The Identity Problem in the special affine group of \mathbb{Z}^2

Ruiwen Dong

University of Oxford

June 2023

Ruiwen Dong The Identity Problem in the special affine group of \mathbb{Z}^2

문 문문

Markov (1940s): is (semigroup) Membership Problem decidable?

Input: Set of square matrices $\mathcal{G} = \{A_1, \dots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \dots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = T$?

Image: A matrix and a matrix

э.

Markov (1940s): is (semigroup) Membership Problem decidable?

Input: Set of square matrices $\mathcal{G} = \{A_1, \ldots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \ldots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = T$? i.e. whether $T \in \langle \mathcal{G} \rangle$?

b 4 3 4 5

э.

Markov (1940s): is (semigroup) Membership Problem decidable?

Input: Set of square matrices $\mathcal{G} = \{A_1, \ldots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \ldots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = T$? i.e. whether $T \in \langle \mathcal{G} \rangle$?

Markov (1940s) : undecidable in $\mathbb{Z}^{6\times 6}$.

= nar

Markov (1940s): is (semigroup) Membership Problem decidable?

Input: Set of square matrices $\mathcal{G} = \{A_1, \ldots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \ldots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = T$? i.e. whether $T \in \langle \mathcal{G} \rangle$?

Markov (1940s) : undecidable in $\mathbb{Z}^{6\times 6}$. Michailova (1960s): undecidable in SL(4, \mathbb{Z}).

э.

Markov (1940s): is (semigroup) Membership Problem decidable?

Input: Set of square matrices $\mathcal{G} = \{A_1, \ldots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \ldots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = T$? i.e. whether $T \in \langle \mathcal{G} \rangle$?

Markov (1940s) : undecidable in $\mathbb{Z}^{6\times 6}$. Michailova (1960s): undecidable in SL(4, \mathbb{Z}).

Special case: is the Identity Problem decidable?

Input: Set of square matrices $\mathcal{G} = \{A_1, \dots, A_K\}$. **Output:** Is there a sequence $B_1, B_2, \dots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = I$? i.e. whether $I \in \langle \mathcal{G} \rangle$?

Markov (1940s): is (semigroup) Membership Problem decidable?

Input: Set of square matrices $\mathcal{G} = \{A_1, \ldots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \ldots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = T$? i.e. whether $T \in \langle \mathcal{G} \rangle$?

Markov (1940s) : undecidable in $\mathbb{Z}^{6\times 6}$. Michailova (1960s): undecidable in SL(4, \mathbb{Z}).

Special case: is the Identity Problem decidable?

Input: Set of square matrices $\mathcal{G} = \{A_1, \dots, A_K\}$. **Output:** Is there a sequence $B_1, B_2, \dots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = I$? i.e. whether $I \in \langle \mathcal{G} \rangle$?

Bell, Potapov (2000s) : undecidable in $SL(4, \mathbb{Z})$.

ミ▶ ▲ ミト ミー わへゆ

Known results.

 $SL(n,\mathbb{Z})$: the group of $n \times n$ integer matrices of determinant one.

group type	Membership: $T \in \langle \mathcal{G} \rangle$?	Identity Prob: $I \in \langle \mathcal{G} \rangle$?
$SL(2,\mathbb{Z})$	NP-complete [BHP23]	NP-complete [BHP17]
SL(3,ℤ)	?	?
SL(4,ℤ)	Undecidable	Undecidable

Known results.

 $SL(n,\mathbb{Z})$: the group of $n \times n$ integer matrices of determinant one.

group type	Membership: $T \in \langle \mathcal{G} \rangle$?	Identity Prob: $I \in \langle \mathcal{G} \rangle$?
$SL(2,\mathbb{Z})$	NP-complete [BHP23]	NP-complete [BHP17]
SL(3,ℤ)	?	?
SL(4,ℤ)	Undecidable	Undecidable

* There exist groups where Membership Problem is undecidable but Identity Problem is decidable.

group type	Membership: $T \in \langle \mathcal{G} \rangle$?	Identity Prob: $I \in \langle \mathcal{G} \rangle$?
SL(2,ℤ)	NP-complete	NP-complete
SL(3,ℤ)	?	?
SL(4,ℤ)	Undecidable	Undecidable

< 注入 < 注入

group type	Membership: $T \in \langle \mathcal{G} \rangle$?	Identity Prob: $I \in \langle \mathcal{G} \rangle$?
$SL(2,\mathbb{Z})$	NP-complete	NP-complete
SL(3,ℤ)	?	?
$SL(4,\mathbb{Z})$	Undecidable	Undecidable

 $\mathsf{SA}(2,\mathbb{Z})$: the Special Affine group

$$\left\{M = \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & 1 \end{pmatrix} \middle| \det(M) = 1\right\}$$

æ

→ < ∃ →</p>

group type	Membership: $T \in \langle \mathcal{G} \rangle$?	Identity Prob: $I \in \langle \mathcal{G} \rangle$?
$SL(2,\mathbb{Z})$	NP-complete	NP-complete
SL(3,ℤ)	?	?
$SL(4,\mathbb{Z})$	Undecidable	Undecidable

 $\mathsf{SA}(2,\mathbb{Z})$: the Special Affine group

$$\left\{ M = \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & 1 \end{pmatrix} \middle| \det(M) = 1 \right\} \leq \mathsf{SL}(3,\mathbb{Z})$$

æ

→ < ∃ →</p>

group type	Membership: $T \in \langle \mathcal{G} \rangle$?	Identity Prob: $I \in \langle \mathcal{G} \rangle$?
$SL(2,\mathbb{Z})$	NP-complete	NP-complete
SL(3,ℤ)	?	?
$SL(4,\mathbb{Z})$	Undecidable	Undecidable

 $\mathsf{SA}(2,\mathbb{Z})$: the Special Affine group

$$\mathsf{SL}(2,\mathbb{Z}) \leq \left\{ M = \begin{pmatrix} * & * \\ * & * \\ 0 & 0 & 1 \end{pmatrix} \middle| \det(M) = 1 \right\} \leq \mathsf{SL}(3,\mathbb{Z})$$

æ

→ < ∃ →</p>

group type	Membership: $T \in \langle \mathcal{G} \rangle$?	Identity Prob: $I \in \langle \mathcal{G} \rangle$?
$SL(2,\mathbb{Z})$	NP-complete	NP-complete
SL(3,ℤ)	?	?
$SL(4,\mathbb{Z})$	Undecidable	Undecidable

 $\mathsf{SA}(2,\mathbb{Z})$: the Special Affine group

$$\mathsf{SL}(2,\mathbb{Z}) \leq \left\{ M = \left(egin{array}{ccc} * & * & * \\ * & * & * \\ 0 & 0 & 1 \end{array} \right) \ \middle| \ \mathsf{det}(M) = 1
ight\} \leq \mathsf{SL}(3,\mathbb{Z})$$

 $\text{Elements of SA}(2,\mathbb{Z}) \text{ are } (A, \textbf{\textit{a}}) \coloneqq \begin{pmatrix} A & \textbf{\textit{a}} \\ 0 & 1 \end{pmatrix}, A \in \text{SL}(2,\mathbb{Z}), \textbf{\textit{a}} \in \mathbb{Z}^2.$

• • = •

ъ.

group type	Membership: $T \in \langle \mathcal{G} \rangle$?	Identity Prob: $I \in \langle \mathcal{G} \rangle$?
$SL(2,\mathbb{Z})$	NP-complete	NP-complete
SL(3,ℤ)	?	?
$SL(4,\mathbb{Z})$	Undecidable	Undecidable

 $\mathsf{SA}(2,\mathbb{Z})$: the Special Affine group

$$\mathsf{SL}(2,\mathbb{Z}) \leq \left\{ M = \begin{pmatrix} * & * \\ * & * \\ 0 & 0 & 1 \end{pmatrix} \middle| \det(M) = 1 \right\} \leq \mathsf{SL}(3,\mathbb{Z})$$

 $\text{Elements of SA}(2,\mathbb{Z}) \text{ are } (A, \textbf{\textit{a}}) \coloneqq \begin{pmatrix} A & \textbf{\textit{a}} \\ 0 & 1 \end{pmatrix}, A \in \mathsf{SL}(2,\mathbb{Z}), \textbf{\textit{a}} \in \mathbb{Z}^2.$

Group law: $(A, \mathbf{a})(B, \mathbf{b}) = (AB, A\mathbf{b} + \mathbf{a}).$

group type	Membership: $T \in \langle \mathcal{G} \rangle$?	Identity Prob: $I \in \langle \mathcal{G} \rangle$?
SL(2,ℤ)	NP-complete	NP-complete
SA(2,ℤ)	?	NP-complete
SL(3,ℤ)	?	?
SL(4,ℤ)	Undecidable	Undecidable

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Elements of SA(2, \mathbb{Z}) are (A, a). Group law (A, a)(B, b) = (AB, Ab + a).

ъ.

Elements of SA(2, \mathbb{Z}) are (A, **a**). Group law (A, **a**)(B, **b**) = (AB, A**b** + **a**).

Let $\mathcal{G} = \{(A_1, a_1), \dots, (A_K, a_K)\}$. Goal: decide whether $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$.

글 🖌 🗶 글 🕨 🛛 글 👘

Elements of SA(2, \mathbb{Z}) are (A, a). Group law (A, a)(B, b) = (AB, Ab + a). Let $\mathcal{G} = \{(A_1, a_1), \dots, (A_K, a_K)\}$. Goal: decide whether $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$. Step 1: for $s = 1, \dots, K$, check if $A_s^{-1} \in \langle A_1, \dots, A_K \rangle$.

► 4 ∃ ► ∃ • 9 Q (?)

Elements of SA(2, \mathbb{Z}) are (A, a). Group law (A, a)(B, b) = (AB, Ab + a). Let $\mathcal{G} = \{(A_1, a_1), \dots, (A_K, a_K)\}$. Goal: decide whether $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$.

Step 1: for s = 1, ..., K, check if $A_s^{-1} \in \langle A_1, ..., A_K \rangle$. If $A_s^{-1} \notin \langle A_1, ..., A_K \rangle$, then

$$(A_i, \boldsymbol{a}_i) \cdots (A_s, \boldsymbol{a}_s) \cdots (A_{i'}, \boldsymbol{a}_{i'}) \neq (I, \boldsymbol{0}).$$

So we can delete (A_s, a_s) from \mathcal{G} .

N 4 E N

э.

Elements of SA(2, \mathbb{Z}) are (A, **a**). Group law (A, **a**)(B, **b**) = (AB, A**b** + **a**).

Let $\mathcal{G} = \{(A_1, \boldsymbol{a}_1), \dots, (A_K, \boldsymbol{a}_K)\}$. Goal: decide whether $(I, \boldsymbol{0}) \in \langle \mathcal{G} \rangle$.

Step 1: for s = 1, ..., K, check if $A_s^{-1} \in \langle A_1, ..., A_K \rangle$. If $A_s^{-1} \notin \langle A_1, ..., A_K \rangle$, then

$$(A_i, \boldsymbol{a}_i) \cdots (A_s, \boldsymbol{a}_s) \cdots (A_{i'}, \boldsymbol{a}_{i'}) \neq (I, \boldsymbol{0}).$$

So we can delete (A_s, \boldsymbol{a}_s) from \mathcal{G} .

Theorem (Bell, Hirvensalo, Potapov)

It is decidable in NP whether $A_s^{-1} \in \langle A_1, \ldots, A_K \rangle$.

N 4 E N

Elements of SA(2, \mathbb{Z}) are (A, **a**). Group law (A, **a**)(B, **b**) = (AB, A**b** + **a**).

Let $\mathcal{G} = \{(A_1, a_1), \dots, (A_K, a_K)\}$. Goal: decide whether $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$.

Step 1: for s = 1, ..., K, check if $A_s^{-1} \in \langle A_1, ..., A_K \rangle$. If $A_s^{-1} \notin \langle A_1, ..., A_K \rangle$, then

$$(A_i, \boldsymbol{a}_i) \cdots (A_s, \boldsymbol{a}_s) \cdots (A_{i'}, \boldsymbol{a}_{i'}) \neq (I, \boldsymbol{0}).$$

So we can delete (A_s, a_s) from \mathcal{G} .

Theorem (Bell, Hirvensalo, Potapov)

It is decidable in NP whether $A_s^{-1} \in \langle A_1, \ldots, A_K \rangle$.

We can perform Step 1 iteratively, until $A_s^{-1} \in \langle A_1, \ldots, A_K \rangle$ for all s. So the semigroup $\langle A_1, \ldots, A_K \rangle$ becomes a group.

글 위에 글 위에 걸 수 있다.

$$\mathcal{G} = \{ (A_1, \boldsymbol{a}_1), \dots, (A_K, \boldsymbol{a}_K) \}.$$

Additionally, $H = \langle A_1, \ldots, A_K \rangle \leq SL(2, \mathbb{Z})$ is a group.

2

• • = •

$$\mathcal{G} = \{ (A_1, \boldsymbol{a}_1), \dots, (A_K, \boldsymbol{a}_K) \}.$$

Additionally, $H = \langle A_1, \dots, A_K \rangle \leq SL(2, \mathbb{Z})$ is a group.

Theorem (Tits alternative)

Let *H* be a subgroup of $SL(n, \mathbb{Z})$. Then

- either H contains a non-abelian free subgroup,
- I or H contains a solvable subgroup of finite index.

э

$$\mathcal{G} = \{ (A_1, \boldsymbol{a}_1), \dots, (A_K, \boldsymbol{a}_K) \}.$$

Additionally, $H = \langle A_1, \dots, A_K \rangle \leq \mathsf{SL}(2, \mathbb{Z})$ is a group.

Theorem (Tits alternative)

Let H be a subgroup of $SL(n, \mathbb{Z})$. Then

- either H contains a non-abelian free subgroup,
- In the second second

In SL(2, \mathbb{Z}) this means:

- either H contains two matrices A, B that are not simultaneously triangularizable,
- **(2)** or *H* contains a finite-index subgroup that is isomorphic to \mathbb{Z} or $\{I\}$.

$$\mathcal{G} = \{ (A_1, \boldsymbol{a}_1), \dots, (A_K, \boldsymbol{a}_K) \}.$$

Additionally, $H = \langle A_1, \dots, A_K \rangle \leq \mathsf{SL}(2, \mathbb{Z})$ is a group.

Theorem (Tits alternative)

Let H be a subgroup of $SL(n, \mathbb{Z})$. Then

- either H contains a non-abelian free subgroup,
- In the second second

In SL(2, \mathbb{Z}) this means:

 either H contains two matrices A, B that are not simultaneously triangularizable,

• or *H* contains a finite-index subgroup that is isomorphic to \mathbb{Z} or $\{I\}$. Furthermore, the two cases can be distinguished in PTIME (Beals 1999).

$$\mathcal{G} = \{ (A_1, \boldsymbol{a}_1), \dots, (A_K, \boldsymbol{a}_K) \}.$$

▶ ★ 臣 ▶ …

$$\mathcal{G} = \{ (A_1, \boldsymbol{a}_1), \dots, (A_K, \boldsymbol{a}_K) \}.$$

Proposition

Suppose $\langle A_1, \ldots, A_K \rangle \leq SL(2, \mathbb{Z})$ is a group containing two matrices A, B that are not simultaneously triangularizable, then $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$.

$$\mathcal{G} = \{ (A_1, \boldsymbol{a}_1), \dots, (A_K, \boldsymbol{a}_K) \}.$$

Proposition

Suppose $\langle A_1, \ldots, A_K \rangle \leq SL(2, \mathbb{Z})$ is a group containing two matrices A, B that are not simultaneously triangularizable, then $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$.

Proof idea:

Since $\langle A_1, \ldots, A_K \rangle$ is a group containing A and B, it also contains some Y such that AYB = I. In particular $\langle \mathcal{G} \rangle$ contains some elements $(A, \mathbf{a}), (Y, \mathbf{y}), (B, \mathbf{b})$ such that $(A, \mathbf{a})(Y, \mathbf{y})(B, \mathbf{b}) = (I, \mathbf{x})$ for some $\mathbf{x} \in \mathbb{Z}^2$.

э

$$\mathcal{G} = \{ (A_1, \boldsymbol{a}_1), \dots, (A_K, \boldsymbol{a}_K) \}.$$

Proposition

Suppose $\langle A_1, \ldots, A_K \rangle \leq SL(2, \mathbb{Z})$ is a group containing two matrices A, B that are not simultaneously triangularizable, then $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$.

Proof idea:

Since $\langle A_1, \ldots, A_K \rangle$ is a group containing A and B, it also contains some Y such that AYB = I. In particular $\langle \mathcal{G} \rangle$ contains some elements $(A, \mathbf{a}), (Y, \mathbf{y}), (B, \mathbf{b})$ such that $(A, \mathbf{a})(Y, \mathbf{y})(B, \mathbf{b}) = (I, \mathbf{x})$ for some $\mathbf{x} \in \mathbb{Z}^2$. But \mathbf{x} might not be **0**. So we need to "pump" the word $(A, \mathbf{a})(Y, \mathbf{y})(B, \mathbf{b})$ to change \mathbf{x} .

Suppose A has eigenspaces V_A , W_A , and B has eigenspaces V_B , W_B , since A and B are not simultaneously triangularizable, we can suppose V_A , W_A , V_B , W_B pairwise distinct.

We have $(A, \boldsymbol{a}), (Y, \boldsymbol{y}), (B, \boldsymbol{b}) \in \langle \mathcal{G} \rangle$ s.t. $(A, \boldsymbol{a})(Y, \boldsymbol{y})(B, \boldsymbol{b}) = (I, \boldsymbol{x}).$

We have $(A, \boldsymbol{a}), (Y, \boldsymbol{y}), (B, \boldsymbol{b}) \in \langle \mathcal{G} \rangle$ s.t. $(A, \boldsymbol{a})(Y, \boldsymbol{y})(B, \boldsymbol{b}) = (I, \boldsymbol{x}).$

Consider

$$\underbrace{(A, \boldsymbol{a})(Y, \boldsymbol{y})(A, \boldsymbol{a})(Y, \boldsymbol{y})\cdots(A, \boldsymbol{a})(Y, \boldsymbol{y})}_{m \text{ times}}(B, \boldsymbol{b})^m = (I, \boldsymbol{x}_1) \in \langle \mathcal{G} \rangle$$

We have $(A, \mathbf{a}), (Y, \mathbf{y}), (B, \mathbf{b}) \in \langle \mathcal{G} \rangle$ s.t. $(A, \mathbf{a})(Y, \mathbf{y})(B, \mathbf{b}) = (I, \mathbf{x})$. Consider

$$\underbrace{(A, \boldsymbol{a})(Y, \boldsymbol{y})(A, \boldsymbol{a})(Y, \boldsymbol{y})\cdots(A, \boldsymbol{a})(Y, \boldsymbol{y})}_{m \text{ times}}(B, \boldsymbol{b})^m = (I, \boldsymbol{x}_1) \in \langle \mathcal{G} \rangle$$

When $m \to \infty$, the vector \mathbf{x}_1 tends towards V_B .

We have $(A, \boldsymbol{a}), (Y_1, \boldsymbol{y}_1), (B, \boldsymbol{b}) \in \langle \mathcal{G} \rangle$ s.t. $(A, \boldsymbol{a})(Y_1, \boldsymbol{y})(B, \boldsymbol{b}) = (I, \boldsymbol{x}_1).$

We have $(A, \boldsymbol{a}), (Y_1, \boldsymbol{y}_1), (B, \boldsymbol{b}) \in \langle \mathcal{G} \rangle$ s.t. $(A, \boldsymbol{a})(Y_1, \boldsymbol{y})(B, \boldsymbol{b}) = (I, \boldsymbol{x}_1).$

Consider

$$(A, \boldsymbol{a})\underbrace{(Y_1, \boldsymbol{y}_1)(B, \boldsymbol{b})\cdots(Y_1, \boldsymbol{y}_1)(B, \boldsymbol{b})}_{m \text{ times}}(A, \boldsymbol{a})^m(Y_1, \boldsymbol{y}_1)(B, \boldsymbol{b}) = (I, \boldsymbol{x}_2) \in \langle \mathcal{G} \rangle$$

We have $(A, a), (Y_1, y_1), (B, b) \in \langle \mathcal{G} \rangle$ s.t. $(A, a)(Y_1, y_1)(B, b) = (I, x_1)$. Consider

$$(A, \boldsymbol{a})\underbrace{(Y_1, \boldsymbol{y}_1)(B, \boldsymbol{b})\cdots(Y_1, \boldsymbol{y}_1)(B, \boldsymbol{b})}_{m \text{ times}}(A, \boldsymbol{a})^m(Y_1, \boldsymbol{y}_1)(B, \boldsymbol{b}) = (I, \boldsymbol{x}_2) \in \langle \mathcal{G} \rangle$$

When $m \to \infty$, the vector \boldsymbol{x}_2 tends towards W_A .

We have $(A, a), (Y_2, y_2), (B, b) \in \langle \mathcal{G} \rangle$ s.t. $(A, a)(Y_2, y_2)(B, b) = (I, x_2)$.

We have $(A, a), (Y_2, y_2), (B, b) \in \langle \mathcal{G} \rangle$ s.t. $(A, a)(Y_2, y_2)(B, b) = (I, x_2)$. Consider

$$(A, \boldsymbol{a})(Y_2, \boldsymbol{y}_2)(B, \boldsymbol{b})^m \underbrace{(Y_2, \boldsymbol{y}_2)(A, \boldsymbol{a}) \cdots (Y_2, \boldsymbol{y}_2)(A, \boldsymbol{a})}_{m \text{ times}} (B, \boldsymbol{b}) = (I, \boldsymbol{x}_3) \in \langle \mathcal{G} \rangle$$

We have $(A, a), (Y_2, y_2), (B, b) \in \langle \mathcal{G} \rangle$ s.t. $(A, a)(Y_2, y_2)(B, b) = (I, x_2)$. Consider

$$(A, \boldsymbol{a})(Y_2, \boldsymbol{y}_2)(B, \boldsymbol{b})^m \underbrace{(Y_2, \boldsymbol{y}_2)(A, \boldsymbol{a}) \cdots (Y_2, \boldsymbol{y}_2)(A, \boldsymbol{a})}_{m \text{ times}} (B, \boldsymbol{b}) = (I, \boldsymbol{x}_3) \in \langle \mathcal{G} \rangle$$

When $m \to \infty$, the vector \boldsymbol{x}_3 tends towards W_B .

Continue like this, we obtain $(I, \mathbf{x}_1), (I, \mathbf{x}_2), \dots, (I, \mathbf{x}_6) \in \langle \mathcal{G} \rangle$.

Continue like this, we obtain $(I, \mathbf{x}_1), (I, \mathbf{x}_2), \dots, (I, \mathbf{x}_6) \in \langle \mathcal{G} \rangle$.

There exist **positive** integers n_1, \ldots, n_6 such that $n_1 \mathbf{x}_1 + \cdots + n_6 \mathbf{x}_6 = \mathbf{0}$.

Continue like this, we obtain $(I, \mathbf{x}_1), (I, \mathbf{x}_2), \dots, (I, \mathbf{x}_6) \in \langle \mathcal{G} \rangle$.

There exist **positive** integers n_1, \ldots, n_6 such that $n_1 x_1 + \cdots + n_6 x_6 = \mathbf{0}$. Therefore

$$(I,\mathbf{0})=(I,\mathbf{x}_1)^{n_1}(I,\mathbf{x}_2)^{n_2}\cdots(I,\mathbf{x}_6)^{n_6}\in\langle\mathcal{G}
angle.$$

$$\mathcal{G} = \{(A_1, \boldsymbol{a}_1), \dots, (A_K, \boldsymbol{a}_K)\}.$$

We have proved the first case of the dichotomy:

Proposition

Suppose $\langle A_1, \ldots, A_K \rangle \leq SL(2, \mathbb{Z})$ is a group containing two matrices A, B that are not simultaneously triangularizable, then $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$.

э

$$\mathcal{G} = \{(A_1, \boldsymbol{a}_1), \ldots, (A_K, \boldsymbol{a}_K)\}.$$

We have proved the first case of the dichotomy:

Proposition

Suppose $\langle A_1, \ldots, A_K \rangle \leq SL(2, \mathbb{Z})$ is a group containing two matrices A, B that are not simultaneously triangularizable, then $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$.

We can also prove the second case of the dichotomy:

Proposition

Suppose $\langle A_1, \ldots, A_K \rangle$ is a group containing a finite-index subgroup that is isomorphic to \mathbb{Z} or $\{I\}$. Then it is decidable in PTIME whether or not $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$.

Let $\mathcal{G} = \{(A_1, a_1), \dots, (A_K, a_K)\}$, we want to decide if $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$. We defined $H = \langle A_1, \dots, A_K \rangle$.

₹...

Let $\mathcal{G} = \{(A_1, a_1), \dots, (A_K, a_K)\}$, we want to decide if $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$. We defined $H = \langle A_1, \dots, A_K \rangle$.

Step 1: narrowing down to the case where H is a group is done in NP.

- Step 2: distinguishing dichotomy is in PTIME.
- Step 3: first dichotomy case, always true.
- Step 4: second dichotomy case, complexity is PTIME.

In total, complexity is in NP.

글 위에 글 위에 걸 수 있다.

Let $\mathcal{G} = \{(A_1, a_1), \dots, (A_K, a_K)\}$, we want to decide if $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$. We defined $H = \langle A_1, \dots, A_K \rangle$.

Step 1: narrowing down to the case where H is a group is done in NP. Step 2: distinguishing dichotomy is in PTIME.

- Step 3: first dichotomy case, always true.
- Step 4: second dichotomy case, complexity is PTIME.

In total, complexity is in NP.

NP-hardness comes from the NP-hardness in $SL(2,\mathbb{Z}) \leq SA(2,\mathbb{Z})$.

B A B A B A A A

Let $\mathcal{G} = \{(A_1, a_1), \dots, (A_K, a_K)\}$, we want to decide if $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$. We defined $H = \langle A_1, \dots, A_K \rangle$.

Step 1: narrowing down to the case where H is a group is done in NP.

- Step 2: distinguishing dichotomy is in PTIME.
- Step 3: first dichotomy case, always true.
- Step 4: second dichotomy case, complexity is PTIME.

In total, complexity is in NP.

NP-hardness comes from the NP-hardness in $SL(2,\mathbb{Z}) \leq SA(2,\mathbb{Z})$.

Theorem

The Identity Problem in $SA(2, \mathbb{Z})$ is NP-complete.

글 위에 글 위에 걸 수 있다.

Let $\mathcal{G} = \{(A_1, a_1), \dots, (A_K, a_K)\}$, we want to decide if $(I, \mathbf{0}) \in \langle \mathcal{G} \rangle$. We defined $H = \langle A_1, \dots, A_K \rangle$.

Step 1: narrowing down to the case where H is a group is done in NP.

- Step 2: distinguishing dichotomy is in PTIME.
- Step 3: first dichotomy case, always true.
- Step 4: second dichotomy case, complexity is PTIME.

In total, complexity is in NP.

NP-hardness comes from the NP-hardness in $SL(2, \mathbb{Z}) \leq SA(2, \mathbb{Z})$.

Theorem

The Identity Problem in $SA(2, \mathbb{Z})$ is NP-complete.

Open Problem

Is Membership Problem in $SA(2,\mathbb{Z})$ decidable?

글 🖌 🔺 글 🕨 👘

э.