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Introduction : identifiability

Identifiability: property of a differential model with parameters that allows for
the parameters to be determined uniquely from the model equations, noiseless
data and sufficiently exciting inputs.

Classical example: The predator-prey model

Σ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ1 = ax1 − bx1x2

ẋ2 = −cx2 + dx1x2

output: y = x1

(1)

where x1 is the number of prey, x2 is the number of predator. a,b, c,d are
unknown parameters to be identified. We can observe the output y = x1.

Known result:
a, c,d are identifiable, but b is not.

Importance of assessing identifiability: evaluate or reparametrize models
before experiments.
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Identifiability computation: example

Consider the following ODE system:

Σ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ1 = ax2

ẋ2 = bx1

y = x1

(2)

where a,b are parameters to be determined, y is the output.
How to find out which parameters are identifiable?

Immediate consequence of Σ ∶

ÿ − aby = 0

called the input-output equation.

Result: ab is identifiable from knowing y , but not a or b.

Input-output equations: “minimal” equations that depend only on the input
and output variables and parameters.
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ẋ2 = bx1

y = x1

(2)

where a,b are parameters to be determined, y is the output.
How to find out which parameters are identifiable?

Immediate consequence of Σ ∶
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Introduction : input-output equations

Two different kinds of identifiability:

▸ Single-experiment identifiability: what we can identify from a single
experiment.

▸ Multi-experiment identifiability: what we can identify from a sufficiently
(finite) many experiments.

Under some assumptions, single-experiment identifiability =
multi-experiment identifiability
Input-output equations Ð→ Multi-experiment Identifiability:

Proposition

Note y the output of an ODE system, u its inputs, and θ the vector of all its
parameters.
Consider input-output equations as monic polynomials in y, u and their
derivatives over the field C(θ). A rational function of parameters p ∈ C(θ) is
multi-experiment identifiable if and only if it is in the field generated by the
coefficients of the input-output equations.

Example: ÿ − aby = 0Ô⇒ C(ab) is everything we can identify.
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Immediate example

The predator-prey model
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output: y = x1

(3)

where x1 is the number of prey, x2 is the number of predator. a,b, c,d are
parameters we want to identify. We can observe the output y = x1.

Input-output equation:

ady 3 − acy 2 − dy 2ẏ + cy ẏ − ẏ 2 + y ÿ = 0

Identifiability consequence:

The field of identifiable functions

=The field that the coefficients of input-output equation generate

=C(ac, ad , c,d) = C(a, c,d)
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Problem

Setup:
Given a system Σ of the form

Σ∶
⎧⎪⎪⎨⎪⎪⎩

ẋ = f(x,u,θ)
y = g(x,u,θ)

(4)

where:

▸ x = (x1, . . . , xn) is a vector of state variables;

▸ u = (u1, . . . ,um) is a vector of input (control) variables to be chosen by an
experimenter;

▸ y is the output variable (scalar: we limit ourselves to single output case);

▸ θ = (θ1, . . . , θd) is a vector of unknown (constant) parameters to be
identified;

▸ f = (f1, . . . , fn), where fi ∈ C(x,u,θ) are rational functions;

▸ g ∈ C(x,u,θ) is a rational function.



Problem

Setup:
Given a system Σ of the form

Σ∶
⎧⎪⎪⎨⎪⎪⎩

ẋ = f(x,u,θ)
y = g(x,u,θ)

(5)

Goal: Find a “minimal” consequence of Σ depending only on input, output,
and parameters, also known as an input-output equation:

φ(θ,u,u′,u(2), . . . , y , y ′, y (2) . . . , y (h)) = 0,

This means:

1. φ vanishes on every solution of the system Σ.

2. φ is an irreducible polynomial.

3. h is as small as possible.

Proposition

The input-output equation exists and is unique.
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State of art

Various existing software for checking identifiability (all of them support
multiple outputs):

1. SIAN: Implemented on MAPLE, checks identifiability without computing
the input-output equations.

2. DAISY: Written in REDUCE, checks identifiability by computing the
input-output equations.

3. RosenfeldGroebner implemented in MAPLE: do differential elimination on
the system of differential equations.

4. COMBOS: web-based application, checks multi-experiment identifiability
by calculating the input-output equations.



Performance

SIWR model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ = µ − βi si − βw sw − µs + αr ,
i̇ = βw sw + βi si − (γ + µ)i ,
ẇ = ξ(i −w),
ṙ = γi − (µ + α)r ,
y = κi

Pharmacokinetics model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ0 = a1(x1 − x0) − kanx0
kcka+kc x2+kax0

,

ẋ1 = a2(x0 − x1),
ẋ2 = b1(x3 − x2) − kcnx2

kcka+kc x2+kax0
,

ẋ3 = b2(x2 − x3),
y = x0

Hyperchaotic QWWC system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = a(y − x) + yz ,

ẏ = b(x + y) − xz ,

ż = −cz − dw + xy ,

ẇ = ez − fw + xy ,

o = x

Extended SEIR model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ = −βs(i + j + qa),
ė = βs(i + j + qa) − ke,

ȧ = k(1 − ρ)e − γ1a,
i̇ = kρe − (α + γ1)i ,
j̇ = αi − γ2j ,
ċ = αi ,
y = c



Performance

Model DAISY RG SIAN Our implementation ∗∗

SIWR > 5 h. > 5 h. > 5 h. 9 s. + 9 s. = 18 s.
Extended SEIR OOM∗ OOM∗ > 5 h. 22 s. + 37 s. = 69 s.
Pharmacokinetics > 5 h. OOM∗ > 5 h. 20 s. + 45 s. = 65 s.
QWWC > 5 h. OOM∗ > 5 h. 236 s. + 246 s. = 482 s.

Table: Performance comparison

∗ OOM = out of memory
∗∗ Time for computing IO-equation + Time for identifiability

Model io-equation size (N. terms) identifiable
SIWR 209349 all
Extended SEIR 927131 β, k, γ1, γ2, α
Pharmacokinetics 1062553 all
QWWC 6853210 a,b

Table: Results



First attempt: implicitization of Lie derivatives

Find Lie derivatives:

Original system:

Σ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ1 = ax1 + x2
2

ẋ2 = bx2
1 + x2 Ô⇒

y = x1

Lie derivatives:

Π∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y = x1

y ′ = ẋ1 = ax1 + x2
2

y ′′ = . . . = a2x1 + (a + 2)x2
2 + 2bx2x

2
1

Implicitization of hypersurface on C(a,b)3:

Parametric description:

Π∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y = g(x1, x2)
y ′ = g1(x1, x2) Ô⇒
y ′′ = g2(x1, x2)

Implicit description:

φ(y , y ′, y ′′) = 0

Methods: Groebner Basis, Repeated resultants, Macaulay resultant, Sparse
resultant, Interpolation, . . .
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First attempt: efficiency problems

Σ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ1 = ax1 + x2
2

ẋ2 = bx2
1 + x2

y = x1

Calculate Lie derivatives recursively:

Π∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y = x1

y ′ = ax1 + x2
2

y ′′ = aẋ1 + 2x2ẋ2 = a(ax1 + x2
2 ) + 2x2(bx2

1 + x2)

Better way:

Π̃∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y = x1

y ′ = ax1 + x2
2 = ay + x2

2

y ′′ = ay ′ + 2x2ẋ2 = ay ′ + 2x2(by 2 + x2)
Idea of our algorithm: Eliminate state variables as soon as we can.
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Our algorithm: example

Idea: Eliminate x1, x2, . . . , xn one by one in a dynamically defined order.

Initialiate system:

Σ0∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y − x1 = 0 (R0)
ẋ1 − (ax1 + x2

2 ) = 0 (S1)
ẋ2 − (bx2

1 + x2) = 0 (S2)
Choose state variable to eliminate: x1. Criteria: lowest degree.
Elimination of x1:

Differentiate R0:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y ′ − ẋ1 = 0 (R ′

0)
ẋ1 − (ax1 + x2

2 ) = 0 (S1) Ô⇒
ẋ2 − (bx2

1 + x2) = 0 (S2)

Eliminate ẋ from R ′

0:

⎧⎪⎪⎨⎪⎪⎩

y ′ − (ax1 + x2
2 ) = 0 (⟨R ′

0⟩ + ⟨S1⟩)
ẋ2 − (bx12 + x2) = 0 (S2)

Eliminate x1 using R0:

Ô⇒Σ1∶
⎧⎪⎪⎨⎪⎪⎩

y ′ − (ay + x2
2 ) = 0 (R1)

ẋ2 − (by 2 + x2) = 0 (S2)
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ẋ1 − (ax1 + x2

2 ) = 0 (S1)
ẋ2 − (bx2

1 + x2) = 0 (S2)

Choose state variable to eliminate: x1. Criteria: lowest degree.
Elimination of x1:

Differentiate R0:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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ẋ2 − (by 2 + x2) = 0 (S2)



Our algorithm: example

Idea: Eliminate x1, x2, . . . , xn one by one in a dynamically defined order.

Initialiate system:

Σ0∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y − x1 = 0 (R0)
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y ′ − ẋ1 = 0 (R ′

0)
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ẋ2 − (by 2 + x2) = 0 (S2)

Choose state variable to eliminate: x2.
Elimination of x2:

Differentiate R1:

⎧⎪⎪⎨⎪⎪⎩

y ′′ − ay ′ − 2x2ẋ2 = 0 (R ′

1) Ô⇒
ẋ2 − (by 2 + x2) = 0 (S2)

Eliminate ẋ from R1:

y ′′ − ay ′ − 2x2(by 2 + x2) = 0

(⟨R ′

1⟩ + ⟨S2⟩)

Eliminate x2 using R1:

Ô⇒Resx2(y
′ − ay − x2

2, y ′′ − ay ′ − 2x2(by 2 + x2)) = 0 (R2)

Input-output equation is irreducible: factorization

Factorize R2 and choose the correct factor with a plug-in.
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Our algorithm: extraneous factors

We are using repeated univariate resultant: (R0), (R1) are “pivots”. This
causes extraneous factors.

Smallest nontrivial example:
Given f ,g ,h ∈ C[x , y , z], find ⟨f ,g ,h⟩ ∩C[z].

Repeated resultant approach:
Find Resx(Resy(f ,g),Resy(f ,h)), then factorize.

Justification (L. Busé, B. Mourrain):

Resx(Resy(f ,g),Resy(f ,h)) = Resx,y(f ,g ,h)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⟨f ,g,h⟩∩C[z]

Resx,y,y ′(f , δy,y ′ f ,g(y),h(y ′))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Extraneous factor

(δy,y ′ f = f (y)−f (y ′)
y−y ′

). Acceptable if f has low degree in y : justifies the choice of
variable to eliminate by lowest degree.

Eliminate extraneous factor before computation?
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Optimization 1: early detection of extraneous factors

We use the Bézout matrix to compute resultant.

Bézout matrix:
Let f (z) = ∑n

i=0 uiz
i ,g(z) = ∑n

i=0 viz
i ,

f (x)g(y) − f (y)g(x)
x − y

=
n−1

∑
i,j=0

bijx
iy j

Bn(f ,g) = (bij)i,j=0,...,n−1
detBn(f ,g) = Res(f ,g)



Optimization 1: early detection of extraneous factors

Example:

Resx(ax2 + yx + 2(b + e), ax2 + cx + (b + e))

=det ∣ a(c − y) −a(b + e)
−a(b + e) (b + e)(y − 2c)∣

=a(b + e) (3cy − y 2 − 2c2 − ab − ae)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

We want this

Actual computation:

det ∣ (c − y) −1
−a(b + e) (y − 2c)∣

Essential simplification as this happens often (equations not generic)
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Optimization 2: variable change

Optimization 1 is straightforward.

However, in most cases, we cannot always detect extra factors in matrix:
we can do it when the extra factor divides the constant term or the
leading term.

Resx(ax2 + yx + 2(b + e), ax2 + cx + (b + e)) = det ∣ a(c − y) −a(b + e)
−a(b + e) (b + e)(y − 2c)∣

Counter-example:

Resx(x2 + x(y + 2) + y + 1 + 2b, x2 + x(c + 2) + b + c + 1)

= det ∣ c − y c − y − b
c − y − b yb − y − 2bc + c

∣

= b (3cy − y 2 − 2c2 − b)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

We want this
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Optimization 2: variable change

However, there is one trick:
If an extraneous factor p(y)∣Resx(f (x , y),g(x , y)), then

Resx(f (x , y),g(x , y)) ≡ 0 mod p(y)

so f ,g share some common root x0 mod p(y):

∃x0, f (x0, y) = g(x0, y) = 0 mod p(y)

If we consider f ,g as polynomials in x − x0, then p(y) divides their
constant terms:

⎧⎪⎪⎨⎪⎪⎩

f = ad(y)(x − x0)d + . . . + a1(y)(x − x0) + p(y)qa(y)
g = bd(y)(x − x0)d + . . . + b1(y)(x − x0) + p(y)qb(y)

Do variable change x − x0 Ð→ x:

⎧⎪⎪⎨⎪⎪⎩

f = ad(y)xd + . . . + a1(y)x + p(y)qa(y)
g = bd(y)xd + . . . + b1(y)x + p(y)qb(y)

Resx(f ,g) = det

RRRRRRRRRRRRRR

. . . p(y)qa(y)
⋮ ⋮
. . . p(y)qb(y)

RRRRRRRRRRRRRR
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Optimization 2: performance

Example: when we know a priori that x − y is an extra factor.

∣x y
y x

∣ Ð→ ∣x −(x − y)
y x − y

∣ Ð→ (x + y)(x − y)

Equivalence with some “optimal” elimination order in sparse resultant?

Good acceleration in practice:

Model Without Opt.2 With Opt.2
SIWR 47s 9s
Extended SEIR >5h 22s
Pharmacokinetics 227s 20s
QWWC 1020s 236s

Table: Time comparison for computing io-equation



Summary

Our algorithm:

1. Eliminate x1, . . . , xn one by one in a dynamically chosen order (always do
low degree variable first). Eliminations are done using resultant (Bézout
matrix).
We can regard it as a gradual ordering change (replacing a state variable
xi with a higher order of y).

2. Factorize intermediate results as often as possible, eliminate extraneous
factors with plug-ins.

3. ”Reveal” extraneous factors in Bézout matrix with variable change.

4. Eliminate extraneous factors in resultants before determinant computation.



Multiple output case: work in progress
Setup:
Given a system Σ of the form

Σ∶
⎧⎪⎪⎨⎪⎪⎩

ẋ = f(x,u,θ)
y = g(x,u,θ)

(6)

Now, y = (y1, . . . , ym) is a vector of outputs, g = (g1, . . . ,gm) is a vector of
rational functions.

Goal: Find a set of “minimal” consequences of Σ depending only on input,
output, and parameters, also known as input-output equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ1(θ,u,u′, . . . , y1, y ′1, . . . , y (h1+1)
1 , y2, . . . , y

(h2)
2 , . . . , ym, . . . , y

(hm)

m ) = 0

φ2(θ,u,u′, . . . , y1, y ′1, . . . , y (h1)
1 , y2, . . . , y

(h2+1)
2 , . . . , ym, . . . , y

(hm)

m ) = 0

⋮
φm(θ,u,u′, . . . , y1, y ′1, . . . , y (h1)

1 , y2, . . . , y
(h2)
2 , . . . , ym, . . . , y

(hm+1)
m ) = 0

This means:

1. φi , i = 1, . . . ,m vanish on every solution of the system Σ.

2. φi , i = 1, . . . ,m are irreducible polynomials.

3. The sum h1 + h2 + . . . + hm is as small as possible.

4. Moreover, we want the set {φ1, . . . , φm} to have some special structure.
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Multiple output case: example

Σ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2 + x3

ẋ2 = ax3

ẋ3 = bx1

y1 = x1 (R1)
y2 = x2 (R2)

(7)

Good sets of IO-equations:

Φ1∶
⎧⎪⎪⎨⎪⎪⎩

y ′′1 = by1 + ay ′1 − ay2 (R1)
y ′2 = ay ′1 − ay2 (R2)

Φ2∶
⎧⎪⎪⎨⎪⎪⎩

y ′1 = y2 + y ′2
a

(R1)
y ′′2 = aby1 (R2)

More than one possible set: multiple choice of differentiation.

R1,R2,R2 Ð→ Φ1

R1,R2,R1 Ð→ Φ2



Multiple output case: search tree

Find the “most simple” IO-equation set! Heuristics: degree, balance, etc.

⎧⎪⎪⎨⎪⎪⎩

y1 = x1 (R1)
y2 = x2 (R2)
××ÖR1 pivot

⎧⎪⎪⎨⎪⎪⎩

y ′1 − x2 + x3 = 0 (R1)
y2 − x2 = 0 (R2)

××ÖR2 pivot

⎧⎪⎪⎨⎪⎪⎩

y ′1 − y2 + x3 = 0 (R1)
y ′2 − ax3 = 0 (R2)

×××Ö
R1 pivot

×××Ö
R2 pivot

Φ1∶
⎧⎪⎪⎨⎪⎪⎩

y ′′1 = by1 + ay ′1 − ay2 (R1)
y ′2 = ay ′1 − ay2 (R2)

Φ2∶
⎧⎪⎪⎨⎪⎪⎩

y ′1 = y2 + y ′2
a

(R1)
y ′′2 = aby1 (R2)



Special structure of input-output equation set

Generalizing our algorithm on elimination, we get a set of polynomials:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ1(y1, y ′1, . . . , y (h1+1)
1 , y2, . . . , y

(h2)
2 , . . . , ym, . . . , y

(hm)

m ) = 0

φ2(y1, y ′1, . . . , y (h1)
1 , y2, . . . , y

(h2+1)
2 , . . . , ym, . . . , y

(hm)

m ) = 0

⋮
φm(y1, y ′1, . . . , y (h1)

1 , y2, . . . , y
(h2)
2 , . . . , ym, . . . , y

(hm+1)
m ) = 0

Moreover, we want the set {φ1, . . . , φm} to have some special structure.

Proposition

If {φ1, . . . , φm} is a characteristic set of the ideal of input-output equations,
then their coefficients generate the field of all identifiable functions.

Proposition

Note qi the leading coefficient of φi with respect to the variable yi ,
Q = q1 ⋅ . . . ⋅ qm.
If ⟨φ1, . . . , φm⟩ ∶ Q∞ is prime, then their coefficients generate the field of all
identifiable functions.

Consequence: if we can verify primality of ⟨φ1, . . . , φm⟩ ∶ Q∞, then we can use
the coefficients of {φ1, . . . , φm}.
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Bad IO-equation set

Not all minimal IO-equation sets can be used to assess identifiability:

Σ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = 1+x1
2

2

ẋ2 = 1−x1
2

1+x12

y1 = 2x1
b(1+x12)

(R1)
y2 = x2 (R2)

Φ∶
⎧⎪⎪⎨⎪⎪⎩

b2y ′1
2 + b2y1

2 − 1 = 0

y ′2
2 + b2y1

2 − 1 = 0

However, b is in fact identifiable because

by ′1 − y ′2 = 0

is a consequence of Σ.

Solution: Pose z = y ′1 + y ′2 as a new variable (“dummy output”) and compute a
new IO-equation.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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⎧⎪⎪⎨⎪⎪⎩
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However, b is in fact identifiable because

by ′1 − y ′2 = 0

is a consequence of Σ.
Solution: Pose z = y ′1 + y ′2 as a new variable (“dummy output”) and compute a
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Extra projection: illustration

(a) Reconstruction from projections (b) Extra projection

Figure: Illustration of bad IO-equation set:
Blue variety: actual ODE solution
Orange variety: extraneous variety seen from projections
An extra projection can distinguish the actual solution.



Other possible improvements

▸ Alternative methods to extra projection?

▸ Works well when most eliminations are linear, otherwise huge extraneous
factors.

▸ Better/more concise representation for input-output equations?


