Solving homogeneous linear equations over polynomial semrings

Ruiwen Dong
University of Oxford
March 2023

Acknowledgements to Markus Schweighofer and David Sawall from University of Konstanz.

Linear equations over integers and polynomial rings

Does the following equation have solutions $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$?

$$
\begin{equation*}
4 x_{1}+12 x_{2}+6 x_{3}=7 . \tag{1}
\end{equation*}
$$

Linear equations over integers and polynomial rings

Does the following equation have solutions $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$?

$$
\begin{equation*}
4 x_{1}+12 x_{2}+6 x_{3}=7 . \tag{1}
\end{equation*}
$$

No, $2 \mid$ LHS but $2 \nmid R H S$.

Linear equations over integers and polynomial rings

Does the following equation have solutions $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$?

$$
\begin{equation*}
4 x_{1}+12 x_{2}+6 x_{3}=7 . \tag{1}
\end{equation*}
$$

No, $2 \mid$ LHS but $2 \nmid R H S$.

Does the following equation have solutions $x_{1}, x_{2}, x_{3} \in \mathbb{N}^{*}$?

$$
\begin{equation*}
2 x_{1}+3 x_{2}+6 x_{3}=-4 . \tag{2}
\end{equation*}
$$

Linear equations over integers and polynomial rings

Does the following equation have solutions $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$?

$$
\begin{equation*}
4 x_{1}+12 x_{2}+6 x_{3}=7 . \tag{1}
\end{equation*}
$$

No, $2 \mid$ LHS but $2 \nmid R H S$.

Does the following equation have solutions $x_{1}, x_{2}, x_{3} \in \mathbb{N}^{*}$?

$$
\begin{equation*}
2 x_{1}+3 x_{2}+6 x_{3}=-4 . \tag{2}
\end{equation*}
$$

No, $L H S>0$ but $R H S<0$.

Linear equations over integers and polynomial rings

Does the following equation have solutions $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$?

$$
\begin{equation*}
4 x_{1}+12 x_{2}+6 x_{3}=7 . \tag{1}
\end{equation*}
$$

No, $2 \mid$ LHS but $2 \nmid R H S$.

Does the following equation have solutions $x_{1}, x_{2}, x_{3} \in \mathbb{N}^{*}$?

$$
\begin{equation*}
2 x_{1}+3 x_{2}+6 x_{3}=-4 \tag{2}
\end{equation*}
$$

No, LHS >0 but $R H S<0$.

Does the following equation have solution $f_{1}, f_{2}, f_{3} \in \mathbb{Z}[X]$?

$$
\begin{equation*}
(X-1) \cdot f_{1}+\left(X^{2}-X\right) \cdot f_{2}+(-X+1) \cdot f_{3}=X \tag{3}
\end{equation*}
$$

Linear equations over integers and polynomial rings

Does the following equation have solutions $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$?

$$
\begin{equation*}
4 x_{1}+12 x_{2}+6 x_{3}=7 . \tag{1}
\end{equation*}
$$

No, $2 \mid$ LHS but $2 \nmid R H S$.

Does the following equation have solutions $x_{1}, x_{2}, x_{3} \in \mathbb{N}^{*}$?

$$
\begin{equation*}
2 x_{1}+3 x_{2}+6 x_{3}=-4 \tag{2}
\end{equation*}
$$

No, LHS >0 but $R H S<0$.

Does the following equation have solution $f_{1}, f_{2}, f_{3} \in \mathbb{Z}[X]$?

$$
\begin{equation*}
(X-1) \cdot f_{1}+\left(X^{2}-X\right) \cdot f_{2}+(-X+1) \cdot f_{3}=X \tag{3}
\end{equation*}
$$

No, $X-1 \mid$ LHS but $X-1 \nmid R H S$.

Linear equations over polynomial semirings

Let Pos be the set of polynomials "positive everywhere".

$$
\text { Pos }:=\{f \in \mathbb{Z}[X] \mid f(x)>0 \text { for all } x \in \mathbb{R}\} .
$$

Does the following equation have solutions $f_{1}, f_{2}, f_{3} \in \boldsymbol{P o s}$?

$$
\begin{equation*}
X^{2} \cdot f_{1}+\left(-X^{2}-2 X\right) \cdot f_{2}+(X+3) \cdot f_{3}=0 . \tag{4}
\end{equation*}
$$

Linear equations over polynomial semirings

Let Pos be the set of polynomials "positive everywhere".

$$
\text { Pos }:=\{f \in \mathbb{Z}[X] \mid f(x)>0 \text { for all } x \in \mathbb{R}\} .
$$

Does the following equation have solutions $f_{1}, f_{2}, f_{3} \in \operatorname{Pos}$?

$$
\begin{equation*}
X^{2} \cdot f_{1}+\left(-X^{2}-2 X\right) \cdot f_{2}+(X+3) \cdot f_{3}=0 \tag{4}
\end{equation*}
$$

No, evaluate at $X=-1$, we have $L H S>0$.

$$
1 \cdot f_{1}(-1)+1 \cdot f_{2}(-1)+2 \cdot f_{3}(-1)=0 .
$$

Linear equations over polynomial semirings

Let Pos be the set of polynomials "positive everywhere".

$$
\text { Pos }:=\{f \in \mathbb{Z}[X] \mid f(x)>0 \text { for all } x \in \mathbb{R}\} .
$$

Does the following equation have solutions $f_{1}, f_{2}, f_{3} \in \operatorname{Pos}$?

$$
\begin{equation*}
X^{2} \cdot f_{1}+\left(-X^{2}-2 X\right) \cdot f_{2}+(X+3) \cdot f_{3}=0 \tag{4}
\end{equation*}
$$

No, evaluate at $X=-1$, we have $L H S>0$.

$$
1 \cdot f_{1}(-1)+1 \cdot f_{2}(-1)+2 \cdot f_{3}(-1)=0 .
$$

Does the following equation have solutions $f_{1}, f_{2}, f_{3} \in \mathbb{N}[X]^{*}$?

$$
\begin{equation*}
X \cdot f_{1}+\left(X^{2}-1\right) \cdot f_{2}+\left(-X^{2}+3 X\right) \cdot f_{3}=0 \tag{5}
\end{equation*}
$$

Linear equations over polynomial semirings

Let Pos be the set of polynomials "positive everywhere".

$$
\text { Pos }:=\{f \in \mathbb{Z}[X] \mid f(x)>0 \text { for all } x \in \mathbb{R}\} .
$$

Does the following equation have solutions $f_{1}, f_{2}, f_{3} \in \operatorname{Pos}$?

$$
\begin{equation*}
X^{2} \cdot f_{1}+\left(-X^{2}-2 X\right) \cdot f_{2}+(X+3) \cdot f_{3}=0 \tag{4}
\end{equation*}
$$

No, evaluate at $X=-1$, we have $L H S>0$.

$$
1 \cdot f_{1}(-1)+1 \cdot f_{2}(-1)+2 \cdot f_{3}(-1)=0 .
$$

Does the following equation have solutions $f_{1}, f_{2}, f_{3} \in \mathbb{N}[X]^{*}$?

$$
\begin{equation*}
X \cdot f_{1}+\left(X^{2}-1\right) \cdot f_{2}+\left(-X^{2}+3 X\right) \cdot f_{3}=0 \tag{5}
\end{equation*}
$$

No, evaluate at $X=2$, we have $L H S>0$.

Linear equations over polynomial semirings

Let Pos be the set of polynomials "positive everywhere".

$$
\text { Pos }:=\{f \in \mathbb{Z}[X] \mid f(x)>0 \text { for all } x \in \mathbb{R}\} .
$$

Does the following equation have solutions $f_{1}, f_{2}, f_{3} \in \operatorname{Pos}$?

$$
\begin{equation*}
X^{2} \cdot f_{1}+\left(-X^{2}-2 X\right) \cdot f_{2}+(X+3) \cdot f_{3}=0 \tag{4}
\end{equation*}
$$

No, evaluate at $X=-1$, we have $L H S>0$.

$$
1 \cdot f_{1}(-1)+1 \cdot f_{2}(-1)+2 \cdot f_{3}(-1)=0 .
$$

Does the following equation have solutions $f_{1}, f_{2}, f_{3} \in \mathbb{N}[X]^{*}$?

$$
\begin{equation*}
X \cdot f_{1}+\left(X^{2}-1\right) \cdot f_{2}+\left(-X^{2}+3 X\right) \cdot f_{3}=0 \tag{5}
\end{equation*}
$$

No, evaluate at $X=2$, we have $L H S>0$.
If no solution, does a "certificate" always exist?

Linear equations over polynomial semirings

Let Pos be the set of polynomials "positive everywhere".

$$
\text { Pos }:=\{f \in \mathbb{Z}[X] \mid f(x)>0 \text { for all } x \in \mathbb{R}\} .
$$

Does the following equation have solutions $f_{1}, f_{2}, f_{3} \in \boldsymbol{P o s}$?

$$
\begin{equation*}
X^{2} \cdot f_{1}+\left(-X^{2}-2 X\right) \cdot f_{2}+(X+3) \cdot f_{3}=0 \tag{4}
\end{equation*}
$$

No, evaluate at $X=-1$, we have $L H S>0$.

$$
1 \cdot f_{1}(-1)+1 \cdot f_{2}(-1)+2 \cdot f_{3}(-1)=0 .
$$

Does the following equation have solutions $f_{1}, f_{2}, f_{3} \in \mathbb{N}[X]^{*}$?

$$
\begin{equation*}
X \cdot f_{1}+\left(X^{2}-1\right) \cdot f_{2}+\left(-X^{2}+3 X\right) \cdot f_{3}=0 \tag{5}
\end{equation*}
$$

No, evaluate at $X=2$, we have $L H S>0$.
If no solution, does a "certificate" always exist? Decidability?

Main result

Given $B \subseteq \mathbb{R}$, let $\boldsymbol{\operatorname { P o s }}(B)$ be the set of polynomials "positive on B ".

$$
\operatorname{Pos}(B):=\{f \in \mathbb{Z}[X] \mid f(x)>0 \text { for all } x \in B\} .
$$

Given $h_{1}, \ldots, h_{n} \in \mathbb{Z}[X]$, we want to solve the equation

$$
\begin{equation*}
h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0 \tag{6}
\end{equation*}
$$

over $\operatorname{Pos}(B)$.

Main result

Given $B \subseteq \mathbb{R}$, let $\boldsymbol{P o s}(B)$ be the set of polynomials "positive on B ".

$$
\operatorname{Pos}(B):=\{f \in \mathbb{Z}[X] \mid f(x)>0 \text { for all } x \in B\} .
$$

Given $h_{1}, \ldots, h_{n} \in \mathbb{Z}[X]$, we want to solve the equation

$$
\begin{equation*}
h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0 \tag{6}
\end{equation*}
$$

over $\operatorname{Pos}(B)$.

Theorem

Equation (6) has no solution over $\operatorname{Pos}(B)$ if and only if:

- there exists $t \in B$, such that $h_{i}(t) \geq 0$ for all i and $h_{i}(t)>0$ for at least one i,
- or there exists $t \in B$, such that $h_{i}(t) \leq 0$ for all i and $h_{i}(t)<0$ for at least one i.

Main result

Given $B \subseteq \mathbb{R}$, let $\boldsymbol{\operatorname { P o s }}(B)$ be the set of polynomials "positive on B ".

$$
\operatorname{Pos}(B):=\{f \in \mathbb{Z}[X] \mid f(x)>0 \text { for all } x \in B\} .
$$

Given $h_{1}, \ldots, h_{n} \in \mathbb{Z}[X]$, we want to solve the equation

$$
\begin{equation*}
h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0 \tag{6}
\end{equation*}
$$

over $\operatorname{Pos}(B)$.

Theorem

Equation (6) has no solution over $\operatorname{Pos}(B)$ if and only if:

- there exists $t \in B$, such that $h_{i}(t) \geq 0$ for all i and $h_{i}(t)>0$ for at least one i,
- or there exists $t \in B$, such that $h_{i}(t) \leq 0$ for all i and $h_{i}(t)<0$ for at least one i.
(Pólya's theorem) Connection with $\mathbb{N}[X]^{*}$: Equation (6) has solution over $\mathbb{N}[X]^{*}$ if and only if it has solution over $\operatorname{Pos}\left(\mathbb{R}_{\geq 0}\right)$.

Field semiorderings (Prestel, 1970s)

Definition (Set linear ordering)

A linear ordering of a set S is a binary relation that satisfies
(1) Reflexivity: $a \leq a$,
(1) Transitivity: $a \leq b, b \leq c \Longrightarrow a \leq c$,
(1) Antisymmetry: $a \leq b, b \leq a \Longrightarrow a=b$,
(0) Totality: $a \leq b$ or $b \leq a$.

Examples: $(\mathbb{Z}, \leq),\left(\mathbb{Z}^{n}, \leq l_{\text {ex }}\right)$.

Field semiorderings (Prestel, 1970s)

Definition (Set linear ordering)

A linear ordering of a set S is a binary relation that satisfies
(1) Reflexivity: $a \leq a$,
(1) Transitivity: $a \leq b, b \leq c \Longrightarrow a \leq c$,
(1) Antisymmetry: $a \leq b, b \leq a \Longrightarrow a=b$,
(a) Totality: $a \leq b$ or $b \leq a$.

Examples: $(\mathbb{Z}, \leq),\left(\mathbb{Z}^{n}, \leq\right.$ lex $)$.
If the set S is a field F, we want \leq to be compatible with + and $(\cdot)^{2}$.

Field semiorderings (Prestel, 1970s)

Definition (Set linear ordering)

A linear ordering of a set S is a binary relation that satisfies
(1) Reflexivity: $a \leq a$,
(1) Transitivity: $a \leq b, b \leq c \Longrightarrow a \leq c$,
(1) Antisymmetry: $a \leq b, b \leq a \Longrightarrow a=b$,
(0) Totality: $a \leq b$ or $b \leq a$.

Examples: $(\mathbb{Z}, \leq),\left(\mathbb{Z}^{n}, \leq l e x\right)$.
If the set S is a field F, we want \leq to be compatible with + and $(\cdot)^{2}$.

Definition (Field Semiordering)

A semiordering of a field F is a linear ordering \leq that satisfies
(1) Compatibility with addition: $a \leq b \Longrightarrow a+c \leq b+c$,
(1) Compatibility with one: $0 \leq 1$,
(1) Compatibility with squares: $0 \leq a \Longrightarrow 0 \leq a b^{2}$.

Example: $(\mathbb{Q}, \leq),(\mathbb{R}, \leq)$.

Why care about semiordering?

Observation (Positive set of a semiordering)

$" \leq "$ is a semiordering of F if and only if $P:=\{a>0 \mid a \in F\}$ satisfies
(1) Compatibility with addition: $P+P \subseteq P$,
(1) Compatibility with one: $0 \notin P$,
(1) Compatibility with squares: $P \cdot\left(F^{2} \backslash\{0\}\right) \subseteq P$.
(0) Antisymmetry: $P \cap-P=\emptyset$.
(3) Totality: $P \cup-P=F \backslash\{0\}$.

Why care about semiordering?

Observation (Positive set of a semiordering)

$" \leq "$ is a semiordering of F if and only if $P:=\{a>0 \mid a \in F\}$ satisfies
(1) Compatibility with addition: $P+P \subseteq P$,
(1) Compatibility with one: $0 \notin P$,
(1) Compatibility with squares: $P \cdot\left(F^{2} \backslash\{0\}\right) \subseteq P$.
(0) Antisymmetry: $P \cap-P=\emptyset$.
(3) Totality: $P \cup-P=F \backslash\{0\}$.

Main motivation:
If $h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0$ has no solutions $f_{i} \in \boldsymbol{P o s}(B)$, then

$$
P:=\left\{h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n} \mid f_{i} \in \operatorname{Pos}(B)\right\}
$$

is "almost" the positive set of a semiordering of the field $\mathbb{R}(X)$.

Why care about semiordering? (continued)

Assume $(*): h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0$ has no solution over $\operatorname{Pos}(B)$. Recall

$$
P:=\left\{h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n} \mid f_{i} \in \operatorname{Pos}(B)\right\} .
$$

Why care about semiordering? (continued)

Assume $(*): h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0$ has no solution over $\operatorname{Pos}(B)$. Recall

$$
P:=\left\{h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n} \mid f_{i} \in \boldsymbol{\operatorname { P o s }}(B)\right\} .
$$

(1) Compatibility with addition: $P+P \subseteq P$ (linearity of $\operatorname{Pos}(B)$)

Why care about semiordering? (continued)

Assume $(*): h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0$ has no solution over $\operatorname{Pos}(B)$. Recall

$$
P:=\left\{h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n} \mid f_{i} \in \boldsymbol{\operatorname { P o s }}(B)\right\} .
$$

(1) Compatibility with addition: $P+P \subseteq P$ (linearity of $\boldsymbol{\operatorname { P o s }}(B)$)
(1) Compatibility with one: $0 \notin P((*)$ has no solution)

Why care about semiordering? (continued)

Assume $(*): h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0$ has no solution over $\operatorname{Pos}(B)$. Recall

$$
P:=\left\{h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n} \mid f_{i} \in \operatorname{Pos}(B)\right\}
$$

(1) Compatibility with addition: $P+P \subseteq P$ (linearity of $\operatorname{Pos}(B)$)
(1) Compatibility with one: $0 \notin P((*)$ has no solution)
(0) Compatibility with squares: $P \cdot\left(F^{2} \backslash\{0\}\right) \subseteq P$ ("almost satisfied" by $\boldsymbol{\operatorname { P o s }}(B)$)

Why care about semiordering? (continued)

Assume $(*): h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0$ has no solution over $\operatorname{Pos}(B)$. Recall

$$
P:=\left\{h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n} \mid f_{i} \in \operatorname{Pos}(B)\right\} .
$$

(1) Compatibility with addition: $P+P \subseteq P$ (linearity of $\operatorname{Pos}(B)$)
(1) Compatibility with one: $0 \notin P((*)$ has no solution $)$
(0) Compatibility with squares: $P \cdot\left(F^{2} \backslash\{0\}\right) \subseteq P$ ("almost satisfied" by $\boldsymbol{\operatorname { P o s }}(B)$)
(3) Antisymmetry: $P \cap-P=\emptyset((*)$ has no solution)

Why care about semiordering? (continued)

Assume $(*): h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0$ has no solution over $\operatorname{Pos}(B)$. Recall

$$
P:=\left\{h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n} \mid f_{i} \in \operatorname{Pos}(B)\right\}
$$

(1) Compatibility with addition: $P+P \subseteq P$ (linearity of $\operatorname{Pos}(B)$)
(1) Compatibility with one: $0 \notin P((*)$ has no solution $)$
(0) Compatibility with squares: $P \cdot\left(F^{2} \backslash\{0\}\right) \subseteq P$ ("almost satisfied" by $\boldsymbol{\operatorname { P o s }}(B)$)
(0) Antisymmetry: $P \cap-P=\emptyset((*)$ has no solution)
(1) Totality: $P \cup-P=\mathbb{R}(X) \backslash\{0\}$ (Not satisfied!!)

Why care about semiordering? (continued)

Assume $(*): h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0$ has no solution over $\operatorname{Pos}(B)$.
Recall

$$
P:=\left\{h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n} \mid f_{i} \in \operatorname{Pos}(B)\right\}
$$

(1) Compatibility with addition: $P+P \subseteq P$ (linearity of $\boldsymbol{\operatorname { P o s }}(B)$)
(1) Compatibility with one: $0 \notin P((*)$ has no solution)
(II Compatibility with squares: $P \cdot\left(F^{2} \backslash\{0\}\right) \subseteq P$ ("almost satisfied" by $\operatorname{Pos}(B))$
(1) Antisymmetry: $P \cap-P=\emptyset((*)$ has no solution)
(0) Totality: $P \cup-P=\mathbb{R}(X) \backslash\{0\}$ (Not satisfied!!)

Fixing Compatibility with squares: slightly extend P. (Quite technical!)
Fixing Totality: "complete" P into semiordering using Zorn's Lemma.

Proposition

Suppose (*) has no solution over $\operatorname{Pos}(B)$. There exists a semiordering $>_{P}$ of $\mathbb{R}(X)$ such that $h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}>_{P} 0$ for all $f_{i} \in \operatorname{Pos}(B)$.

What are the semiorderings of $\mathbb{R}(X)$?

Example of a semiordering of $\mathbb{R}(X)$:

What are the semiorderings of $\mathbb{R}(X)$?

Example of a semiordering of $\mathbb{R}(X)$:
Let $t \in \mathbb{R}$, define $>_{t+}$ the following way. Given $f \in \mathbb{R}(X)$:

- In case $f(t)$ is well-defined: $f>_{t+} 0$ if $f(t)>0$.

What are the semiorderings of $\mathbb{R}(X)$?

Example of a semiordering of $\mathbb{R}(X)$:
Let $t \in \mathbb{R}$, define $>_{t+}$ the following way. Given $f \in \mathbb{R}(X)$:

- In case $f(t)$ is well-defined: $f>_{t+} 0$ if $f(t)>0$.
- In case $f(t)$ is not well-defined or $f(t)=0$: then $f>_{t+} 0$ if $f(t+\varepsilon)>0$ for all small enough $\varepsilon>0$.

What are the semiorderings of $\mathbb{R}(X)$?

Example of a semiordering of $\mathbb{R}(X)$:
Let $t \in \mathbb{R}$, define $>_{t+}$ the following way. Given $f \in \mathbb{R}(X)$:

- In case $f(t)$ is well-defined: $f>_{t+} 0$ if $f(t)>0$.
- In case $f(t)$ is not well-defined or $f(t)=0$: then $f>_{t+} 0$ if $f(t+\varepsilon)>0$ for all small enough $\varepsilon>0$.
Then $>_{t+}$ is a semiordering of $\mathbb{R}(X)$.

What are the semiorderings of $\mathbb{R}(X)$?

Example of a semiordering of $\mathbb{R}(X)$:
Let $t \in \mathbb{R}$, define $>_{t+}$ the following way. Given $f \in \mathbb{R}(X)$:

- In case $f(t)$ is well-defined: $f>_{t+} 0$ if $f(t)>0$.
- In case $f(t)$ is not well-defined or $f(t)=0$: then $f>_{t+} 0$ if $f(t+\varepsilon)>0$ for all small enough $\varepsilon>0$.
Then $>_{t+}$ is a semiordering of $\mathbb{R}(X)$.
Similarly, we can define $>_{t-}$ by changing $t+\varepsilon$ to $t-\varepsilon$ in the second conditions.

What are the semiorderings of $\mathbb{R}(X)$?

Example of a semiordering of $\mathbb{R}(X)$:
Let $t \in \mathbb{R}$, define $>_{t+}$ the following way. Given $f \in \mathbb{R}(X)$:

- In case $f(t)$ is well-defined: $f>_{t+} 0$ if $f(t)>0$.
- In case $f(t)$ is not well-defined or $f(t)=0$: then $f>_{t+} 0$ if $f(t+\varepsilon)>0$ for all small enough $\varepsilon>0$.
Then $>_{t+}$ is a semiordering of $\mathbb{R}(X)$.
Similarly, we can define $>_{t-}$ by changing $t+\varepsilon$ to $t-\varepsilon$ in the second conditions.

We can also define $>_{\infty}$: Define $f>_{\infty} 0$ if and only if $f(N)>0$ for all large enough $N>0$.

What are the semiorderings of $\mathbb{R}(X)$?

Example of a semiordering of $\mathbb{R}(X)$:
Let $t \in \mathbb{R}$, define $>_{t+}$ the following way. Given $f \in \mathbb{R}(X)$:

- In case $f(t)$ is well-defined: $f>_{t+} 0$ if $f(t)>0$.
- In case $f(t)$ is not well-defined or $f(t)=0$: then $f>_{t+} 0$ if $f(t+\varepsilon)>0$ for all small enough $\varepsilon>0$.
Then $>_{t+}$ is a semiordering of $\mathbb{R}(X)$.
Similarly, we can define $>_{t-}$ by changing $t+\varepsilon$ to $t-\varepsilon$ in the second conditions.

We can also define $>_{\infty}$: Define $f>_{\infty} 0$ if and only if $f(N)>0$ for all large enough $N>0$.

We can also define $>_{-\infty}$ similarly.

What are the semiorderings of $\mathbb{R}(X)$?

Example of a semiordering of $\mathbb{R}(X)$:
Let $t \in \mathbb{R}$, define $>_{t+}$ the following way. Given $f \in \mathbb{R}(X)$:

- In case $f(t)$ is well-defined: $f>_{t+} 0$ if $f(t)>0$.
- In case $f(t)$ is not well-defined or $f(t)=0$: then $f>_{t+} 0$ if $f(t+\varepsilon)>0$ for all small enough $\varepsilon>0$.
Then $>_{t+}$ is a semiordering of $\mathbb{R}(X)$.
Similarly, we can define $>_{t-}$ by changing $t+\varepsilon$ to $t-\varepsilon$ in the second conditions.

We can also define $>_{\infty}$: Define $f>_{\infty} 0$ if and only if $f(N)>0$ for all large enough $N>0$.

We can also define $>_{-\infty}$ similarly.

Theorem (Prestel et al.)

The set of all semiorderings of $\mathbb{R}(X)$ is

$$
\left\{>_{-\infty}\right\} \cup\left\{>_{t+},>_{t-} \mid t \in \mathbb{R}\right\} \cup\left\{>_{\infty}\right\} .
$$

Putting it together

Assume $(*): h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0$ has no solution over $\operatorname{Pos}(B)$.

Proposition

Suppose ($*$) has no solution over $\operatorname{Pos}(B)$. There exists a semiordering $>_{p}$ of $\mathbb{R}(X)$ such that $h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}>_{p} 0$ for all $f_{i} \in \operatorname{Pos}(B)$.

Theorem (Prestel et al.)

The set of all semiorderings of $\mathbb{R}(X)$ is

$$
\left\{>_{-\infty}\right\} \cup\left\{>_{t+},>_{t-} \mid t \in \mathbb{R}\right\} \cup\left\{>_{\infty}\right\} .
$$

Putting it together

Assume $(*): h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0$ has no solution over $\operatorname{Pos}(B)$.

Proposition

Suppose (*) has no solution over $\operatorname{Pos}(B)$. There exists a semiordering $>_{P}$ of $\mathbb{R}(X)$ such that $h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}>_{P} 0$ for all $f_{i} \in \operatorname{Pos}(B)$.

Theorem (Prestel et al.)

The set of all semiorderings of $\mathbb{R}(X)$ is

$$
\left\{>_{-\infty}\right\} \cup\left\{>_{t+},>_{t-} \mid t \in \mathbb{R}\right\} \cup\left\{>_{\infty}\right\} .
$$

- If $>_{P}$ is $>_{t+}$ for some $t \in \mathbb{R}$: we have $h_{1}(t+\varepsilon) \geq 0, h_{2}(t+\varepsilon) \geq 0, \ldots, h_{n}(t+\varepsilon) \geq 0$ for some $\varepsilon>0$. We have found the certificate $t+\varepsilon$! (Easy to prove $t+\varepsilon \in B$).

Putting it together

Assume $(*): h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}=0$ has no solution over $\operatorname{Pos}(B)$.

Proposition

Suppose (*) has no solution over $\operatorname{Pos}(B)$. There exists a semiordering $>_{P}$ of $\mathbb{R}(X)$ such that $h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{n} f_{n}>_{P} 0$ for all $f_{i} \in \operatorname{Pos}(B)$.

Theorem (Prestel et al.)

The set of all semiorderings of $\mathbb{R}(X)$ is

$$
\left\{>_{-\infty}\right\} \cup\left\{>_{t+},>_{t-} \mid t \in \mathbb{R}\right\} \cup\left\{>_{\infty}\right\} .
$$

- If $>_{P}$ is $>_{t+}$ for some $t \in \mathbb{R}$: we have $h_{1}(t+\varepsilon) \geq 0, h_{2}(t+\varepsilon) \geq 0, \ldots, h_{n}(t+\varepsilon) \geq 0$ for some $\varepsilon>0$. We have found the certificate $t+\varepsilon$! (Easy to prove $t+\varepsilon \in B$).
- If $>_{P}$ is $>_{\infty},>_{t-}$ or $>_{-\infty}$: proof is similar.

Applications and possible extensions

Example of application: can be used to decide whether certain sub-semigroups of $\mathbb{Z} \imath \mathbb{Z}$ are actually groups.

$$
\mathbb{Z} \imath \mathbb{Z} \cong\left\{\left.\left(\begin{array}{cc}
X^{b} & y \\
0 & 1
\end{array}\right) \right\rvert\, y \in \mathbb{Z}\left[X^{ \pm}\right], b \in \mathbb{Z}\right\} .
$$

This lays the foundation to solving semigroup algorithmic problems in metabelian groups.

Applications and possible extensions

Example of application: can be used to decide whether certain sub-semigroups of $\mathbb{Z} \imath \mathbb{Z}$ are actually groups.

$$
\mathbb{Z} \imath \mathbb{Z} \cong\left\{\left.\left(\begin{array}{cc}
X^{b} & y \\
0 & 1
\end{array}\right) \right\rvert\, y \in \mathbb{Z}\left[X^{ \pm}\right], b \in \mathbb{Z}\right\} .
$$

This lays the foundation to solving semigroup algorithmic problems in metabelian groups.

Possible extensions and open problems:

- Multivariate polynomial rings? (Semiorderings of $\mathbb{R}(X, Y)$ can be highly pathological!)
- Non-homogeneous equations? (Apply the theory of pure states.)
- Develop a local-global theory of semigroups instead of semirings?

