A new algorithm for finding the input-output equation of differential models

Ruiwen Dong
joint work with:
Gleb Pogudin, Heather Harrington, Christian Goodbrake

October 2020

Introduction : identifiability

Identifiability: property of a differential model with parameters that allows for the parameters to be determined uniquely from the model equations, noiseless data and sufficiently exciting inputs.

Classical example: The predator-prey model

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{1}-b x_{1} x_{2} \tag{1}\\
\dot{x}_{2}=-c x_{2}+d x_{1} x_{2} \\
\text { output: } \quad y=x_{1}
\end{array}\right.
$$

where x_{1} is the number of prey, x_{2} is the number of predator. a, b, c, d are unknown parameters to be identified. We can observe the output $y=x_{1}$.

Introduction : identifiability

Identifiability: property of a differential model with parameters that allows for the parameters to be determined uniquely from the model equations, noiseless data and sufficiently exciting inputs.

Classical example: The predator-prey model

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{1}-b x_{1} x_{2} \tag{1}\\
\dot{x}_{2}=-c x_{2}+d x_{1} x_{2} \\
\text { output: } \quad y=x_{1}
\end{array}\right.
$$

where x_{1} is the number of prey, x_{2} is the number of predator. a, b, c, d are unknown parameters to be identified. We can observe the output $y=x_{1}$.

Known result:

a, c, d are identifiable, but b is not.

Introduction : identifiability

Identifiability: property of a differential model with parameters that allows for the parameters to be determined uniquely from the model equations, noiseless data and sufficiently exciting inputs.

Classical example: The predator-prey model

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{1}-b x_{1} x_{2} \tag{1}\\
\dot{x}_{2}=-c x_{2}+d x_{1} x_{2} \\
\text { output: } \quad y=x_{1}
\end{array}\right.
$$

where x_{1} is the number of prey, x_{2} is the number of predator. a, b, c, d are unknown parameters to be identified. We can observe the output $y=x_{1}$.

Known result:

a, c, d are identifiable, but b is not.
Importance of assessing identifiability: evaluate or reparametrize models before experiments.

Identifiability computation: example

Consider the following ODE system:

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{2} \tag{2}\\
\dot{x}_{2}=b x_{1} \\
y=x_{1}
\end{array}\right.
$$

where a, b are parameters to be determined, y is the output.
How to find out which parameters are identifiable?

Identifiability computation: example

Consider the following ODE system:

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{2} \tag{2}\\
\dot{x}_{2}=b x_{1} \\
y=x_{1}
\end{array}\right.
$$

where a, b are parameters to be determined, y is the output.
How to find out which parameters are identifiable?
Immediate consequence of Σ :

$$
\ddot{y}-a b y=0
$$

called the input-output equation.

Identifiability computation: example

Consider the following ODE system:

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{2} \tag{2}\\
\dot{x}_{2}=b x_{1} \\
y=x_{1}
\end{array}\right.
$$

where a, b are parameters to be determined, y is the output.
How to find out which parameters are identifiable?
Immediate consequence of Σ :

$$
\ddot{y}-a b y=0
$$

called the input-output equation.
Result: $a b$ is identifiable from knowing y, but not a or b.

Identifiability computation: example

Consider the following ODE system:

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{2} \tag{2}\\
\dot{x}_{2}=b x_{1} \\
y=x_{1}
\end{array}\right.
$$

where a, b are parameters to be determined, y is the output.
How to find out which parameters are identifiable?
Immediate consequence of Σ :

$$
\ddot{y}-a b y=0
$$

called the input-output equation.
Result: $a b$ is identifiable from knowing y, but not a or b.
Input-output equations: "minimal" equations that depend only on the input and output variables and parameters.

Introduction: input-output equations

Two different kinds of identifiability:

- Single-experiment identifiability: what we can identify from a single experiment.
- Multi-experiment identifiability: what we can identify from a sufficiently (finite) many experiments.
Under some assumptions, single-experiment identifiability $=$ multi-experiment identifiability Input-output equations \longrightarrow Multi-experiment Identifiability:

Introduction : input-output equations

Two different kinds of identifiability:

- Single-experiment identifiability: what we can identify from a single experiment.
- Multi-experiment identifiability: what we can identify from a sufficiently (finite) many experiments.
Under some assumptions, single-experiment identifiability $=$ multi-experiment identifiability Input-output equations \longrightarrow Multi-experiment Identifiability:

Proposition

Note y the output of an ODE system, u its inputs, and $\boldsymbol{\theta}$ the vector of all its parameters.
Consider input-output equations as monic polynomials in y, u and their derivatives over the field $\mathbb{C}(\boldsymbol{\theta})$. A rational function of parameters $p \in \mathbb{C}(\boldsymbol{\theta})$ is multi-experiment identifiable if and only if it is in the field generated by the coefficients of the input-output equations.
Example: $\ddot{y}-a b y=0 \Longrightarrow \mathbb{C}(a b)$ is everything we can identify.

Immediate example

The predator-prey model

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{1}-b x_{1} x_{2} \tag{3}\\
\dot{x}_{2}=-c x_{2}+d x_{1} x_{2} \\
\text { output: } \quad y=x_{1}
\end{array}\right.
$$

where x_{1} is the number of prey, x_{2} is the number of predator. a, b, c, d are parameters we want to identify. We can observe the output $y=x_{1}$.

Immediate example

The predator-prey model

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{1}-b x_{1} x_{2} \tag{3}\\
\dot{x}_{2}=-c x_{2}+d x_{1} x_{2} \\
\text { output: } \quad y=x_{1}
\end{array}\right.
$$

where x_{1} is the number of prey, x_{2} is the number of predator. a, b, c, d are parameters we want to identify. We can observe the output $y=x_{1}$.

Input-output equation:

$$
a d y^{3}-a c y^{2}-d y^{2} \dot{y}+c y \dot{y}-\dot{y}^{2}+y \ddot{y}=0
$$

Immediate example

The predator-prey model

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{1}-b x_{1} x_{2} \tag{3}\\
\dot{x}_{2}=-c x_{2}+d x_{1} x_{2} \\
\text { output: } \quad y=x_{1}
\end{array}\right.
$$

where x_{1} is the number of prey, x_{2} is the number of predator. a, b, c, d are parameters we want to identify. We can observe the output $y=x_{1}$.

Input-output equation:

$$
a d y^{3}-a c y^{2}-d y^{2} \dot{y}+c y \dot{y}-\dot{y}^{2}+y \ddot{y}=0
$$

Identifiability consequence:

The field of identifiable functions
$=$ The field that the coefficients of input-output equation generate

$$
=\mathbb{C}(a c, a d, c, d)=\mathbb{C}(a, c, d)
$$

Problem

Setup:

Given a system Σ of the form

$$
\Sigma:\left\{\begin{array}{l}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) \tag{4}\\
y=g(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta})
\end{array}\right.
$$

where:

- $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a vector of state variables;
- $\mathbf{u}=\left(u_{1}, \ldots, u_{m}\right)$ is a vector of input (control) variables to be chosen by an experimenter;
- y is the output variable (scalar: we limit ourselves to single output case);
- $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{d}\right)$ is a vector of unknown (constant) parameters to be identified;
- $\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right)$, where $f_{i} \in \mathbb{C}(\mathbf{x}, u, \boldsymbol{\theta})$ are rational functions;
- $g \in \mathbb{C}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta})$ is a rational function.

Problem

Setup:

Given a system Σ of the form

$$
\Sigma:\left\{\begin{array}{l}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) \tag{5}\\
y=g(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta})
\end{array}\right.
$$

Goal: Find a "minimal" consequence of Σ depending only on input, output, and parameters, also known as an input-output equation:

$$
\phi\left(\boldsymbol{\theta}, \mathbf{u}, \mathbf{u}^{\prime}, \mathbf{u}^{(2)}, \ldots, y, y^{\prime}, y^{(2)} \ldots, y^{(h)}\right)=0
$$

This means:

1. ϕ vanishes on every solution of the system Σ.
2. ϕ is an irreducible polynomial.
3. h is as small as possible.

Problem

Setup:

Given a system Σ of the form

$$
\Sigma:\left\{\begin{array}{l}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) \tag{5}\\
y=g(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta})
\end{array}\right.
$$

Goal: Find a "minimal" consequence of Σ depending only on input, output, and parameters, also known as an input-output equation:

$$
\phi\left(\boldsymbol{\theta}, \mathbf{u}, \mathbf{u}^{\prime}, \mathbf{u}^{(2)}, \ldots, y, y^{\prime}, y^{(2)} \ldots, y^{(h)}\right)=0
$$

This means:

1. ϕ vanishes on every solution of the system Σ.
2. ϕ is an irreducible polynomial.
3. h is as small as possible.

Proposition

The input-output equation exists and is unique.

State of art

Various existing software for checking identifiability (all of them support multiple outputs):

1. SIAN: Implemented on MAPLE, checks identifiability without computing the input-output equations.
2. DAISY: Written in REDUCE, checks identifiability by computing the input-output equations.
3. RosenfeldGroebner implemented in MAPLE: do differential elimination on the system of differential equations.
4. COMBOS: web-based application, checks multi-experiment identifiability by calculating the input-output equations.

Performance

SIWR model:

$$
\left\{\begin{array}{l}
\dot{s}=\mu-\beta_{i} s i-\beta_{w} s w-\mu s+\alpha r \\
\dot{i}=\beta_{w} s w+\beta_{i} s i-(\gamma+\mu) i \\
\dot{w}=\xi(i-w) \\
\dot{r}=\gamma i-(\mu+\alpha) r \\
y=\kappa i
\end{array}\right.
$$

Pharmacokinetics model:

$$
\left\{\begin{array}{l}
\dot{x}_{0}=a_{1}\left(x_{1}-x_{0}\right)-\frac{k_{a} n x_{0}}{k_{c} k_{a}+k_{c} x_{2}+k_{a} x_{0}} \\
\dot{x}_{1}=a_{2}\left(x_{0}-x_{1}\right), \\
\dot{x}_{2}=b_{1}\left(x_{3}-x_{2}\right)-\frac{k_{c} n x_{2}}{k_{c} k_{a}+k_{c} x_{2}+k_{a} x_{0}} \\
\dot{x}_{3}=b_{2}\left(x_{2}-x_{3}\right) \\
y=x_{0}
\end{array}\right.
$$

Extended SEIR model:
Hyperchaotic QWWC system:

$$
\left\{\begin{array}{l}
\dot{x}=a(y-x)+y z \\
\dot{y}=b(x+y)-x z \\
\dot{z}=-c z-d w+x y \\
\dot{w}=e z-f w+x y \\
o=x
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\dot{s}=-\beta s(i+j+q a) \\
\dot{e}=\beta s(i+j+q a)-k e \\
\dot{a}=k(1-\rho) e-\gamma_{1} a \\
\dot{i}=k \rho e-\left(\alpha+\gamma_{1}\right) i \\
\dot{j}=\alpha i-\gamma_{2} j \\
\dot{c}=\alpha i \\
y=c
\end{array}\right.
$$

Performance

Model	DAISY	RG	SIAN	Our implementation ${ }^{* *}$
SIWR	$>5 \mathrm{~h}$.	$>5 \mathrm{~h}$.	$>5 \mathrm{~h}$.	$9 \mathrm{~s} .+9 \mathrm{~s} .=18 \mathrm{~s}$.
Extended SEIR	OOM *	OOM *	$>5 \mathrm{~h}$.	$22 \mathrm{~s} .+37 \mathrm{~s} .=69 \mathrm{~s}$.
Pharmacokinetics	$>5 \mathrm{~h}$.	OOM *	$>5 \mathrm{~h}$.	$20 \mathrm{~s} .+45 \mathrm{~s} .=65 \mathrm{~s}$.
QWWC	$>5 \mathrm{~h}$.	OOM *	$>5 \mathrm{~h}$.	$236 \mathrm{~s} .+246 \mathrm{~s} .=482 \mathrm{~s}$.

Table: Performance comparison

* OOM = out of memory
** Time for computing IO-equation + Time for identifiability

Model	io-equation size (N. terms)	identifiable
SIWR	209349	all
Extended SEIR	927131	$\beta, k, \gamma_{1}, \gamma_{2}, \alpha$
Pharmacokinetics	1062553	all
QWWC	6853210	a, b

Table: Results

First attempt: implicitization of Lie derivatives

Find Lie derivatives:

Original system:

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{1}+x_{2}^{2} \\
\dot{x}_{2}=b x_{1}^{2}+x_{2} \\
y=x_{1}
\end{array}\right.
$$

$$
\Longrightarrow
$$

Lie derivatives:

$$
\Pi:\left\{\begin{array}{l}
y=x_{1} \\
y^{\prime}=\dot{x}_{1}=a x_{1}+x_{2}^{2} \\
y^{\prime \prime}=\ldots=a^{2} x_{1}+(a+2) x_{2}^{2}+2 b x_{2} x_{1}^{2}
\end{array}\right.
$$

First attempt: implicitization of Lie derivatives

Find Lie derivatives:

Original system:

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{1}+x_{2}^{2} \\
\dot{x}_{2}=b x_{1}^{2}+x_{2} \\
y=x_{1}
\end{array}\right.
$$

Lie derivatives:

$$
\Pi:\left\{\begin{array}{l}
y=x_{1} \\
y^{\prime}=\dot{x}_{1}=a x_{1}+x_{2}^{2} \\
y^{\prime \prime}=\ldots=a^{2} x_{1}+(a+2) x_{2}^{2}+2 b x_{2} x_{1}^{2}
\end{array}\right.
$$

Implicitization of hypersurface on $\mathbb{C}(a, b)^{3}$:
Parametric description: Implicit description:

$$
\Pi:\left\{\begin{array}{l}
y=g\left(x_{1}, x_{2}\right) \\
y^{\prime}=g_{1}\left(x_{1}, x_{2}\right) \\
y^{\prime \prime}=g_{2}\left(x_{1}, x_{2}\right)
\end{array} \quad \Longrightarrow \quad \phi\left(y, y^{\prime}, y^{\prime \prime}\right)=0\right.
$$

Methods: Groebner Basis, Repeated resultants, Macaulay resultant, Sparse resultant, Interpolation, ...

First attempt: efficiency problems

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{1}+x_{2}^{2} \\
\dot{x}_{2}=b x_{1}^{2}+x_{2} \\
y=x_{1}
\end{array}\right.
$$

First attempt: efficiency problems

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{1}+x_{2}^{2} \\
\dot{x}_{2}=b x_{1}^{2}+x_{2} \\
y=x_{1}
\end{array}\right.
$$

Calculate Lie derivatives recursively:

$$
\Pi:\left\{\begin{array}{l}
y=x_{1} \\
y^{\prime}=a x_{1}+x_{2}^{2} \\
y^{\prime \prime}=a \dot{x}_{1}+2 x_{2} \dot{x}_{2}=a\left(a x_{1}+x_{2}^{2}\right)+2 x_{2}\left(b x_{1}^{2}+x_{2}\right)
\end{array}\right.
$$

First attempt: efficiency problems

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{1}+x_{2}^{2} \\
\dot{x}_{2}=b x_{1}^{2}+x_{2} \\
y=x_{1}
\end{array}\right.
$$

Calculate Lie derivatives recursively:

$$
\Pi:\left\{\begin{array}{l}
y=x_{1} \\
y^{\prime}=a x_{1}+x_{2}^{2} \\
y^{\prime \prime}=a \dot{x}_{1}+2 x_{2} \dot{x}_{2}=a\left(a x_{1}+x_{2}^{2}\right)+2 x_{2}\left(b x_{1}^{2}+x_{2}\right)
\end{array}\right.
$$

Better way:

$$
\tilde{\Pi}:\left\{\begin{array}{l}
y=x_{1} \\
y^{\prime}=a x_{1}+x_{2}^{2}=a y+x_{2}^{2} \\
y^{\prime \prime}=a y^{\prime}+2 x_{2} \dot{x}_{2}=a y^{\prime}+2 x_{2}\left(b y^{2}+x_{2}\right)
\end{array}\right.
$$

First attempt: efficiency problems

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=a x_{1}+x_{2}^{2} \\
\dot{x}_{2}=b x_{1}^{2}+x_{2} \\
y=x_{1}
\end{array}\right.
$$

Calculate Lie derivatives recursively:

$$
\Pi:\left\{\begin{array}{l}
y=x_{1} \\
y^{\prime}=a x_{1}+x_{2}^{2} \\
y^{\prime \prime}=a \dot{x}_{1}+2 x_{2} \dot{x}_{2}=a\left(a x_{1}+x_{2}^{2}\right)+2 x_{2}\left(b x_{1}^{2}+x_{2}\right)
\end{array}\right.
$$

Better way:

$$
\tilde{\Pi}:\left\{\begin{array}{l}
y=x_{1} \\
y^{\prime}=a x_{1}+x_{2}^{2}=a y+x_{2}^{2} \\
y^{\prime \prime}=a y^{\prime}+2 x_{2} \dot{x}_{2}=a y^{\prime}+2 x_{2}\left(b y^{2}+x_{2}\right)
\end{array}\right.
$$

Idea of our algorithm: Eliminate state variables as soon as we can.

Our algorithm: example

Idea: Eliminate $x_{1}, x_{2}, \ldots, x_{n}$ one by one in a dynamically defined order.

Our algorithm: example

Idea: Eliminate $x_{1}, x_{2}, \ldots, x_{n}$ one by one in a dynamically defined order. Initialiate system:

$$
\Sigma_{0}: \begin{cases}y-x_{1}=0 & \left(R_{0}\right) \\ \dot{x}_{1}-\left(a x_{1}+x_{2}^{2}\right)=0 & \left(S_{1}\right) \\ \dot{x}_{2}-\left(b x_{1}^{2}+x_{2}\right)=0 & \left(S_{2}\right)\end{cases}
$$

Our algorithm: example

Idea: Eliminate $x_{1}, x_{2}, \ldots, x_{n}$ one by one in a dynamically defined order. Initialiate system:

$$
\Sigma_{0}: \begin{cases}y-x_{1}=0 & \left(R_{0}\right) \\ \dot{x}_{1}-\left(a x_{1}+x_{2}^{2}\right)=0 & \left(S_{1}\right) \\ \dot{x}_{2}-\left(b x_{1}^{2}+x_{2}\right)=0 & \left(S_{2}\right)\end{cases}
$$

Choose state variable to eliminate: x_{1}. Criteria: lowest degree.

Our algorithm: example

Idea: Eliminate $x_{1}, x_{2}, \ldots, x_{n}$ one by one in a dynamically defined order.
Initialiate system:

$$
\Sigma_{0}: \begin{cases}y-x_{1}=0 & \left(R_{0}\right) \\ \dot{x}_{1}-\left(a x_{1}+x_{2}^{2}\right)=0 & \left(S_{1}\right) \\ \dot{x}_{2}-\left(b x_{1}^{2}+x_{2}\right)=0 & \left(S_{2}\right)\end{cases}
$$

Choose state variable to eliminate: x_{1}. Criteria: lowest degree. Elimination of x_{1} :

Differentiate R_{0} :

$$
\left\{\begin{array} { l l }
{ y ^ { \prime } - \dot { x } _ { 1 } = 0 } & { (R _ { 0 } ^ { \prime }) } \\
{ \dot { x } _ { 1 } - (a x _ { 1 } + x _ { 2 } ^ { 2 }) = 0 } & { (S _ { 1 }) } \\
{ \dot { x } _ { 2 } - (b x _ { 1 } ^ { 2 } + x _ { 2 }) = 0 } & { (S _ { 2 }) }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{ll}
y^{\prime}-\left(a x_{1}+x_{2}^{2}\right)=0 & \left(\left\langle R_{0}^{\prime}\right\rangle+\left\langle S_{1}\right\rangle\right) \\
\dot{x}_{2}-\left(b x_{1}^{2}+x_{2}\right)=0 & \left(S_{2}\right)
\end{array}\right.\right.
$$

Eliminate x_{1} using R_{0} :

$$
\Longrightarrow \Sigma_{1}:\left\{\begin{array}{l}
y^{\prime}-\left(a y+x_{2}^{2}\right)=0 \tag{1}\\
\dot{x}_{2}-\left(b y^{2}+x_{2}\right)=0
\end{array}\right.
$$

Our algorithm: example

Idea: Eliminate $x_{1}, x_{2}, \ldots, x_{n}$ one by one in a dynamically defined order. Previous system:

$$
\Sigma_{1}: \begin{cases}y^{\prime}-a y-x_{2}^{2}=0 & \left(R_{1}\right) \\ \dot{x}_{2}-\left(b y^{2}+x_{2}\right)=0 & \left(S_{2}\right)\end{cases}
$$

Our algorithm: example

Idea: Eliminate $x_{1}, x_{2}, \ldots, x_{n}$ one by one in a dynamically defined order. Previous system:

$$
\Sigma_{1}: \begin{cases}y^{\prime}-a y-x_{2}^{2}=0 \\ \dot{x}_{2}-\left(b y^{2}+x_{2}\right)=0 & \left(R_{1}\right)\end{cases}
$$

Choose state variable to eliminate: x_{2}.

Our algorithm: example

Idea: Eliminate $x_{1}, x_{2}, \ldots, x_{n}$ one by one in a dynamically defined order.
Previous system:

$$
\Sigma_{1}: \begin{cases}y^{\prime}-a y-x_{2}^{2}=0 \\ \dot{x}_{2}-\left(b y^{2}+x_{2}\right)=0 & \left(R_{1}\right)\end{cases}
$$

Choose state variable to eliminate: x_{2}. Elimination of x_{2} :

Differentiate R_{1} :

$$
\left\{\begin{array}{lll}
y^{\prime \prime}-a y^{\prime}-2 x_{2} \dot{x}_{2}=0 & \left(R_{1}^{\prime}\right) \\
\dot{x}_{2}-\left(b y^{2}+x_{2}\right)=0 & \left(S_{2}\right) & \Longrightarrow
\end{array} y^{\prime \prime}-a y^{\prime}-2 x_{2}\left(b y^{2}+x_{2}\right)=00\right.
$$

Eliminate x_{2} using R_{1} :

$$
\begin{equation*}
\Longrightarrow \operatorname{Res}_{x_{2}}\left(y^{\prime}-a y-x_{2}^{2}, y^{\prime \prime}-a y^{\prime}-2 x_{2}\left(b y^{2}+x_{2}\right)\right)=0 \tag{2}
\end{equation*}
$$

Our algorithm: example

Idea: Eliminate $x_{1}, x_{2}, \ldots, x_{n}$ one by one in a dynamically defined order.
Previous system:

$$
\Sigma_{1}: \begin{cases}y^{\prime}-a y-x_{2}^{2}=0 \\ \dot{x}_{2}-\left(b y^{2}+x_{2}\right)=0 & \left(R_{1}\right)\end{cases}
$$

Choose state variable to eliminate: x_{2}. Elimination of x_{2} :

Differentiate R_{1} :

$$
\left\{\begin{array}{lll}
y^{\prime \prime}-a y^{\prime}-2 x_{2} \dot{x}_{2}=0 & \left(R_{1}^{\prime}\right) \\
\dot{x}_{2}-\left(b y^{2}+x_{2}\right)=0 & \left(S_{2}\right)
\end{array} \quad \Longrightarrow \quad \begin{array}{l}
y^{\prime \prime}-a y^{\prime}-2 x_{2}\left(b y^{2}+x_{2}\right)=0 \\
\\
\left(\left\langle R_{1}^{\prime}\right\rangle+\left\langle S_{2}\right\rangle\right)
\end{array}\right.
$$

Eliminate x_{2} using R_{1} :

$$
\begin{equation*}
\Longrightarrow \operatorname{Res}_{x_{2}}\left(y^{\prime}-a y-x_{2}^{2}, y^{\prime \prime}-a y^{\prime}-2 x_{2}\left(b y^{2}+x_{2}\right)\right)=0 \tag{2}
\end{equation*}
$$

Input-output equation is irreducible: factorization
Factorize R_{2} and choose the correct factor with a plug-in.

Our algorithm: extraneous factors

We are using repeated univariate resultant: $\left(R_{0}\right),\left(R_{1}\right)$ are "pivots". This causes extraneous factors.

Smallest nontrivial example:
Given $f, g, h \in \mathbb{C}[x, y, z]$, find $\langle f, g, h\rangle \cap \mathbb{C}[z]$.

Our algorithm: extraneous factors

We are using repeated univariate resultant: $\left(R_{0}\right),\left(R_{1}\right)$ are "pivots". This causes extraneous factors.

Smallest nontrivial example:
Given $f, g, h \in \mathbb{C}[x, y, z]$, find $\langle f, g, h\rangle \cap \mathbb{C}[z]$.
Repeated resultant approach:
Find $\operatorname{Res}_{x}\left(\operatorname{Res}_{y}(f, g), \operatorname{Res}_{y}(f, h)\right)$, then factorize.

Our algorithm: extraneous factors

We are using repeated univariate resultant: $\left(R_{0}\right),\left(R_{1}\right)$ are "pivots". This causes extraneous factors.

Smallest nontrivial example:
Given $f, g, h \in \mathbb{C}[x, y, z]$, find $\langle f, g, h\rangle \cap \mathbb{C}[z]$.
Repeated resultant approach:
Find $\operatorname{Res}_{x}\left(\operatorname{Res}_{y}(f, g), \operatorname{Res}_{y}(f, h)\right)$, then factorize.
Justification (L. Busé, B. Mourrain):

$$
\operatorname{Res}_{x}\left(\operatorname{Res}_{y}(f, g), \operatorname{Res}_{y}(f, h)\right)=\underbrace{\operatorname{Res}_{x, y}(f, g, h)}_{\langle f, g, h\rangle \cap \mathbb{C}[z]} \underbrace{\operatorname{Res}_{x, y, y^{\prime}}\left(f, \delta_{y, y^{\prime}} f, g(y), h\left(y^{\prime}\right)\right)}_{\text {Extraneous factor }}
$$

$\left(\delta_{y, y^{\prime}} f=\frac{f(y)-f\left(y^{\prime}\right)}{y-y^{\prime}}\right)$. Acceptable if f has low degree in y : justifies the choice of variable to eliminate by lowest degree.

Eliminate extraneous factor before computation?

Optimization 1: early detection of extraneous factors

We use the Bézout matrix to compute resultant.

Bézout matrix:

Let $f(z)=\sum_{i=0}^{n} u_{i} z^{i}, g(z)=\sum_{i=0}^{n} v_{i} z^{i}$,

$$
\begin{gathered}
\frac{f(x) g(y)-f(y) g(x)}{x-y}=\sum_{i, j=0}^{n-1} b_{i j} x^{i} y^{j} \\
B_{n}(f, g)=\left(b_{i j}\right)_{i, j=0, \ldots, n-1} \\
\operatorname{det} B_{n}(f, g)=\operatorname{Res}(f, g)
\end{gathered}
$$

Optimization 1: early detection of extraneous factors

Example:

$$
\begin{aligned}
& \operatorname{Res}_{x}\left(a x^{2}+y x+2(b+e), a x^{2}+c x+(b+e)\right) \\
= & \operatorname{det}\left|\begin{array}{cc}
a(c-y) & -a(b+e) \\
-a(b+e) & (b+e)(y-2 c)
\end{array}\right| \\
= & a(b+e) \underbrace{\left(3 c y-y^{2}-2 c^{2}-a b-a e\right)}_{\text {We want this }}
\end{aligned}
$$

Optimization 1: early detection of extraneous factors

Example:

$$
\begin{aligned}
& \operatorname{Res}_{x}\left(a x^{2}+y x+2(b+e), a x^{2}+c x+(b+e)\right) \\
= & \operatorname{det}\left|\begin{array}{cc}
a(c-y) & -a(b+e) \\
-a(b+e) & (b+e)(y-2 c)
\end{array}\right| \\
= & a(b+e) \underbrace{\left(3 c y-y^{2}-2 c^{2}-a b-a e\right)}_{\text {We want this }}
\end{aligned}
$$

Actual computation:

$$
\operatorname{det}\left|\begin{array}{cc}
(c-y) & -1 \\
-a(b+e) & (y-2 c)
\end{array}\right|
$$

Essential simplification as this happens often (equations not generic)

Optimization 2: variable change

Optimization 1 is straightforward.
However, in most cases, we cannot always detect extra factors in matrix: we can do it when the extra factor divides the constant term or the leading term.

$$
\operatorname{Res}_{x}\left(a x^{2}+y x+2(b+e), a x^{2}+c x+(b+e)\right)=\operatorname{det}\left|\begin{array}{cc}
a(c-y) & -a(b+e) \\
-a(b+e) & (b+e)(y-2 c)
\end{array}\right|
$$

Optimization 2: variable change

Optimization 1 is straightforward.
However, in most cases, we cannot always detect extra factors in matrix: we can do it when the extra factor divides the constant term or the leading term.

$$
\operatorname{Res}_{x}\left(a x^{2}+y x+2(b+e), a x^{2}+c x+(b+e)\right)=\operatorname{det}\left|\begin{array}{cc}
a(c-y) & -a(b+e) \\
-a(b+e) & (b+e)(y-2 c)
\end{array}\right|
$$

Counter-example:

$$
\begin{aligned}
& \operatorname{Res}_{x}\left(x^{2}+x(y+2)+y+1+2 b, x^{2}+x(c+2)+b+c+1\right) \\
& =\operatorname{det}\left|\begin{array}{cc}
c-y & c-y-b \\
c-y-b & y b-y-2 b c+c
\end{array}\right| \\
& =b \underbrace{\left(3 c y-y^{2}-2 c^{2}-b\right)}_{\text {We want this }}
\end{aligned}
$$

Optimization 2: variable change

However, there is one trick:

If an extraneous factor $p(y) \mid \operatorname{Res}_{x}(f(x, y), g(x, y))$, then

$$
\operatorname{Res}_{x}(f(x, y), g(x, y)) \equiv 0 \quad \bmod p(y)
$$

so f, g share some common root $x_{0} \bmod p(y)$:

$$
\exists x_{0}, f\left(x_{0}, y\right)=g\left(x_{0}, y\right)=0 \quad \bmod p(y)
$$

Optimization 2: variable change

However, there is one trick:

If an extraneous factor $p(y) \mid \operatorname{Res}_{x}(f(x, y), g(x, y))$, then

$$
\operatorname{Res}_{x}(f(x, y), g(x, y)) \equiv 0 \quad \bmod p(y)
$$

so f, g share some common root $x_{0} \bmod p(y)$:

$$
\exists x_{0}, f\left(x_{0}, y\right)=g\left(x_{0}, y\right)=0 \quad \bmod p(y)
$$

If we consider f, g as polynomials in $x-x_{0}$, then $p(y)$ divides their constant terms:

$$
\left\{\begin{array}{l}
f=a_{d}(y)\left(x-x_{0}\right)^{d}+\ldots+a_{1}(y)\left(x-x_{0}\right)+p(y) q_{a}(y) \\
g=b_{d}(y)\left(x-x_{0}\right)^{d}+\ldots+b_{1}(y)\left(x-x_{0}\right)+p(y) q_{b}(y)
\end{array}\right.
$$

Optimization 2: variable change

However, there is one trick:

If an extraneous factor $p(y) \mid \operatorname{Res}_{x}(f(x, y), g(x, y))$, then

$$
\operatorname{Res}_{x}(f(x, y), g(x, y)) \equiv 0 \quad \bmod p(y)
$$

so f, g share some common root $x_{0} \bmod p(y)$:

$$
\exists x_{0}, f\left(x_{0}, y\right)=g\left(x_{0}, y\right)=0 \quad \bmod p(y)
$$

If we consider f, g as polynomials in $x-x_{0}$, then $p(y)$ divides their constant terms:

$$
\left\{\begin{array}{l}
f=a_{d}(y)\left(x-x_{0}\right)^{d}+\ldots+a_{1}(y)\left(x-x_{0}\right)+p(y) q_{a}(y) \\
g=b_{d}(y)\left(x-x_{0}\right)^{d}+\ldots+b_{1}(y)\left(x-x_{0}\right)+p(y) q_{b}(y)
\end{array}\right.
$$

Do variable change $x-x_{0} \longrightarrow x$:

$$
\begin{array}{r}
\left\{\begin{array}{l}
f=a_{d}(y) x^{d}+\ldots+a_{1}(y) x+p(y) q_{a}(y) \\
g=b_{d}(y) x^{d}+\ldots+b_{1}(y) x+p(y) q_{b}(y)
\end{array}\right. \\
\operatorname{Res}_{x}(f, g)=\operatorname{det}\left|\begin{array}{cc}
\ldots & p(y) q_{a}(y) \\
\vdots & \vdots \\
\ldots & p(y) q_{b}(y)
\end{array}\right|
\end{array}
$$

Optimization 2: performance

Example: when we know a priori that $x-y$ is an extra factor.

$$
\left|\begin{array}{ll}
x & y \\
y & x
\end{array}\right| \quad \longrightarrow \quad\left|\begin{array}{cc}
x & -(x-y) \\
y & x-y
\end{array}\right| \quad \longrightarrow \quad(x+y)(x-y)
$$

Equivalence with some "optimal" elimination order in sparse resultant?
Good acceleration in practice:

Model	Without Opt.2	With Opt.2
SIWR	47 s	9 s
Extended SEIR	$>5 \mathrm{~h}$	22 s
Pharmacokinetics	227 s	20 s
QWWC	1020 s	236 s

Table: Time comparison for computing io-equation

Summary

Our algorithm:

1. Eliminate x_{1}, \ldots, x_{n} one by one in a dynamically chosen order (always do low degree variable first). Eliminations are done using resultant (Bézout matrix).
We can regard it as a gradual ordering change (replacing a state variable x_{i} with a higher order of y).
2. Factorize intermediate results as often as possible, eliminate extraneous factors with plug-ins.
3. "Reveal" extraneous factors in Bézout matrix with variable change.
4. Eliminate extraneous factors in resultants before determinant computation.

Multiple output case: work in progress
Setup:
Given a system Σ of the form

$$
\Sigma:\left\{\begin{array}{l}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) \tag{6}\\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta})
\end{array}\right.
$$

Now, $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)$ is a vector of outputs, $\mathbf{g}=\left(g_{1}, \ldots, g_{m}\right)$ is a vector of rational functions.

Multiple output case: work in progress

Setup:

Given a system Σ of the form

$$
\Sigma:\left\{\begin{array}{l}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) \tag{6}\\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta})
\end{array}\right.
$$

Now, $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)$ is a vector of outputs, $\mathbf{g}=\left(g_{1}, \ldots, g_{m}\right)$ is a vector of rational functions.
Goal: Find a set of "minimal" consequences of Σ depending only on input, output, and parameters, also known as input-output equations:

$$
\left\{\begin{array}{l}
\phi_{1}\left(\boldsymbol{\theta}, \mathbf{u}, \mathbf{u}^{\prime}, \ldots, y_{1}, y_{1}^{\prime}, \ldots, y_{1}^{\left(h_{1}+1\right)}, y_{2}, \ldots, y_{2}^{\left(h_{2}\right)}, \ldots, y_{m}, \ldots, y_{m}^{\left(h_{m}\right)}\right)=0 \\
\phi_{2}\left(\boldsymbol{\theta}, \mathbf{u}, \mathbf{u}^{\prime}, \ldots, y_{1}, y_{1}^{\prime}, \ldots, y_{1}^{\left(h_{1}\right)}, y_{2}, \ldots, y_{2}^{\left(h_{2}+1\right)}, \ldots, y_{m}, \ldots, y_{m}^{\left(h_{m}\right)}\right)=0 \\
\vdots \\
\phi_{m}\left(\boldsymbol{\theta}, \mathbf{u}, \mathbf{u}^{\prime}, \ldots, y_{1}, y_{1}^{\prime}, \ldots, y_{1}^{\left(h_{1}\right)}, y_{2}, \ldots, y_{2}^{\left(h_{2}\right)}, \ldots, y_{m}, \ldots, y_{m}^{\left(h_{m}+1\right)}\right)=0
\end{array}\right.
$$

This means:

1. $\phi_{i}, i=1, \ldots, m$ vanish on every solution of the system Σ.
2. $\phi_{i}, i=1, \ldots, m$ are irreducible polynomials.
3. The sum $h_{1}+h_{2}+\ldots+h_{m}$ is as small as possible.

Multiple output case: work in progress

Setup:

Given a system Σ of the form

$$
\Sigma:\left\{\begin{array}{l}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) \tag{6}\\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta})
\end{array}\right.
$$

Now, $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)$ is a vector of outputs, $\mathbf{g}=\left(g_{1}, \ldots, g_{m}\right)$ is a vector of rational functions.
Goal: Find a set of "minimal" consequences of Σ depending only on input, output, and parameters, also known as input-output equations:

$$
\left\{\begin{array}{l}
\phi_{1}\left(\boldsymbol{\theta}, \mathbf{u}, \mathbf{u}^{\prime}, \ldots, y_{1}, y_{1}^{\prime}, \ldots, y_{1}^{\left(h_{1}+1\right)}, y_{2}, \ldots, y_{2}^{\left(h_{2}\right)}, \ldots, y_{m}, \ldots, y_{m}^{\left(h_{m}\right)}\right)=0 \\
\phi_{2}\left(\boldsymbol{\theta}, \mathbf{u}, \mathbf{u}^{\prime}, \ldots, y_{1}, y_{1}^{\prime}, \ldots, y_{1}^{\left(h_{1}\right)}, y_{2}, \ldots, y_{2}^{\left(h_{2}+1\right)}, \ldots, y_{m}, \ldots, y_{m}^{\left(h_{m}\right)}\right)=0 \\
\vdots \\
\phi_{m}\left(\boldsymbol{\theta}, \mathbf{u}, \mathbf{u}^{\prime}, \ldots, y_{1}, y_{1}^{\prime}, \ldots, y_{1}^{\left(h_{1}\right)}, y_{2}, \ldots, y_{2}^{\left(h_{2}\right)}, \ldots, y_{m}, \ldots, y_{m}^{\left(h_{m}+1\right)}\right)=0
\end{array}\right.
$$

This means:

1. $\phi_{i}, i=1, \ldots, m$ vanish on every solution of the system Σ.
2. $\phi_{i}, i=1, \ldots, m$ are irreducible polynomials.
3. The sum $h_{1}+h_{2}+\ldots+h_{m}$ is as small as possible.
4. Moreover, we want the set $\left\{\phi_{1}, \ldots, \phi_{m}\right\}$ to have some special structure.

Multiple output case: example

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=x_{2}+x_{3} \tag{7}\\
\dot{x}_{2}=a x_{3} \\
\dot{x}_{3}=b x_{1} \\
y_{1}=x_{1} \\
y_{2}=x_{2}
\end{array}\right.
$$

Good sets of IO-equations:

$$
\Phi_{1}:\left\{\begin{array}{ll}
y_{1}^{\prime \prime}=b y_{1}+a y_{1}^{\prime}-a y_{2} & \left(R_{1}\right) \\
y_{2}^{\prime}=a y_{1}^{\prime}-a y_{2} & \left(R_{2}\right)
\end{array} \quad \Phi_{2}: \begin{cases}y_{1}^{\prime}=y_{2}+\frac{y_{2}^{\prime}}{a} & \left(R_{1}\right) \\
y_{2}^{\prime \prime}=a b y_{1} & \left(R_{2}\right)\end{cases}\right.
$$

More than one possible set: multiple choice of differentiation.

$$
\begin{aligned}
& R_{1}, R_{2}, R_{2} \longrightarrow \Phi_{1} \\
& R_{1}, R_{2}, R_{1} \longrightarrow \Phi_{2}
\end{aligned}
$$

Multiple output case: search tree

Find the "most simple" IO-equation set! Heuristics: degree, balance, etc.

$$
\begin{aligned}
& \begin{cases}y_{1}=x_{1} & \left(R_{1}\right) \\
y_{2}=x_{2} & \left(R_{2}\right)\end{cases} \\
& \downarrow R_{1} \text { pivot } \\
& \begin{cases}y_{1}^{\prime}-x_{2}+x_{3}=0 & \left(R_{1}\right) \\
y_{2}-x_{2}=0 & \left(R_{2}\right)\end{cases} \\
& \downarrow R_{2} \text { pivot } \\
& \begin{cases}y_{1}^{\prime}-y_{2}+x_{3}=0 & \left(R_{1}\right) \\
y_{2}^{\prime}-a x_{3}=0 & \left(R_{2}\right)\end{cases} \\
& \downarrow R_{1} \text { pivot } \quad \downarrow R_{2} \text { pivot } \\
& \Phi_{1}:\left\{\begin{array}{ll}
y_{1}^{\prime \prime}=b y_{1}+a y_{1}^{\prime}-a y_{2} & \left(R_{1}\right) \\
y_{2}^{\prime}=a y_{1}^{\prime}-a y_{2} & \left(R_{2}\right)
\end{array} \quad \Phi_{2}: \begin{cases}y_{1}^{\prime}=y_{2}+\frac{y_{2}^{\prime}}{a} & \left(R_{1}\right) \\
y_{2}^{\prime \prime}=a b y_{1} & \left(R_{2}\right)\end{cases} \right.
\end{aligned}
$$

Special structure of input-output equation set

Generalizing our algorithm on elimination, we get a set of polynomials:

$$
\left\{\begin{array}{l}
\phi_{1}\left(y_{1}, y_{1}^{\prime}, \ldots, y_{1}^{\left(h_{1}+1\right)}, y_{2}, \ldots, y_{2}^{\left(h_{2}\right)}, \ldots, y_{m}, \ldots, y_{m}^{\left(h_{m}\right)}\right)=0 \\
\phi_{2}\left(y_{1}, y_{1}^{\prime}, \ldots, y_{1}^{\left(h_{1}\right)}, y_{2}, \ldots, y_{2}^{\left(h_{2}+1\right)}, \ldots, y_{m}, \ldots, y_{m}^{\left(h_{m}\right)}\right)=0 \\
\vdots \\
\phi_{m}\left(y_{1}, y_{1}^{\prime}, \ldots, y_{1}^{\left(h_{1}\right)}, y_{2}, \ldots, y_{2}^{\left(h_{2}\right)}, \ldots, y_{m}, \ldots, y_{m}^{\left(h_{m}+1\right)}\right)=0
\end{array}\right.
$$

Moreover, we want the set $\left\{\phi_{1}, \ldots, \phi_{m}\right\}$ to have some special structure.

Proposition

If $\left\{\phi_{1}, \ldots, \phi_{m}\right\}$ is a characteristic set of the ideal of input-output equations, then their coefficients generate the field of all identifiable functions.

Special structure of input-output equation set

Generalizing our algorithm on elimination, we get a set of polynomials:

$$
\left\{\begin{array}{l}
\phi_{1}\left(y_{1}, y_{1}^{\prime}, \ldots, y_{1}^{\left(h_{1}+1\right)}, y_{2}, \ldots, y_{2}^{\left(h_{2}\right)}, \ldots, y_{m}, \ldots, y_{m}^{\left(h_{m}\right)}\right)=0 \\
\phi_{2}\left(y_{1}, y_{1}^{\prime}, \ldots, y_{1}^{\left(h_{1}\right)}, y_{2}, \ldots, y_{2}^{\left(h_{2}+1\right)}, \ldots, y_{m}, \ldots, y_{m}^{\left(h_{m}\right)}\right)=0 \\
\vdots \\
\phi_{m}\left(y_{1}, y_{1}^{\prime}, \ldots, y_{1}^{\left(h_{1}\right)}, y_{2}, \ldots, y_{2}^{\left(h_{2}\right)}, \ldots, y_{m}, \ldots, y_{m}^{\left(h_{m}+1\right)}\right)=0
\end{array}\right.
$$

Moreover, we want the set $\left\{\phi_{1}, \ldots, \phi_{m}\right\}$ to have some special structure.

Proposition

If $\left\{\phi_{1}, \ldots, \phi_{m}\right\}$ is a characteristic set of the ideal of input-output equations, then their coefficients generate the field of all identifiable functions.

Proposition

Note q_{i} the leading coefficient of ϕ_{i} with respect to the variable y_{i}, $Q=q_{1} \cdot \ldots \cdot q_{m}$.
If $\left\langle\phi_{1}, \ldots, \phi_{m}\right\rangle: Q^{\infty}$ is prime, then their coefficients generate the field of all identifiable functions.
Consequence: if we can verify primality of $\left\langle\phi_{1}, \ldots, \phi_{m}\right\rangle: Q^{\infty}$, then we can use the coefficients of $\left\{\phi_{1}, \ldots, \phi_{m}\right\}$.

Bad IO-equation set

Not all minimal IO-equation sets can be used to assess identifiability:

$$
\begin{aligned}
& \Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=\frac{1+x_{1}^{2}}{2} \\
\dot{x}_{2}=\frac{1-x_{1}^{2}}{1+x_{1}^{2}} \\
y_{1}=\frac{2 x_{1}}{b\left(1+x_{1}{ }^{2}\right)} \quad\left(R_{1}\right) \\
y_{2}=x_{2}
\end{array}\left(R_{2}\right)\right. \\
& \Phi:\left\{\begin{array}{l}
b^{2} y_{1}^{\prime 2}+b^{2} y_{1}^{2}-1=0 \\
y_{2}^{\prime 2}+b^{2} y_{1}^{2}-1=0
\end{array}\right.
\end{aligned}
$$

However, b is in fact identifiable because

$$
b y_{1}^{\prime}-y_{2}^{\prime}=0
$$

is a consequence of Σ.

Bad IO-equation set

Not all minimal IO-equation sets can be used to assess identifiability:

$$
\begin{aligned}
& \Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=\frac{1+x_{1}^{2}}{2} \\
\dot{x}_{2}=\frac{1-x_{1}^{2}}{1+x_{1}^{2}} \\
y_{1}=\frac{2 x_{1}}{b\left(1+x_{1}{ }^{2}\right)} \quad\left(R_{1}\right) \\
y_{2}=x_{2}
\end{array}\left(R_{2}\right)\right. \\
& \Phi:\left\{\begin{array}{l}
b^{2} y_{1}^{\prime 2}+b^{2} y_{1}^{2}-1=0 \\
y_{2}^{\prime 2}+b^{2} y_{1}^{2}-1=0
\end{array}\right.
\end{aligned}
$$

However, b is in fact identifiable because

$$
b y_{1}^{\prime}-y_{2}^{\prime}=0
$$

is a consequence of Σ.
Solution: Pose $z=y_{1}^{\prime}+y_{2}^{\prime}$ as a new variable ("dummy output") and compute a new IO-equation.

Extra projection: illustration

(a) Reconstruction from projections

(b) Extra projection

Figure: Illustration of bad IO-equation set:
Blue variety: actual ODE solution Orange variety: extraneous variety seen from projections An extra projection can distinguish the actual solution.

Other possible improvements

- Alternative methods to extra projection?
- Works well when most eliminations are linear, otherwise huge extraneous factors.
- Better/more concise representation for input-output equations?

