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An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?

Input: Set of square matrices G = {A1, . . . ,AK}, target matrix T .
Output: Is there a sequence B1,B2, . . . ,Bm ∈ G, s.t. B1B2 · · ·Bm = T?

i.e. whether T ∈ ⟨G⟩?

Markov (1940s) : undecidable in Z6×6.
Michailova (1960s): undecidable in SL(4,Z).

Special case: is the Identity Problem decidable?

Input: Set of square matrices G = {A1, . . . ,AK}.
Output: Is there a sequence B1,B2, . . . ,Bm ∈ G, s.t. B1B2 · · ·Bm = I?
i.e. whether I ∈ ⟨G⟩?

Bell, Potapov (2000s) : undecidable in SL(4,Z).
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the Identity Problem and the Membership Problem

Known results.

SL(n,Z) : the group of n × n integer matrices of determinant one.

group type Membership: T ∈ ⟨G⟩? Identity Prob: I ∈ ⟨G⟩?
SL(2,Z) NP-complete [BHP23] NP-complete [BHP17]
SL(3,Z) ? ?
SL(4,Z) Undecidable Undecidable

∗ There exist groups where Membership Problem is undecidable but
Identity Problem is decidable.
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Special Affine group

group type Membership: T ∈ ⟨G⟩? Identity Prob: I ∈ ⟨G⟩?
SL(2,Z) NP-complete NP-complete
SL(3,Z) ? ?
SL(4,Z) Undecidable Undecidable

SA(2,Z) : the Special Affine group

SL(2,Z) ≤

M =

∗ ∗ ∗
∗ ∗ ∗
0 0 1

 ∣∣∣∣∣∣ det(M) = 1



≤ SL(3,Z)

Elements of SA(2,Z) are (A, a) :=
(
A a
0 1

)
,A ∈ SL(2,Z), a ∈ Z2.

Group law: (A, a)(B,b) = (AB,Ab + a).
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Main result

group type Membership: T ∈ ⟨G⟩? Identity Prob: I ∈ ⟨G⟩?
SL(2,Z) NP-complete NP-complete
SA(2,Z) ? NP-complete
SL(3,Z) ? ?
SL(4,Z) Undecidable Undecidable
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Identity Problem. Step 1: the matrix part

Elements of SA(2,Z) are (A, a). Group law (A, a)(B,b) = (AB,Ab + a).

Let G = {(A1, a1), . . . , (AK , aK )}. Goal: decide whether (I , 0) ∈ ⟨G⟩.

Step 1: for s = 1, . . . ,K , check if A−1
s ∈ ⟨A1, . . . ,AK ⟩.

If A−1
s ̸∈ ⟨A1, . . . ,AK ⟩, then

(Ai , ai ) · · · · (As , as) · · · · (Ai ′ , ai ′) ̸= (I , 0).

So we can delete (As , as) from G.

Theorem (Bell, Hirvensalo, Potapov)

It is decidable in NP whether A−1
s ∈ ⟨A1, . . . ,AK ⟩.

We can perform Step 1 iteratively, until A−1
s ∈ ⟨A1, . . . ,AK ⟩ for all s.

So the semigroup ⟨A1, . . . ,AK ⟩ becomes a group.
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Step 2: dichotomy on the matrix part

G = {(A1, a1), . . . , (AK , aK )}.

Additionally, H = ⟨A1, . . . ,AK ⟩ ≤ SL(2,Z) is a group.

Theorem (Tits alternative)

Let H be a subgroup of SL(n,Z). Then
1 either H contains a non-abelian free subgroup,

2 or H contains a solvable subgroup of finite index.

In SL(2,Z) this means:

1 either H contains two matrices A,B that are not simultaneously
triangularizable,

2 or H contains a finite-index subgroup that is isomorphic to Z or {I}.
Furthermore, the two cases can be distinguished in PTIME (Beals 1999).
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Step 3: first case of the dichotomy

G = {(A1, a1), . . . , (AK , aK )}.

Proposition

Suppose ⟨A1, . . . ,AK ⟩ ≤ SL(2,Z) is a group containing two matrices
A,B that are not simultaneously triangularizable, then (I , 0) ∈ ⟨G⟩.

Proof idea:
Since ⟨A1, . . . ,AK ⟩ is a group containing A and B, it also contains some
Y such that AYB = I . In particular ⟨G⟩ contains some elements
(A, a), (Y , y), (B,b) such that (A, a)(Y , y)(B,b) = (I , x) for some
x ∈ Z2.
But x might not be 0. So we need to “pump” the word
(A, a)(Y , y)(B,b) to change x .
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Step 3: getting 0 in the vector part

Suppose A has eigenspaces VA,WA, and B has eigenspaces VB ,WB ,
since A and B are not simultaneously triangularizable, we can suppose
VA,WA,VB ,WB pairwise distinct.
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Step 3: getting 0 in the vector part
We have (A, a), (Y , y), (B,b) ∈ ⟨G⟩ s.t. (A, a)(Y , y)(B,b) = (I , x).

Consider

(A, a)(Y , y)(A, a)(Y , y) · · · (A, a)(Y , y)︸ ︷︷ ︸
m times

(B,b)m = (I , x1) ∈ ⟨G⟩
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m times
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When m → ∞, the vector x1 tends towards VB .
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Step 3: getting 0 in the vector part
We have (A, a), (Y1, y 1), (B,b) ∈ ⟨G⟩ s.t. (A, a)(Y1, y)(B,b) = (I , x1).

Consider

(A, a) (Y1, y 1)(B,b) · · · (Y1, y 1)(B,b)︸ ︷︷ ︸
m times

(A, a)m(Y1, y 1)(B,b) = (I , x2) ∈ ⟨G⟩
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(A, a)m(Y1, y 1)(B,b) = (I , x2) ∈ ⟨G⟩

When m → ∞, the vector x2 tends towards WA.
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Step 3: getting 0 in the vector part
We have (A, a), (Y2, y 2), (B,b) ∈ ⟨G⟩ s.t. (A, a)(Y2, y 2)(B,b) = (I , x2).

Consider

(A, a)(Y2, y 2)(B,b)
m (Y2, y 2)(A, a) · · · (Y2, y 2)(A, a)︸ ︷︷ ︸

m times

(B,b) = (I , x3) ∈ ⟨G⟩
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Step 3: getting 0 in the vector part
Continue like this, we obtain (I , x1), (I , x2), . . . , (I , x6) ∈ ⟨G⟩.

There exist positive integers n1, . . . , n6 such that n1x1 + · · · n6x6 = 0.

Therefore
(I , 0) = (I , x1)

n1(I , x2)
n2 · · · (I , x6)

n6 ∈ ⟨G⟩.
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Step 4: second case of dichotomy

G = {(A1, a1), . . . , (AK , aK )}.

We have proved the first case of the dichotomy:

Proposition

Suppose ⟨A1, . . . ,AK ⟩ ≤ SL(2,Z) is a group containing two matrices
A,B that are not simultaneously triangularizable, then (I , 0) ∈ ⟨G⟩.

We can also prove the second case of the dichotomy:

Proposition

Suppose ⟨A1, . . . ,AK ⟩ is a group containing a finite-index subgroup that
is isomorphic to Z or {I}. Then it is decidable in PTIME whether or not
(I , 0) ∈ ⟨G⟩.
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Identity Problem in SA(2,Z): recap

Let G = {(A1, a1), . . . , (AK , aK )}, we want to decide if (I , 0) ∈ ⟨G⟩.

We defined H = ⟨A1, . . . ,AK ⟩.

Step 1: narrowing down to the case where H is a group is done in NP.
Step 2: distinguishing dichotomy is in PTIME.
Step 3: first dichotomy case, always true.
Step 4: second dichotomy case, complexity is PTIME.

In total, complexity is in NP.

NP-hardness comes from the NP-hardness in SL(2,Z) ≤ SA(2,Z).

Theorem

The Identity Problem in SA(2,Z) is NP-complete.

Open Problem

Is Membership Problem in SA(2,Z) decidable?
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