The Identity Problem in the special affine group of \mathbb{Z}^{2}

Ruiwen Dong
University of Oxford

June 2023

An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?

An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?
i.e. whether $T \in\langle\mathcal{G}\rangle$?

An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?
i.e. whether $T \in\langle\mathcal{G}\rangle$?

Markov (1940s) : undecidable in $\mathbb{Z}^{6 \times 6}$.

An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?
i.e. whether $T \in\langle\mathcal{G}\rangle$?

Markov (1940s) : undecidable in $\mathbb{Z}^{6 \times 6}$. Michailova (1960s): undecidable in $\operatorname{SL}(4, \mathbb{Z})$.

An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?
i.e. whether $T \in\langle\mathcal{G}\rangle$?

Markov (1940s) : undecidable in $\mathbb{Z}^{6 \times 6}$. Michailova (1960s): undecidable in $\operatorname{SL}(4, \mathbb{Z})$.

Special case: is the Identity Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=I$? i.e. whether $I \in\langle\mathcal{G}\rangle$?

An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?
i.e. whether $T \in\langle\mathcal{G}\rangle$?

Markov (1940s) : undecidable in $\mathbb{Z}^{6 \times 6}$. Michailova (1960s): undecidable in $\operatorname{SL}(4, \mathbb{Z})$.

Special case: is the Identity Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=I$? i.e. whether $I \in\langle\mathcal{G}\rangle$?

Bell, Potapov (2000s) : undecidable in $\mathrm{SL}(4, \mathbb{Z})$.

the Identity Problem and the Membership Problem

Known results.

$\operatorname{SL}(n, \mathbb{Z})$: the group of $n \times n$ integer matrices of determinant one.

group type	Membership: $T \in\langle\mathcal{G}\rangle$?	Identity Prob: $I \in\langle\mathcal{G}\rangle$?
$\mathrm{SL}(2, \mathbb{Z})$	NP-complete $[\mathrm{BHP} 23]$	NP-complete $[\mathrm{BHP} 17]$
$\mathrm{SL}(3, \mathbb{Z})$?	?
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable

the Identity Problem and the Membership Problem

Known results.

$\operatorname{SL}(n, \mathbb{Z})$: the group of $n \times n$ integer matrices of determinant one.

group type	Membership: $T \in\langle\mathcal{G}\rangle$?	Identity Prob: $I \in\langle\mathcal{G}\rangle$?
$\mathrm{SL}(2, \mathbb{Z})$	NP-complete $[\mathrm{BHP} 23]$	NP-complete $[\mathrm{BHP17]}$
$\mathrm{SL}(3, \mathbb{Z})$?	?
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable

* There exist groups where Membership Problem is undecidable but Identity Problem is decidable.

Special Affine group

group type	Membership: $T \in\langle\mathcal{G}\rangle$?	Identity Prob: $I \in\langle\mathcal{G}\rangle$?
$\mathrm{SL}(2, \mathbb{Z})$	NP-complete	NP-complete
$\mathrm{SL}(3, \mathbb{Z})$?	?
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable

Special Affine group

group type	Membership: $T \in\langle\mathcal{G}\rangle$?	Identity Prob: $I \in\langle\mathcal{G}\rangle$?
$\mathrm{SL}(2, \mathbb{Z})$	NP-complete	NP-complete
$\mathrm{SL}(3, \mathbb{Z})$?	?
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable

$S A(2, \mathbb{Z})$: the Special Affine group

$$
\left\{\left.M=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & 0 & 1
\end{array}\right) \right\rvert\, \operatorname{det}(M)=1\right\}
$$

Special Affine group

group type	Membership: $T \in\langle\mathcal{G}\rangle$?	Identity Prob: $I \in\langle\mathcal{G}\rangle$?
$\mathrm{SL}(2, \mathbb{Z})$	NP-complete	NP-complete
$\mathrm{SL}(3, \mathbb{Z})$?	?
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable

$S A(2, \mathbb{Z})$: the Special Affine group

$$
\left\{\left.M=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & 0 & 1
\end{array}\right) \right\rvert\, \operatorname{det}(M)=1\right\} \leq \operatorname{SL}(3, \mathbb{Z})
$$

Special Affine group

group type	Membership: $T \in\langle\mathcal{G}\rangle$?	Identity Prob: $I \in\langle\mathcal{G}\rangle$?
$\mathrm{SL}(2, \mathbb{Z})$	NP-complete	NP-complete
$\mathrm{SL}(3, \mathbb{Z})$?	?
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable

$S A(2, \mathbb{Z})$: the Special Affine group

$$
\mathrm{SL}(2, \mathbb{Z}) \leq\left\{\left.M=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & 0 & 1
\end{array}\right) \right\rvert\, \operatorname{det}(M)=1\right\} \leq \operatorname{SL}(3, \mathbb{Z})
$$

Special Affine group

group type	Membership: $T \in\langle\mathcal{G}\rangle$?	Identity Prob: $I \in\langle\mathcal{G}\rangle$?
$\mathrm{SL}(2, \mathbb{Z})$	NP-complete	NP-complete
$\mathrm{SL}(3, \mathbb{Z})$?	?
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable

$S A(2, \mathbb{Z})$: the Special Affine group

$$
\mathrm{SL}(2, \mathbb{Z}) \leq\left\{\left.M=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & 0 & 1
\end{array}\right) \right\rvert\, \operatorname{det}(M)=1\right\} \leq \operatorname{SL}(3, \mathbb{Z})
$$

Elements of $\mathrm{SA}(2, \mathbb{Z})$ are $(A, \boldsymbol{a}):=\left(\begin{array}{cc}A & \boldsymbol{a} \\ 0 & 1\end{array}\right), A \in \mathrm{SL}(2, \mathbb{Z}), \boldsymbol{a} \in \mathbb{Z}^{2}$.

Special Affine group

group type	Membership: $T \in\langle\mathcal{G}\rangle$?	Identity Prob: $I \in\langle\mathcal{G}\rangle$?
$\mathrm{SL}(2, \mathbb{Z})$	NP-complete	NP-complete
$\mathrm{SL}(3, \mathbb{Z})$?	?
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable

$S A(2, \mathbb{Z})$: the Special Affine group

$$
\mathrm{SL}(2, \mathbb{Z}) \leq\left\{\left.M=\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
0 & 0 & 1
\end{array}\right) \right\rvert\, \operatorname{det}(M)=1\right\} \leq \mathrm{SL}(3, \mathbb{Z})
$$

Elements of $\mathrm{SA}(2, \mathbb{Z})$ are $(A, \boldsymbol{a}):=\left(\begin{array}{cc}A & \boldsymbol{a} \\ 0 & 1\end{array}\right), A \in \mathrm{SL}(2, \mathbb{Z}), \boldsymbol{a} \in \mathbb{Z}^{2}$.
Group law: $(A, \boldsymbol{a})(B, \boldsymbol{b})=(A B, A \boldsymbol{b}+\boldsymbol{a})$.

Main result

group type	Membership: $T \in\langle\mathcal{G}\rangle$?	Identity Prob: $I \in\langle\mathcal{G}\rangle$?
$\mathrm{SL}(2, \mathbb{Z})$	NP-complete	NP-complete
$\mathrm{SA}(2, \mathbb{Z})$?	NP-complete
$\mathrm{SL}(3, \mathbb{Z})$?	?
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable

Identity Problem. Step 1: the matrix part

Elements of $\mathrm{SA}(2, \mathbb{Z})$ are (A, \boldsymbol{a}). Group law $(A, \boldsymbol{a})(B, \boldsymbol{b})=(A B, A \boldsymbol{b}+\boldsymbol{a})$.

Identity Problem. Step 1: the matrix part

Elements of $\operatorname{SA}(2, \mathbb{Z})$ are (A, \boldsymbol{a}). Group law $(A, \boldsymbol{a})(B, \boldsymbol{b})=(A B, A \boldsymbol{b}+\boldsymbol{a})$.
Let $\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\}$. Goal: decide whether $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.

Identity Problem. Step 1: the matrix part

Elements of $\operatorname{SA}(2, \mathbb{Z})$ are (A, \boldsymbol{a}). Group law $(A, \boldsymbol{a})(B, \boldsymbol{b})=(A B, A \boldsymbol{b}+\boldsymbol{a})$.
Let $\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\}$. Goal: decide whether $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.
Step 1: for $s=1, \ldots, K$, check if $A_{s}^{-1} \in\left\langle A_{1}, \ldots, A_{K}\right\rangle$.

Identity Problem. Step 1: the matrix part

Elements of $S A(2, \mathbb{Z})$ are (A, \boldsymbol{a}). Group law $(A, \boldsymbol{a})(B, \boldsymbol{b})=(A B, A \boldsymbol{b}+\boldsymbol{a})$.
Let $\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\}$. Goal: decide whether $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.
Step 1: for $s=1, \ldots, K$, check if $A_{s}^{-1} \in\left\langle A_{1}, \ldots, A_{K}\right\rangle$.
If $A_{s}^{-1} \notin\left\langle A_{1}, \ldots, A_{K}\right\rangle$, then

$$
\left(A_{i}, \boldsymbol{a}_{i}\right) \cdots\left(A_{s}, \boldsymbol{a}_{s}\right) \cdots\left(A_{i^{\prime}}, \boldsymbol{a}_{i^{\prime}}\right) \neq(I, \mathbf{0}) .
$$

So we can delete $\left(A_{s}, \boldsymbol{a}_{s}\right)$ from \mathcal{G}.

Identity Problem. Step 1: the matrix part

Elements of $\mathrm{SA}(2, \mathbb{Z})$ are (A, \boldsymbol{a}). Group law $(A, \boldsymbol{a})(B, \boldsymbol{b})=(A B, A \boldsymbol{b}+\boldsymbol{a})$.
Let $\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\}$. Goal: decide whether $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.
Step 1: for $s=1, \ldots, K$, check if $A_{s}^{-1} \in\left\langle A_{1}, \ldots, A_{K}\right\rangle$.
If $A_{s}^{-1} \notin\left\langle A_{1}, \ldots, A_{K}\right\rangle$, then

$$
\left(A_{i}, \boldsymbol{a}_{i}\right) \cdots\left(A_{s}, \boldsymbol{a}_{s}\right) \cdots\left(A_{i^{\prime}}, \boldsymbol{a}_{i^{\prime}}\right) \neq(I, \mathbf{0}) .
$$

So we can delete $\left(A_{s}, \boldsymbol{a}_{s}\right)$ from \mathcal{G}.

Theorem (Bell, Hirvensalo, Potapov)

It is decidable in NP whether $A_{s}^{-1} \in\left\langle A_{1}, \ldots, A_{K}\right\rangle$.

Identity Problem. Step 1: the matrix part

Elements of $\operatorname{SA}(2, \mathbb{Z})$ are (A, \boldsymbol{a}). Group law $(A, \boldsymbol{a})(B, \boldsymbol{b})=(A B, A \boldsymbol{b}+\boldsymbol{a})$.
Let $\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\}$. Goal: decide whether $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.
Step 1: for $s=1, \ldots, K$, check if $A_{s}^{-1} \in\left\langle A_{1}, \ldots, A_{K}\right\rangle$.
If $A_{s}^{-1} \notin\left\langle A_{1}, \ldots, A_{K}\right\rangle$, then

$$
\left(A_{i}, \boldsymbol{a}_{i}\right) \cdots\left(A_{s}, \boldsymbol{a}_{s}\right) \cdots\left(A_{i^{\prime}}, \boldsymbol{a}_{i^{\prime}}\right) \neq(I, \mathbf{0}) .
$$

So we can delete $\left(A_{s}, \boldsymbol{a}_{s}\right)$ from \mathcal{G}.

Theorem (Bell, Hirvensalo, Potapov)

It is decidable in NP whether $A_{s}^{-1} \in\left\langle A_{1}, \ldots, A_{K}\right\rangle$.
We can perform Step 1 iteratively, until $A_{s}^{-1} \in\left\langle A_{1}, \ldots, A_{K}\right\rangle$ for all s. So the semigroup $\left\langle A_{1}, \ldots, A_{K}\right\rangle$ becomes a group.

Step 2: dichotomy on the matrix part

$$
\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\} .
$$

Additionally, $H=\left\langle A_{1}, \ldots, A_{K}\right\rangle \leq \mathrm{SL}(2, \mathbb{Z})$ is a group.

Step 2: dichotomy on the matrix part

$$
\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\} .
$$

Additionally, $H=\left\langle A_{1}, \ldots, A_{K}\right\rangle \leq \mathrm{SL}(2, \mathbb{Z})$ is a group.

Theorem (Tits alternative)

Let H be a subgroup of $\operatorname{SL}(n, \mathbb{Z})$. Then
(1) either H contains a non-abelian free subgroup,
(2) or H contains a solvable subgroup of finite index.

Step 2: dichotomy on the matrix part

$$
\mathcal{G}=\left\{\left(A_{1}, a_{1}\right), \ldots,\left(A_{K}, a_{K}\right)\right\} .
$$

Additionally, $H=\left\langle A_{1}, \ldots, A_{K}\right\rangle \leq \mathrm{SL}(2, \mathbb{Z})$ is a group.

Theorem (Tits alternative)

Let H be a subgroup of $\operatorname{SL}(n, \mathbb{Z})$. Then
(1) either H contains a non-abelian free subgroup,
(2) or H contains a solvable subgroup of finite index.

In $\operatorname{SL}(2, \mathbb{Z})$ this means:
(1) either H contains two matrices A, B that are not simultaneously triangularizable,
(2) or H contains a finite-index subgroup that is isomorphic to \mathbb{Z} or $\{I\}$.

Step 2: dichotomy on the matrix part

$$
\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\} .
$$

Additionally, $H=\left\langle A_{1}, \ldots, A_{K}\right\rangle \leq \mathrm{SL}(2, \mathbb{Z})$ is a group.

Theorem (Tits alternative)

Let H be a subgroup of $\operatorname{SL}(n, \mathbb{Z})$. Then
(1) either H contains a non-abelian free subgroup,
(2) or H contains a solvable subgroup of finite index.

In $\operatorname{SL}(2, \mathbb{Z})$ this means:
(1) either H contains two matrices A, B that are not simultaneously triangularizable,
(2) or H contains a finite-index subgroup that is isomorphic to \mathbb{Z} or $\{I\}$.

Furthermore, the two cases can be distinguished in PTIME (Beals 1999).

Step 3: first case of the dichotomy

$$
\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\} .
$$

Step 3: first case of the dichotomy

$$
\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\} .
$$

Proposition

Suppose $\left\langle A_{1}, \ldots, A_{K}\right\rangle \leq \operatorname{SL}(2, \mathbb{Z})$ is a group containing two matrices A, B that are not simultaneously triangularizable, then $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.

Step 3: first case of the dichotomy

$$
\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\} .
$$

Proposition

Suppose $\left\langle A_{1}, \ldots, A_{K}\right\rangle \leq \mathrm{SL}(2, \mathbb{Z})$ is a group containing two matrices A, B that are not simultaneously triangularizable, then $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.

Proof idea:

Since $\left\langle A_{1}, \ldots, A_{K}\right\rangle$ is a group containing A and B, it also contains some Y such that $A Y B=I$. In particular $\langle\mathcal{G}\rangle$ contains some elements $(A, \boldsymbol{a}),(Y, \boldsymbol{y}),(B, \boldsymbol{b})$ such that $(A, \boldsymbol{a})(Y, \boldsymbol{y})(B, \boldsymbol{b})=(I, \boldsymbol{x})$ for some $\boldsymbol{x} \in \mathbb{Z}^{2}$.

Step 3: first case of the dichotomy

$$
\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\} .
$$

Proposition

Suppose $\left\langle A_{1}, \ldots, A_{K}\right\rangle \leq \operatorname{SL}(2, \mathbb{Z})$ is a group containing two matrices A, B that are not simultaneously triangularizable, then $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.

Proof idea:

Since $\left\langle A_{1}, \ldots, A_{K}\right\rangle$ is a group containing A and B, it also contains some Y such that $A Y B=I$. In particular $\langle\mathcal{G}\rangle$ contains some elements $(A, \boldsymbol{a}),(Y, \boldsymbol{y}),(B, \boldsymbol{b})$ such that $(A, \boldsymbol{a})(Y, \boldsymbol{y})(B, \boldsymbol{b})=(I, \boldsymbol{x})$ for some $\boldsymbol{x} \in \mathbb{Z}^{2}$.
But \boldsymbol{x} might not be $\mathbf{0}$. So we need to "pump" the word $(A, \boldsymbol{a})(Y, \boldsymbol{y})(B, \boldsymbol{b})$ to change \boldsymbol{x}.

Step 3: getting 0 in the vector part

Suppose A has eigenspaces V_{A}, W_{A}, and B has eigenspaces V_{B}, W_{B}, since A and B are not simultaneously triangularizable, we can suppose $V_{A}, W_{A}, V_{B}, W_{B}$ pairwise distinct.

Step 3: getting 0 in the vector part

We have $(A, \boldsymbol{a}),(Y, \boldsymbol{y}),(B, \boldsymbol{b}) \in\langle\mathcal{G}\rangle$ s.t. $(A, \boldsymbol{a})(Y, \boldsymbol{y})(B, \boldsymbol{b})=(I, \boldsymbol{x})$.

Step 3: getting 0 in the vector part

We have $(A, \boldsymbol{a}),(Y, \boldsymbol{y}),(B, \boldsymbol{b}) \in\langle\mathcal{G}\rangle$ s.t. $(A, \boldsymbol{a})(Y, \boldsymbol{y})(B, \boldsymbol{b})=(I, \boldsymbol{x})$.
Consider

$$
\underbrace{(A, \boldsymbol{a})(Y, \boldsymbol{y})(A, \boldsymbol{a})(Y, \boldsymbol{y}) \cdots(A, \boldsymbol{a})(Y, \boldsymbol{y})}_{m \text { times }}(B, \boldsymbol{b})^{m}=\left(I, \boldsymbol{x}_{1}\right) \in\langle\mathcal{G}\rangle
$$

Step 3: getting 0 in the vector part

We have $(A, \boldsymbol{a}),(Y, \boldsymbol{y}),(B, \boldsymbol{b}) \in\langle\mathcal{G}\rangle$ s.t. $(A, \boldsymbol{a})(Y, \boldsymbol{y})(B, \boldsymbol{b})=(I, \boldsymbol{x})$.
Consider

$$
\underbrace{(A, \boldsymbol{a})(Y, \boldsymbol{y})(A, \boldsymbol{a})(Y, \boldsymbol{y}) \cdots(A, \boldsymbol{a})(Y, \boldsymbol{y})}_{m \text { times }}(B, \boldsymbol{b})^{m}=\left(I, \boldsymbol{x}_{1}\right) \in\langle\mathcal{G}\rangle
$$

When $m \rightarrow \infty$, the vector \boldsymbol{x}_{1} tends towards V_{B}.

Step 3: getting 0 in the vector part

We have $(A, \boldsymbol{a}),\left(Y_{1}, \boldsymbol{y}_{1}\right),(B, \boldsymbol{b}) \in\langle\mathcal{G}\rangle$ s.t. $(A, \boldsymbol{a})\left(Y_{1}, \boldsymbol{y}\right)(B, \boldsymbol{b})=\left(I, \boldsymbol{x}_{1}\right)$.

Step 3: getting 0 in the vector part

We have $(A, \boldsymbol{a}),\left(Y_{1}, \boldsymbol{y}_{1}\right),(B, \boldsymbol{b}) \in\langle\mathcal{G}\rangle$ s.t. $(A, \boldsymbol{a})\left(Y_{1}, \boldsymbol{y}\right)(B, \boldsymbol{b})=\left(I, \boldsymbol{x}_{1}\right)$.
Consider
$(A, \boldsymbol{a}) \underbrace{\left(Y_{1}, \boldsymbol{y}_{1}\right)(B, \boldsymbol{b}) \cdots\left(Y_{1}, \boldsymbol{y}_{1}\right)(B, \boldsymbol{b})}_{m \text { times }}(A, \boldsymbol{a})^{m}\left(Y_{1}, \boldsymbol{y}_{1}\right)(B, \boldsymbol{b})=\left(I, \boldsymbol{x}_{2}\right) \in\langle\mathcal{G}\rangle$

Step 3: getting 0 in the vector part

We have $(A, \boldsymbol{a}),\left(Y_{1}, \boldsymbol{y}_{1}\right),(B, \boldsymbol{b}) \in\langle\mathcal{G}\rangle$ s.t. $(A, \boldsymbol{a})\left(Y_{1}, \boldsymbol{y}_{1}\right)(B, \boldsymbol{b})=\left(I, \boldsymbol{x}_{1}\right)$.
Consider
$(A, \boldsymbol{a}) \underbrace{\left(Y_{1}, \boldsymbol{y}_{1}\right)(B, \boldsymbol{b}) \cdots\left(Y_{1}, \boldsymbol{y}_{1}\right)(B, \boldsymbol{b})}_{m \text { times }}(A, \boldsymbol{a})^{m}\left(Y_{1}, \boldsymbol{y}_{1}\right)(B, \boldsymbol{b})=\left(I, \boldsymbol{x}_{2}\right) \in\langle\mathcal{G}\rangle$
When $m \rightarrow \infty$, the vector \boldsymbol{x}_{2} tends towards W_{A}.

Step 3: getting 0 in the vector part

We have $(A, \boldsymbol{a}),\left(Y_{2}, \boldsymbol{y}_{2}\right),(B, \boldsymbol{b}) \in\langle\mathcal{G}\rangle$ s.t. $(A, \boldsymbol{a})\left(Y_{2}, \boldsymbol{y}_{2}\right)(B, \boldsymbol{b})=\left(I, \boldsymbol{x}_{2}\right)$.

Step 3: getting 0 in the vector part

We have $(A, \boldsymbol{a}),\left(Y_{2}, \boldsymbol{y}_{2}\right),(B, \boldsymbol{b}) \in\langle\mathcal{G}\rangle$ s.t. $(A, \boldsymbol{a})\left(Y_{2}, \boldsymbol{y}_{2}\right)(B, \boldsymbol{b})=\left(I, \boldsymbol{x}_{2}\right)$.
Consider
$(A, \boldsymbol{a})\left(Y_{2}, \boldsymbol{y}_{2}\right)(B, \boldsymbol{b})^{m} \underbrace{\left(Y_{2}, \boldsymbol{y}_{2}\right)(A, \boldsymbol{a}) \cdots\left(Y_{2}, \boldsymbol{y}_{2}\right)(A, \boldsymbol{a})}_{m \text { times }}(B, \boldsymbol{b})=\left(I, \boldsymbol{x}_{3}\right) \in\langle\mathcal{G}\rangle$

Step 3: getting 0 in the vector part

We have $(A, \boldsymbol{a}),\left(Y_{2}, \boldsymbol{y}_{2}\right),(B, \boldsymbol{b}) \in\langle\mathcal{G}\rangle$ s.t. $(A, \boldsymbol{a})\left(Y_{2}, \boldsymbol{y}_{2}\right)(B, \boldsymbol{b})=\left(I, \boldsymbol{x}_{2}\right)$.
Consider
$(A, \boldsymbol{a})\left(Y_{2}, \boldsymbol{y}_{2}\right)(B, \boldsymbol{b})^{m} \underbrace{\left(Y_{2}, \boldsymbol{y}_{2}\right)(A, \boldsymbol{a}) \cdots\left(Y_{2}, \boldsymbol{y}_{2}\right)(A, \boldsymbol{a})}_{m \text { times }}(B, \boldsymbol{b})=\left(I, \boldsymbol{x}_{3}\right) \in\langle\mathcal{G}\rangle$
When $m \rightarrow \infty$, the vector \boldsymbol{x}_{3} tends towards W_{B}.

Step 3: getting 0 in the vector part

Continue like this, we obtain $\left(I, \boldsymbol{x}_{1}\right),\left(I, x_{2}\right), \ldots,\left(I, x_{6}\right) \in\langle\mathcal{G}\rangle$.

Step 3: getting 0 in the vector part

Continue like this, we obtain $\left(I, x_{1}\right),\left(I, x_{2}\right), \ldots,\left(I, x_{6}\right) \in\langle\mathcal{G}\rangle$.
There exist positive integers n_{1}, \ldots, n_{6} such that $n_{1} \mathbf{x}_{1}+\cdots n_{6} \mathbf{x}_{6}=\mathbf{0}$.

Step 3: getting 0 in the vector part

Continue like this, we obtain $\left(I, x_{1}\right),\left(I, x_{2}\right), \ldots,\left(I, x_{6}\right) \in\langle\mathcal{G}\rangle$.
There exist positive integers n_{1}, \ldots, n_{6} such that $n_{1} \mathbf{x}_{1}+\cdots n_{6} \mathbf{x}_{6}=\mathbf{0}$.
Therefore

$$
(I, \mathbf{0})=\left(I, \boldsymbol{x}_{1}\right)^{n_{1}}\left(I, \boldsymbol{x}_{2}\right)^{n_{2}} \cdots\left(I, \boldsymbol{x}_{6}\right)^{n_{6}} \in\langle\mathcal{G}\rangle .
$$

Step 4: second case of dichotomy

$$
\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\} .
$$

We have proved the first case of the dichotomy:

Proposition

Suppose $\left\langle A_{1}, \ldots, A_{K}\right\rangle \leq \mathrm{SL}(2, \mathbb{Z})$ is a group containing two matrices A, B that are not simultaneously triangularizable, then $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.

Step 4: second case of dichotomy

$$
\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\} .
$$

We have proved the first case of the dichotomy:

Proposition

Suppose $\left\langle A_{1}, \ldots, A_{K}\right\rangle \leq \mathrm{SL}(2, \mathbb{Z})$ is a group containing two matrices A, B that are not simultaneously triangularizable, then $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.

We can also prove the second case of the dichotomy:

Proposition

Suppose $\left\langle A_{1}, \ldots, A_{K}\right\rangle$ is a group containing a finite-index subgroup that is isomorphic to \mathbb{Z} or $\{I\}$. Then it is decidable in PTIME whether or not $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.

Identity Problem in $\mathrm{SA}(2, \mathbb{Z})$: recap

Let $\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\}$, we want to decide if $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.
We defined $H=\left\langle A_{1}, \ldots, A_{K}\right\rangle$.

Identity Problem in $\mathrm{SA}(2, \mathbb{Z})$: recap

Let $\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\}$, we want to decide if $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.
We defined $H=\left\langle A_{1}, \ldots, A_{K}\right\rangle$.

Step 1: narrowing down to the case where H is a group is done in NP. Step 2: distinguishing dichotomy is in PTIME.
Step 3: first dichotomy case, always true.
Step 4: second dichotomy case, complexity is PTIME.
In total, complexity is in NP.

Identity Problem in SA(2, Z $)$: recap

Let $\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\}$, we want to decide if $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.
We defined $H=\left\langle A_{1}, \ldots, A_{K}\right\rangle$.
Step 1: narrowing down to the case where H is a group is done in NP.
Step 2: distinguishing dichotomy is in PTIME.
Step 3: first dichotomy case, always true.
Step 4: second dichotomy case, complexity is PTIME.
In total, complexity is in NP.
NP-hardness comes from the NP-hardness in $\mathrm{SL}(2, \mathbb{Z}) \leq \mathrm{SA}(2, \mathbb{Z})$.

Identity Problem in SA(2, Z $)$: recap

Let $\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\}$, we want to decide if $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.
We defined $H=\left\langle A_{1}, \ldots, A_{K}\right\rangle$.

Step 1: narrowing down to the case where H is a group is done in NP.
Step 2: distinguishing dichotomy is in PTIME.
Step 3: first dichotomy case, always true.
Step 4: second dichotomy case, complexity is PTIME.
In total, complexity is in NP.
NP-hardness comes from the NP-hardness in $\operatorname{SL}(2, \mathbb{Z}) \leq \mathrm{SA}(2, \mathbb{Z})$.

Theorem

The Identity Problem in $\mathrm{SA}(2, \mathbb{Z})$ is NP-complete.

Identity Problem in SA(2, Z $)$: recap

Let $\mathcal{G}=\left\{\left(A_{1}, \boldsymbol{a}_{1}\right), \ldots,\left(A_{K}, \boldsymbol{a}_{K}\right)\right\}$, we want to decide if $(I, \mathbf{0}) \in\langle\mathcal{G}\rangle$.
We defined $H=\left\langle A_{1}, \ldots, A_{K}\right\rangle$.
Step 1: narrowing down to the case where H is a group is done in NP.
Step 2: distinguishing dichotomy is in PTIME.
Step 3: first dichotomy case, always true.
Step 4: second dichotomy case, complexity is PTIME.
In total, complexity is in NP.
NP-hardness comes from the NP-hardness in $\operatorname{SL}(2, \mathbb{Z}) \leq \mathrm{SA}(2, \mathbb{Z})$.

Theorem

The Identity Problem in $\mathrm{SA}(2, \mathbb{Z})$ is NP-complete.

Open Problem

Is Membership Problem in $\mathrm{SA}(2, \mathbb{Z})$ decidable?

