why care about semiordering? (continued)

Assume (∗) : h1f1 + h2f2 + · · ·+ hnfn = 0 has no solution over Pos(B).
Recall

P := {h1f1 + h2f2 + · · ·+ hnfn | fi ∈ Pos(B)}.

(i) Compatibility with addition: P + P ⊆ P (linearity of Pos(B))
(ii) Compatibility with one: 0 ̸∈ P ((∗) has no solution)

(iii) Compatibility with squares: P · (F 2 \ {0}) ⊆ P (“almost satisfied”
by Pos(B))

(iv) Antisymmetry: P ∩ −P = ∅ ((∗) has no solution)

(v) Totality: P ∪ −P = R(X ) \ {0} (Not satisfied!!)

Fixing Compatibility with squares: slightly extend P. (Quite technical!)

Fixing Totality: “complete” P into semiordering using Zorn’s Lemma.

Proposition

Suppose (∗) has no solution over Pos(B). There exists a semiordering
>P of R(X ) such that h1f1 + h2f2 + · · ·+ hnfn >P 0 for all fi ∈ Pos(B).
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What are the semiorderings of R(X )?

Example of a semiordering of R(X ):

Let t ∈ R, define >t+ the following way. Given f ∈ R(X ):

In case f (t) is well-defined: f >t+ 0 if f (t) > 0.

In case f (t) is not well-defined or f (t) = 0: then f >t+ 0 if
f (t + ε) > 0 for all small enough ε > 0.

Then >t+ is a semiordering of R(X ).

Similarly, we can define >t− by changing t + ε to t − ε in the second
conditions.

We can also define >∞: Define f >∞ 0 if and only if f (N) > 0 for all
large enough N > 0.

We can also define >−∞ similarly.

Theorem (Prestel et al.)

The set of all semiorderings of R(X ) is

{>−∞} ∪ {>t+, >t−| t ∈ R} ∪ {>∞}.
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Putting it together

Assume (∗) : h1f1 + h2f2 + · · ·+ hnfn = 0 has no solution over Pos(B).

Proposition

Suppose (∗) has no solution over Pos(B). There exists a semiordering
>P of R(X ) such that h1f1 + h2f2 + · · ·+ hnfn >P 0 for all fi ∈ Pos(B).

Theorem (Prestel et al.)

The set of all semiorderings of R(X ) is

{>−∞} ∪ {>t+, >t−| t ∈ R} ∪ {>∞}.

If >P is >t+ for some t ∈ R: we have
h1(t + ε) ≥ 0, h2(t + ε) ≥ 0, . . . , hn(t + ε) ≥ 0 for some ε > 0.
We have found the certificate t + ε! (Easy to prove t + ε ∈ B).

If >P is >∞, >t− or >−∞: proof is similar.
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Applications and possible extensions

Example of application: can be used to decide whether certain
sub-semigroups of Z ≀ Z are actually groups.

Z ≀ Z ∼=
{(

X b y
0 1

) ∣∣∣∣ y ∈ Z[X±], b ∈ Z
}
.

This lays the foundation to solving semigroup algorithmic problems in
metabelian groups.

Possible extensions and open problems:

Multivariate polynomial rings? (Semiorderings of R(X ,Y ) can be
highly pathological!)

Non-homogeneous equations? (Apply the theory of pure states.)

Develop a local-global theory of semigroups instead of semirings?
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