A new algorithm for finding the input-output equation of
differential models

Ruiwen Dong
joint work with:
Gleb Pogudin, Heather Harrington, Christian Goodbrake

October 2020

Introduction : identifiability

Identifiability: property of a differential model with parameters that allows for
the parameters to be determined uniquely from the model equations, noiseless
data and sufficiently exciting inputs.

Classical example: The predator-prey model
)'(1 = axi — bX1X2
3)-(2 = —-CX2 + dX1X2 (1)
output: y=x1

where x; is the number of prey, x> is the number of predator. a, b, c,d are
unknown parameters to be identified. We can observe the output y = x1.

Introduction : identifiability

Identifiability: property of a differential model with parameters that allows for
the parameters to be determined uniquely from the model equations, noiseless
data and sufficiently exciting inputs.

Classical example: The predator-prey model
)'(1 = axi — bX1X2

3)-(2 = —-CX2 + dX1X2 (1)
output: y=x1

where x; is the number of prey, x> is the number of predator. a, b, c,d are
unknown parameters to be identified. We can observe the output y = x1.

Known result:
a, ¢, d are identifiable, but b is not.

Introduction : identifiability

Identifiability: property of a differential model with parameters that allows for
the parameters to be determined uniquely from the model equations, noiseless

data and sufficiently exciting inputs.
Classical example: The predator-prey model
)'(1 = axi — bX1X2

3)-(2 = —-CX2 + dX1X2

output: y=x1

where x; is the number of prey, x> is the number of predator. a, b, c,d are
unknown parameters to be identified. We can observe the output y = x1.

Known result:
a, ¢, d are identifiable, but b is not.

Importance of assessing identifiability: evaluate or reparametrize models
before experiments.

(1)

Identifiability computation: example

Consider the following ODE system:

>'<1 = axy
3: X2 = bxy (2)
y=x1

where a, b are parameters to be determined, y is the output.
How to find out which parameters are identifiable?

Identifiability computation: example

Consider the following ODE system:

>'<1 = axy
3)'Q = bX1 (2)
y=x

where a, b are parameters to be determined, y is the output.
How to find out which parameters are identifiable?

Immediate consequence of ¥ :
y—aby=0

called the input-output equation.

Identifiability computation: example

Consider the following ODE system:

>'<1 = axy
3)'Q = bX1 (2)
y=x

where a, b are parameters to be determined, y is the output.
How to find out which parameters are identifiable?

Immediate consequence of ¥ :
y—aby=0
called the input-output equation.

Result: ab is identifiable from knowing y, but not a or b.

Identifiability computation: example

Consider the following ODE system:

>'<1 = axy
3)'Q = bX1 (2)
y=x

where a, b are parameters to be determined, y is the output.
How to find out which parameters are identifiable?

Immediate consequence of ¥ :
y—aby=0
called the input-output equation.
Result: ab is identifiable from knowing y, but not a or b.

Input-output equations: “minimal” equations that depend only on the input
and output variables and parameters.

Introduction : input-output equations

Two different kinds of identifiability:
> Single-experiment identifiability: what we can identify from a single
experiment.
> Multi-experiment identifiability: what we can identify from a sufficiently
(finite) many experiments.
Under some assumptions, single-experiment identifiability =
multi-experiment identifiability
Input-output equations — Multi-experiment Identifiability:

Introduction : input-output equations

Two different kinds of identifiability:

> Single-experiment identifiability: what we can identify from a single
experiment.
> Multi-experiment identifiability: what we can identify from a sufficiently
(finite) many experiments.
Under some assumptions, single-experiment identifiability =

multi-experiment identifiability
Input-output equations — Multi-experiment Identifiability:

Proposition

Note y the output of an ODE system, u its inputs, and @ the vector of all its
parameters.

Consider input-output equations as monic polynomials in y, u and their
derivatives over the field C(0). A rational function of parameters p € C(0) is
multi-experiment identifiable if and only if it is in the field generated by the
coefficients of the input-output equations.

Example: y — aby =0 == C(ab) is everything we can identify.

Immediate example

The predator-prey model

)'(1 =axi — bX1X2
3)-Q = —-CX2 + dX1X2

output: y=x1

where x; is the number of prey, x» is the number of predator. a, b, c,d are
parameters we want to identify. We can observe the output y = x.

(3)

Immediate example

The predator-prey model

)'(1 =axi — bX1X2
3)-<2 = —-CX2 + dX1X2

output: y=x1

where x; is the number of prey, x» is the number of predator. a, b, c,d are
parameters we want to identify. We can observe the output y = x.

Input-output equation:

ady3 - acy2 - dy2y +cyy 7)'/2 +yy=0

(3)

Immediate example

The predator-prey model

)'(1 =axi — bX1X2
3)-<2 = —-CX2 + dX1X2
output: y=x1
where x; is the number of prey, x» is the number of predator. a, b, c,d are

parameters we want to identify. We can observe the output y = x.

Input-output equation:
ady3 - acy2 - dy2y +cyy 7)'/2 +yy=0
Identifiability consequence:

The field of identifiable functions

=The field that the coefficients of input-output equation generate
=C(ac,ad,c,d) =C(a,c,d)

(3)

Problem

Setup:
Given a system X of the form

: (4)

5. {x =f(x,u,0)

y=8(xu,0)
where:
» x=(x1,...,Xn) is a vector of state variables;
» u=(u,...,Um) is a vector of input (control) variables to be chosen by an

experimenter;

> y is the output variable (scalar: we limit ourselves to single output case);

» 0 =(61,...,0q4) is a vector of unknown (constant) parameters to be
identified;
» f=(f,...,f), where f; € C(x, u,0) are rational functions;

» g € C(x,u,8) is a rational function.

Problem

Setup:
Given a system X of the form

x=f(x,u,0)
. {y = g(x,u,0) ©

Goal: Find a “minimal” consequence of ¥ depending only on input, output,
and parameters, also known as an input-output equation:

¢(07u7u,7u(2)7'"7.y7.y,7y(2)"'7y(h)) :0’

This means:
1. ¢ vanishes on every solution of the system X.
2. ¢ is an irreducible polynomial.

3. his as small as possible.

Problem

Setup:
Given a system X of the form

5. {x =f(x,u,0) (5)

y =g(x,u,0)
Goal: Find a “minimal” consequence of ¥ depending only on input, output,

and parameters, also known as an input-output equation:

¢(07u7u,7u(2)7' "7.y7.y,7y(2) . "7y(h)) = 0’
This means:
1. ¢ vanishes on every solution of the system X.
2. ¢ is an irreducible polynomial.

3. his as small as possible.

Proposition
The input-output equation exists and is unique.

State of art

Various existing software for checking identifiability (all of them support
multiple outputs):

1. SIAN: Implemented on MAPLE, checks identifiability without computing
the input-output equations.

2. DAISY: Written in REDUCE, checks identifiability by computing the
input-output equations.

3. RosenfeldGroebner implemented in MAPLE: do differential elimination on
the system of differential equations.

4. COMBOS: web-based application, checks multi-experiment identifiability
by calculating the input-output equations.

Performance

SIWR model:

$=p—pisi — Pwsw — us + ar,
i = Busw + Bisi — (7 + p)i,

WZ&(I’_W)7
F=yi-(p+ar,
Yy =Ki

Hyperchaotic QWWC system:

x=a(y —x)+yz,
y=b(x+y)-xz,
z=-cz-dw+xy,
W =ez—fw+xy,

o0=X

Pharmacokinetics model:

s _ _ kanxg

X0 = a1(x1 = X0) ~ o
X1 = a(x0 — x1),

. _ _ ke nxop

X2 = bi(x3 - x2) kekatkexatkaxg®
X3 = b2(X2 _X3)7

Yy =X

Extended SEIR model:
5= —Bs(i +j+qa),
é=pBs(i+j+qa)- ke,
a=k(l-p)e-ma,

i = kpe—(a+m)i,
J=ai=mj,
¢=al,

y=c

Performance

| Model | DAISY | RG [SIAN | Our implementation ** |
SIWR >5h. >5h. | >5h. 9s.+9s.=18s.
Extended SEIR OOM* | OOM* | >5h. 22s.+37s.=69s.
Pharmacokinetics | >5h. OOM* | >5h. 20s.+45s. =65s.
QWWC >5h. OOM* | >5h. 236s. +246s. =482 s.

Table: Performance comparison

* OOM = out of memory
** Time for computing 10-equation + Time for identifiability

Model io-equation size (N. terms) | identifiable
SIWR 209349 all
Extended SEIR 927131 By k1,72, &
Pharmacokinetics 1062553 all
QWWC 6853210 a,b

Table: Results

First attempt: implicitization of Lie derivatives

Find Lie derivatives:

Original system: Lie derivatives:
X1 = axi + X2 y=x1
Tk = b+ xe — M:yy’ =% = axy + x2

y =x1 y'=... :a2X1+(a+2)X22+2bX2X12

First attempt: implicitization of Lie derivatives

Find Lie derivatives:

Original system: Lie derivatives:
X1 = axi + X2 y=x1
Tidxo = bxF + xo — M:yy’ =% = axy + x2
y =x1 y”:...:32X1+(a+2)x22+2b><2x12

Implicitization of hypersurface on C(a, b)*:

Parametric description: Implicit description:
y =g(x, %)
My =gi(xa,) = o(y,y',y") =0

y" =g (x1,x)

Methods: Groebner Basis, Repeated resultants, Macaulay resultant, Sparse
resultant, Interpolation, ...

First attempt: efficiency problems

. 2
X1 = axi + Xy
Y40 = bx12 + Xo

y=x

First attempt: efficiency problems

. 2
X1 = axi + Xy

Y40 = bx12 + Xo
y=x1
Calculate Lie derivatives recursively:
y=x1

M:dy’ = ax; + x5

y" = ax1 + 2xox0 = a(axy + x22) + 2xz(bx12 +x2)

First attempt: efficiency problems

. 2
X1 = axi + Xy

3 >'<2:bx12+><2
y=x1

Calculate Lie derivatives recursively:

y=x1
M:dy’ = ax; + x5
y" = ax1 + 2xox0 = a(axy + x22) + 2xz(bx12 +x2)

Better way:
y=x1
M:dy = axi +x3 = ay + x5

y" = ay’ +2xx = ay’ + 2xa(by? + x2)

First attempt: efficiency problems

)'(1 = axi +X22
3 >'<2:bx12+><2
y=x1

Calculate Lie derivatives recursively:

y=x1
M:dy’ = ax; + x5
y" = ax1 + 2xox0 = a(axy + x22) + 2X2(bx12 +x2)

Better way:
y=x
M:dy = axi +x3 = ay + x5

y" = ay’ +2xx = ay’ + 2xa(by? + x2)

Idea of our algorithm: Eliminate state variables as soon as we can.

Our algorithm: example

Idea: Eliminate xi, x2,...,x, one by one in a dynamically defined order.

Our algorithm: example
Idea: Eliminate xi, x2,...,x, one by one in a dynamically defined order.

Initialiate system:
y-x=0 (Ro)
2o: >'<1—(ax1 +X22):0 (51)
)'<2—(bX12+X2):0 (S2)

Our algorithm: example
Idea: Eliminate xi, x2,...,x, one by one in a dynamically defined order.

Initialiate system:
y-x=0 (Ro)
2o: >'<1—(ax1 +X22):0 (51)
)'<2—(bX12+X2):0 (S2)

Choose state variable to eliminate: x;. Criteria: lowest degree.

Our algorithm: example
Idea: Eliminate xi, x2,...,x, one by one in a dynamically defined order.
Initialiate system:
y-x=0 (Ro)
Yorqx1 — (axq +X22) =0 (%)
X — (bx12 +x)=0 (%)

Choose state variable to eliminate: x;. Criteria: lowest degree.
Elimination of x;:

Differentiate Ro: " 4
Itrerentiate <o Eliminate x from Ry:

;iz:lix?)w ESRT)) . {y’—(axl+x§)—o ((RE) +(S1))
o (b 1) =0 (52) fo= (b’ +x2) =0 (%)

Eliminate x; using Ro:

s y' = (ay+x5)=0 (R1)
)'(2—(by2+X2):0 (52)

Our algorithm: example

Idea: Eliminate xi,x2,...,x, one by one in a dynamically defined order.

Previous system:

- y-ay-x=0 (Ri)
1- .
% - (by’+x)=0 (S)

Our algorithm: example

Idea: Eliminate xi,x2,...,x, one by one in a dynamically defined order.

Previous system:
s Y -ay-6=0 (R)
1- .
Xo — (by2 +x)=0 (&)

Choose state variable to eliminate: x;.

Our algorithm: example

Idea: Eliminate xi,x2,...,x, one by one in a dynamically defined order.

Previous system:

% - (by’+x)=0 (S)

Choose state variable to eliminate: x;.
Elimination of x»:

le{y'—ay—Xzz—O (Ry)

Differentiate Ry: Eliminate x from Ry:
y"'—ay'-2x%x% =0 (R]) — y" —ay’ = 2x2(by* +x) =0
= (by?+x)=0 (5) ((R1) +(S2))

Eliminate x> using R;:

—Res,, (y —ay -x,y" —ay' - 2x(by’ + x2)) = 0 (R.)

Our algorithm: example

Idea: Eliminate xi,x2,...,x, one by one in a dynamically defined order.

Previous system:
s Y -ay-6=0 (R)
1- .
Xo — (by2 +x)=0 (&)
Choose state variable to eliminate: x;.
Elimination of x»:

Differentiate Ry: Eliminate x from Ry:
y"'—ay'-2x%x% =0 (R]) — y" —ay’ = 2x2(by* +x) =0
= (by?+x)=0 (5) ((R1) +(S2))

Eliminate x> using R;:

—Res,, (y —ay -x,y" —ay' - 2x(by’ + x2)) = 0 (R.)

Input-output equation is irreducible: factorization

Factorize R> and choose the correct factor with a plug-in.

Our algorithm: extraneous factors

We are using repeated univariate resultant: (Rp), (R1) are “pivots”. This
causes extraneous factors.

Smallest nontrivial example:
Given f,g,heC[x,y, z], find (f, g, h) nC[z].

Our algorithm: extraneous factors

We are using repeated univariate resultant: (Rp), (R1) are “pivots”. This
causes extraneous factors.

Smallest nontrivial example:
Given f,g,heC[x,y, z], find (f, g, h) nC[z].

Repeated resultant approach:
Find Resx(Res,(f,g),Res,(f,h)), then factorize.

Our algorithm: extraneous factors

We are using repeated univariate resultant: (Rp), (R1) are “pivots”. This
causes extraneous factors.

Smallest nontrivial example:
Given f,g,heC[x,y, z], find (f, g, h) nC[z].

Repeated resultant approach:
Find Resx(Res,(f,g),Res,(f,h)), then factorize.

Justification (L. Busé, B. Mourrain):

ReSX(ReSY(fag)7 Res}/(f7 h)) = ReSX¢Y(fag7 h) Resx,y,y'(fyay,y’fag(y)7 h(y’))

(f.g,h)nC[z] Extraneous factor

(6, f= %}'}y’)) Acceptable if f has low degree in y: justifies the choice of
variable to eliminate by lowest degree.

Eliminate extraneous factor before computation?

Optimization 1: early detection of extraneous factors

We use the Bézout matrix to compute resultant.

Bézout matrix: _ '
Let f(z) = Xl uiz',g(z) = o viz',

X=Yy ij=0

B, (f,g) = (bj)ij=0,...,n-1
det B,(f,g) = Res(f, g)

()8 - F8C) 2,

Optimization 1: early detection of extraneous factors

Example:
Resy(ax’ + yx +2(b + €),ax” + cx + (b + €))

a(c-vy) —a(b+e)
—a(b+e) (b+e)(y-2c)

—a(b+e) (3cy —y* —2¢” — ab - ae)

We want this

Optimization 1: early detection of extraneous factors

Example:

Resy(ax’ + yx +2(b + €),ax” + cx + (b + €))

a(c-vy) —a(b+e)
—a(b+e) (b+e)(y-2c)

—a(b+e) (3cy —y* —2¢” — ab - ae)

We want this

Actual computation:
(c-y) -1

det|_J(bre) (y-20)

Essential simplification as this happens often (equations not generic)

Optimization 2: variable change

Optimization 1 is straightforward.

However, in most cases, we cannot always detect extra factors in matrix:
we can do it when the extra factor divides the constant term or the
leading term.

a(c-vy) —a(b+e)

Resy(ax’ + yx +2(b+e),ax’ + cx + (b+¢€)) = det “a(b+e) (b+e)(y-2c)

Optimization 2: variable change

Optimization 1 is straightforward.

However, in most cases, we cannot always detect extra factors in matrix:
we can do it when the extra factor divides the constant term or the
leading term.

a(c-vy) —a(b+e)

Resy(ax’ + yx +2(b+e),ax’ + cx + (b+¢€)) = det “a(b+e) (b+e)(y-2c)

Counter-example:

Resy (X’ +x(y +2) +y +1+2b,x> +x(c+2) + b+ c+1)

c-y c-y-b
c-y-b yb-y-2bc+c

=b(3cy —y*-2c> - b)

= det

We want this

Optimization 2: variable change

However, there is one trick:
If an extraneous factor p(y)|Res«(f(x,y),g(x,y)), then

Res«(f(x,y),g(x,y)) =0 mod p(y)

so f, g share some common root xg mod p(y):

3x0, f(x0,y) = g(x0,¥) =0 mod p(y)

Optimization 2: variable change

However, there is one trick:
If an extraneous factor p(y)|Res«(f(x,y),g(x,y)), then

Res«(f(x,y),g(x,y)) =0 mod p(y)
so f, g share some common root xg mod p(y):

3x0, f(x0,y) = g(x0,¥) =0 mod p(y)

If we consider f, g as polynomials in x — xo, then p(y) divides their
constant terms:

f=aq(y)(x=x)"+...+a1(y)(x—x) + p(y)ga(y)
g =ba(y)(x=x0)+...+bi(y)(x = x0) + p(y)as(y)

Optimization 2: variable change

However, there is one trick:
If an extraneous factor p(y)|Res«(f(x,y),g(x,y)), then

Res«(f(x,y),g(x,y)) =0 mod p(y)

so f, g share some common root xg mod p(y):

3x0, f(x0,y) = g(x0,¥) =0 mod p(y)

If we consider f, g as polynomials in x — xo, then p(y) divides their
constant terms:

f=aq(y)(x=x)"+...+a1(y)(x—x) + p(y)ga(y)
g =ba(y)(x=x0)+...+bi(y)(x = x0) + p(y)as(y)

Do variable change x — xo — x:

{f =ag(y)x?+ ...+ a(y)x+p(y)as(y)
g =ba(y)x"+...+ bi(y)x +p(y)as(y)

P(y)qa(y)
Res«(f, g) = det :

P(Y);Ib(}/)

Optimization 2: performance
Example: when we know a priori that x — y is an extra factor.

x —(x-y)
y x-y

Xy
Yy X

— (x+y)(x-y)

Equivalence with some “optimal” elimination order in sparse resultant?

Good acceleration in practice:

Model Without Opt.2 | With Opt.2
SIWR 47s 9s
Extended SEIR >5h 22s
Pharmacokinetics 227s 20s
QWWC 1020s 236s

Table: Time comparison for computing io-equation

Summary

Our algorithm:

1. Eliminate xi,...,x, one by one in a dynamically chosen order (always do
low degree variable first). Eliminations are done using resultant (Bézout
matrix).

We can regard it as a gradual ordering change (replacing a state variable
x; with a higher order of y).

2. Factorize intermediate results as often as possible, eliminate extraneous
factors with plug-ins.

3. "Reveal” extraneous factors in Bézout matrix with variable change.

4. Eliminate extraneous factors in resultants before determinant computation.

Multiple output case: work in progress
Setup:
Given a system X of the form

Z_{)'(:f(x,u,@) 6)

. y =g(X7U,0)

Now, y = (y1,...,¥m) is a vector of outputs, g = (gi1,...,8m) is a vector of
rational functions.

Multiple output case: work in progress
Setup:
Given a system X of the form
5. x =f(x,u,0)
y= g(X7 u, 0)

Now, y = (y1,...,ym) is a vector of outputs, g = (g1, - -

rational functions.

(6)

,8m) is a vector of

" consequences of X depending only on input,

oy &) =0
,_ym m)) 0
(hm+1)) 0

Goal: Find a set of “minimal
output, and parameters, also known as input-output equations:
hy+1 h
¢1(0,U7U’, «-,}’17}/1’7“-7)/1(1)7}/27-»).)/2(2)7"'7ym1‘
h hy+1
¢2(67u7u/7 "7.y17.y1/7"'7y1(1)7y27"'7y2(2+)7"'7.ym7"'
h h
¢m(07U7u/7 "7.y17y]{7"'7.yf 1)7.y27"'7y2(2)7"'7.ym7"'
This means:
1. ¢i,i=1,..., m vanish on every solution of the system X.
2. ¢i,i=1,...,m are irreducible polynomials.

3. The sum hy + ho + ... + hy, is as small as possible.

Multiple output case: work in progress

Setup:
Given a system X of the form

x=f(x,u,0)
> {y = g(X7 u, 0) (6)

Now, y = (y1,...,¥m) is a vector of outputs, g = (gi1,...,8m) is a vector of

rational functions.
Goal: Find a set of “minimal” consequences of ¥ depending only on input,

output, and parameters, also known as input-output equations:

hy+1 h hm
¢1(0,U7U’,...,y17y1’,...,_y1(1)7}/27-»).)/2(2)7"'7ym1‘ 7ym)) 0
h hy+1 m
¢2(9’Uau/:~--»)’1’}/1/:~-~7y1(1)7y2’-~-:}/2(2")7--~a,Vm7--~’,Vm)) 0
' h h Am+1
¢m(97U7U/7~-~7}/17}/1/7-~~ay1(1)7.y27'~'7y2(2):~-~7)’m:~-~ (+)) 0
This means:
1. ¢i,i=1,..., m vanish on every solution of the system X.
2. ¢i,i=1,...,m are irreducible polynomials.
3. The sum hy + ho + ... + hy, is as small as possible.
4. Moreover, we want the set {¢1,...,®m} to have some special structure.

Multiple output case: example

).<1:X2+X3

X2 = axs

2:{x3 = bxg
n=xi (Ry)
y2 =3 (R2)

Good sets of 10-equations:

iy yvi'=bn+ayi-ay: (Ri) s vi=y2+2 (R)
vz = ayl - ay (R2) yi' =aby (R)

More than one possible set: multiple choice of differentiation.

Ri,R,Rp — &,

R, R, Ri — &2

Multiple output case: search tree

Find the “most simple” 10-equation set! Heuristics: degree, balance, etc.

vi=x (Ri)
r=x (R)

l R: pivot

y{—xz +x3=0 (Rl)
y2-x2=0 (R2)

l R> pivot

Yi-y2+x3=0 (Ri)
ys—ax3=0 (R2)

lRl pivot lRQ pivot

o, i =bn+ayi-ay (Ri) oo yi=y2+%2 (Ri)
Y = ayi —ay» (R2) yi=abyi (Rx)

Special structure of input-output equation set

Generalizing our algorithm on elimination, we get a set of polynomials:

hy+1 h him
¢1(y17y1,7"'7y1(v)7y27"'7_y2(2)7--~’Ym7--~7}’r51)) =0
h ho+1 Bm
¢2(y17y1,7"'7y1(1),}/27»-«,}/2(2)a"'7yma"-7y151)) =0
. h h B+l
¢m(y17y1’3"'7y1(1)7y27"'3y2(2)7-~-7ym7-~v7yr(n N)) :0
Moreover, we want the set {¢1,...,¢m} to have some special structure.
Proposition
If{¢1,...,¢m} is a characteristic set of the ideal of input-output equations,

then their coefficients generate the field of all identifiable functions.

Special structure of input-output equation set

Generalizing our algorithm on elimination, we get a set of polynomials:

hy+1 h him
¢1(y17y1,7"'7_y1(v)7y27"'7_y2(2)7--~’Ym7--~7}’r51)) =0
h ho+1 Bm
¢2(y17y1,7"'7y1(1),}/27»-«,}/2(2)1"-7yma"-7y'£7)) =0
. h h B+l
¢m(y17y1’3"'7y1(1)7_)/2,---,}/2(2)7-~-7ym7-~v7yr(n N)) :0
Moreover, we want the set {¢1,...,¢m} to have some special structure.
Proposition
If{¢1,...,¢m} is a characteristic set of the ideal of input-output equations,

then their coefficients generate the field of all identifiable functions.

Proposition

Note q; the leading coefficient of ¢; with respect to the variable y;,
R=q1 ... qm.

If (¢1,...,0m): @ is prime, then their coefficients generate the field of all
identifiable functions.

Consequence: if we can verify primality of (¢1,...,¢m): @, then we can use
the coefficients of {¢1,...,dm}.

Bad 10-equation set

Not all minimal 10-equation sets can be used to assess identifiability:

2
. _ l+xg
X1 = — ;
- 1-xq
3 X2 = 1+x12
- _2x
= b(1+x:2) (Rl)
Y2 =x (R2)

) B2 yi? + bPy2-1=0
Nyt -1=0

However, b is in fact identifiable because

by —y; =0

is a consequence of X.

Bad 10-equation set

Not all minimal 10-equation sets can be used to assess identifiability:

2
. _ l+xg
X1 = — ;
- 1-xq
3 X2 = 1+x12
- _2x
= b(1+x:2) (Rl)
Y2 =x (R2)

) B2 yi? + bPy2-1=0
Nyt -1=0

However, b is in fact identifiable because

by —y; =0
is a consequence of X.

Solution: Pose z = y{ + y, as a new variable (“dummy output”) and compute a
new |O-equation.

Extra projection: illustration

Finat varity — acuatvariety Fine ariety
Shadon varicy

(a) Reconstruction from projections

Figure: lllustration of bad 10-equation set:

Blue variety: actual ODE solution

Orange variety: extraneous variety seen from projections
An extra projection can distinguish the actual solution.

100 075 050 025 00 025 030 075 100

(b) Extra projection

— acuatvarty
Shadow varty.

Other possible improvements

> Alternative methods to extra projection?

> Works well when most eliminations are linear, otherwise huge extraneous
factors.

> Better/more concise representation for input-output equations?

