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An old decidability problem

Markov (1940s): is the following decidable?

Input: Set of square matrices G = {A1, . . . ,AK}, target matrix T .
Output: Is there a sequence B1,B2, . . . ,Bm ∈ G, s.t. B1B2 · · ·Bm = T?

Markov : undecidable in Z6×6.

Michailova (1960s): is the following decidable?

Input: Set of element G = {a1, . . . , aK} in a group G , target element T .
Output: Is T in the subgroup ⟨G⟩grp generated by G?

Michailova : undecidable in F2 × F2 ↪→ Z4×4.
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Membership problems

⟨G⟩: the semigroup generated by G. ⟨G⟩grp: the group generated by G.
Input: generator set G = {A1, . . . ,AK} and target T .

Definition (Semigroup Membership Problem)

Output: T ∈ ⟨G⟩?

Definition (Group Membership Problem)

Output: T ∈ ⟨G⟩grp?

Semigroup structure / Invertibility-type problems:
Input: generator set G = {A1, . . . ,AK}.

Definition (Identity Problem)

Output: I ∈ ⟨G⟩?

Definition (Group Problem)

Output: ⟨G⟩ = ⟨G⟩grp?
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Known results

Known results on matrix groups.

group types Group Mem.
T ∈ ⟨G⟩grp?

Semigroup Mem.
T ∈ ⟨G⟩?

Invertibility
I ∈ ⟨G⟩? ⟨G⟩ = ⟨G⟩grp

Commutative PTIME NP-complete PTIME
Nilpotent Decidable Undecidable ?
Solvable Decidable Undecidable ?

SL(2,Z) PTIME Decidable NP-complete
SL(3,Z) ? ? ?
SL(4,Z) Undecidable Undecidable Undecidable
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Nilpotent groups

Definition

The lower central series of a group G is the sequence of subgroups

G = G1 ≥ G2 ≥ G3 ≥ · · · ,

in which Gk = [G ,Gk−1]. ([G ,H] is the group generated by
ghg−1h−1, g ∈ G , h ∈ H.)

G is nilpotent if Gd+1 = {I} for some d . The smallest such d is the
nilpotency class of G .

Example

G = UT(3,Q) has nilpotency class two:

G1 =


1 ∗ ∗
0 1 ∗
0 0 1

 ≥ G2 =


1 0 ∗
0 1 0
0 0 1

 ≥ G3 =


1 0 0
0 1 0
0 0 1


UT(n,Q) has nilpotency class n − 1, so does UT(n,Q)k .
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Embedding in UT(n,Q)

Definition (UT(n,Q))

Define UT(n,Q) to be the group of n × n upper triangular rational
matrices with ones on the diagonal.

1 ∗ · · · ∗ ∗
0 1 · · · ∗ ∗
...

...
...

...
0 0 · · · 1 ∗
0 0 · · · 0 1


Theorem

Any finitely generated nilpotent group G admits an embedding
G ↪→ A× UT(n,Q), where A is finite.

Hence: we can focus on UT(n,Q)!

Ruiwen Dong On the Identity Problem in unipotent matrix groups



Main results

Theorem

For any group G ≤ UT(n,Q) of nilpotency class ≤ 10, the Identity
Problem and the Group Problem in G is decidable in PTIME.

Corollary

The Identity Problem in UT(11,Q)k is decidable in PTIME.

We can replace Q by any algebraic number field.

Corollary

The Identity Problem in any nilpotent group of class ≤ 10 are decidable.
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Lie algebra

Definition (u(n))

Define u(n) to be the Q-linear space of n by n upper triangular rational
matrices with zeros on the diagonal.

0 ∗ · · · ∗ ∗
0 0 · · · ∗ ∗
...

...
...

...
0 0 · · · 0 ∗
0 0 · · · 0 0



log : UT(n,Q) → u(n), A 7→
n∑

k=1

(−1)k−1

k
(A− I )k

and

exp : u(n) → UT(n,Q), X 7→
n∑

k=0

1

k!
X k

are inverse of one another. In particular, log I = 0 and exp(0) = I .
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Lie group - Lie algebra

log : UT(n,Q) → u(n)

and
exp : u(n) → UT(n,Q)

are inverse of one another.

group UT(n,Q)
log

⇄
exp

linear space u(n).

Example

log

1 1 3
0 1 2
0 0 1

 =

0 1 3
0 0 2
0 0 0

− 1

2

0 1 3
0 0 2
0 0 0

2

=

0 1 2
0 0 2
0 0 0



exp

0 1 2
0 0 2
0 0 0

 = I +

0 1 2
0 0 2
0 0 0

+
1

2

0 1 2
0 0 2
0 0 0

2

=

1 1 3
0 1 2
0 0 1


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Lie group - Lie algebra : illustration

log : UT(n,Q)
“projection”−−−−−−−→ u(n).
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Lie group - Lie algebra : commutative case
When A and B commute (AB = BA), we have logAB = logA+ logB.
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Lie semigroup - Cone : commutative cone

log : group
“projection”−−−−−−−→ linear space .

log : semigroup
“projection”−−−−−−−→ cone .
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Lie group - Lie algebra : non-commutative case
If A and B do not commute (AB ̸= BA), then logAB ̸= logA+ logB.
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Baker-Campbell-Hausdorff formula

log(AB) = logA+ logB +
1

2
[logA, logB]

+
1

12
[logA, [logA, logB]]− 1

12
[logB, [logA, logB]] + · · ·

where [X ,Y ] := XY − YX is the Lie bracket.

Some properties of the Lie bracket:

1 Bilinear: [X1 + X2,Y ] = [X1,Y ] + [X2,Y ].

2 Anticommutative: [X ,Y ] = −[Y ,X ].

3 Jacobi Identity: [X , [Y ,Z ]] + [Y , [X ,Z ]] + [Z , [X ,Y ]] = 0.
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Lie brackets

Definition

Given a set H ⊆ u(n) and k ≥ 2, define

[H]k :=

{
[. . . [[X1,X2],X3], . . . ,Xk ]

∣∣∣∣ X1,X2, . . . ,Xk ∈ H
}
.

the set of all “left bracketing” of length k of elements in H.

Any k-iteration of Lie brackets of elements in H can be written as a
linear combination of elements in [H]k :

[[X1,X2], [X3,X4]]
J.I .
= − [[X2, [X3,X4]],X1]− [[[X3,X4],X1],X2]

AC
= [[[X3,X4],X2],X1]− [[[X3,X4],X1],X2].
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Baker-Campbell-Hausdorff formula

Suppose G ≤ UT(n,Q) has nilpotency class d .

log(B1 · · ·Bm) =
m∑
i=1

logBi +
d∑

k=2

Hk(logB1, . . . , logBm), (1)

where Hk(logB1, . . . , logBm), k = 2, 3, . . ., can be expressed as Q-linear
combinations of elements in [{logB1, . . . , logBm}]k .

Some first terms (Ci = logBi ):

H2(C1, . . . ,Cm) =
1

2

∑
i<j

[Ci ,Cj ]

H3(C1, . . . ,Cm) =
∑

i<j<k

(
1

3
[Ci , [Cj ,Ck ]] +

1

6
[[Ci ,Ck ],Cj ]

)
+

1

12

∑
i<j

([Ci , [Ci ,Cj ]] + [[Ci ,Cj ],Cj ])

Expression for Hk : Dynkin formula
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Filtered Lie algebra
For any set H ⊆ logG , denote

L≥k(H) :=

〈⋃
i≥k

[H]i

〉
Q

.

the linear space spanned by the set of all “left bracketing” of length at
least k of elements in H.

Theorem (Mal’cev correspondence)

G has nilpotency class ≤ d iff L≥d+1(G ) = {0}.

Property: if G has nilpotency class d , then
1 L≥1(H) ⊇ L≥2(H) ⊇ · · · ⊇ L≥d+1(H) = {0}.
2 [L≥i (H),L≥j(H)] ⊆ L≥i+j(H).

In particular:

n∑
k=2

Hk(logB1, . . . , logBm) ∈ L≥2({logB1 · · · logBm})
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Example

Example

{logA, logB} = log G ⊆ u(n) =


0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0



H2(logA, logB) ∈ L2(log G) ⊆ L≥2(u(n)) =


0 0 ∗ ∗
0 0 0 ∗
0 0 0 0
0 0 0 0



H3(logA, logB) ∈ L3(log G) ⊆ L≥3(u(n)) =


0 0 0 ∗
0 0 0 0
0 0 0 0
0 0 0 0


H4(logA, logB) ∈ L4(log G) ⊆ L≥4(u(n)) = 0
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Lie group - Lie algebra : non-commutative case
We have logAB ∈ logA+ logB + L2({logA, logB})!
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Lie group - Lie algebra : non-commutative case
log⟨A,B⟩ falls in the purple area generated by logA, logB and
L2({logA, logB}).
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Key theorem

logw = log(B1 · · ·Bm) =
K∑
i=1

ℓi logAi︸ ︷︷ ︸
linear form in ℓ

+
d∑

k=2

Hk(logB1, . . . , logBm)︸ ︷︷ ︸
∈L≥2({logB1,...,logBm})

Theorem (Very technical theorem)

Let G = {A1, . . . ,AK} be such that L≥11(log G) = {0}.
1 ⟨G⟩ = ⟨G⟩grp if and only if there exist strictly positive integers

ℓi ∈ Z>0 for i = 1, . . . ,K, such that

K∑
i=1

ℓi logAi ∈ L≥2(log G).

2 I ∈ ⟨G⟩ if and only if there exist a non-empty subset H ⊆ G and
strictly positive integers ℓi ∈ Z>0 for all i with Ai ∈ H, such that∑

Ai∈H

ℓi logAi ∈ L≥2(logH).

Key to the proof: understanding Hk using Dynkin’s formula.
Tools: Lie algebra + computer algebra software.
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Key to the proof: understanding Hk using Dynkin’s formula.
Tools: Lie algebra + computer algebra software.
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Identity Problem in UT(4,Q): An example

G = {A1,A2,A3,A4}.

A1 =


1 1 2 2
0 1 1 3
0 0 1 1
0 0 0 1

 ,A2 =


1 −1 4 −2
0 1 0 1
0 0 1 0
0 0 0 1

 ,

A3 =


1 0 −2 0
0 1 −1 3
0 0 1 0
0 0 0 1

 ,A4 =


1 0 7 5
0 1 0 1
0 0 1 −1
0 0 0 1

 ,

Is I ∈ ⟨G⟩?

L≥1(log G) ⊆



0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0


 ,L≥2(log G) ⊆



0 0 ∗ ∗
0 0 0 ∗
0 0 0 0
0 0 0 0



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Identity Problem in UT(4,Q): An example

logA1 =


0 1 3

2 − 1
6

0 0 1 5
2

0 0 0 1
0 0 0 0

 , logA2 =


0 −1 4 − 3

2
0 0 0 1
0 0 0 0
0 0 0 0

 ,

logA3 =


0 0 −2 0
0 0 −1 3
0 0 0 0
0 0 0 0

 , logA4 =


0 0 7 17

2
0 0 0 1
0 0 0 −1
0 0 0 0

 ,

Is 0 ∈ log⟨G⟩?

Let ℓ = (1, 1, 1, 1), then
∑4

i=1 ℓi logAi ∈ L≥2(log G).

log(A1A2A3A4) =
4∑

i=1

logAi+H2(logA1, . . . , logA4)+H3(logA1, . . . , logA4)

=


0 0 11 2
0 0 0 8
0 0 0 0
0 0 0 0

 ∈ L≥2(log G)

Ruiwen Dong On the Identity Problem in unipotent matrix groups



Identity Problem in UT(4,Q): An example

logA1 =


0 1 3

2 − 1
6

0 0 1 5
2

0 0 0 1
0 0 0 0

 , logA2 =


0 −1 4 − 3

2
0 0 0 1
0 0 0 0
0 0 0 0

 ,

logA3 =


0 0 −2 0
0 0 −1 3
0 0 0 0
0 0 0 0

 , logA4 =


0 0 7 17

2
0 0 0 1
0 0 0 −1
0 0 0 0

 ,

Is 0 ∈ log⟨G⟩?
Let ℓ = (1, 1, 1, 1), then

∑4
i=1 ℓi logAi ∈ L≥2(log G).

log(A1A2A3A4) =
4∑

i=1

logAi+H2(logA1, . . . , logA4)+H3(logA1, . . . , logA4)

=


0 0 11 2
0 0 0 8
0 0 0 0
0 0 0 0
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Identity Problem in UT(4,Q): An example

logA′
1 = logA1A2A3A4 =


0 0 11 2
0 0 0 8
0 0 0 0
0 0 0 0

 ∈ L≥2(log G)

logA′
2 = logA100

2 A100
3 A100

1 A100
4 =


0 0 6050 77350
0 0 0 −4250
0 0 0 0
0 0 0 0

 ∈ L≥2(log G)

logA′
3 = logA100

2 A100
1 A100

3 A100
4 =


0 0 −3950 127350
0 0 0 5750
0 0 0 0
0 0 0 0

 ∈ L≥2(log G)

logA′
4 = logA100

4 A100
3 A100

2 A100
1 =


0 0 −3950 −287650
0 0 0 −4250
0 0 0 0
0 0 0 0

 ∈ L≥2(log G)
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Identity Problem in UT(4,Q)
Observation:

L≥2(L≥2(log G)) = {0}.

Hence
[logA′

i , logA
′
j ] = 0.

log(A′
1
1880000

A′
2
14443

A′
3
16261

A′
4
11096

)

=1880000 logA′
1 + 14443 logA′

2 + 16261 logA′
3 + 11096 logA′

4

=1880000 ·


0 0 11 2
0 0 0 8
0 0 0 0
0 0 0 0

+ 14443 ·


0 0 6050 77350
0 0 0 −4250
0 0 0 0
0 0 0 0



+ 16261 ·


0 0 −3950 127350
0 0 0 5750
0 0 0 0
0 0 0 0

+ 11096 ·


0 0 −3950 −287650
0 0 0 −4250
0 0 0 0
0 0 0 0


= 0

So 0 ∈ log⟨G⟩, I ∈ ⟨G⟩.
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Takeaway, future work

Takeway:

1 Solving problems in Lie algebra could be easier than solving
problems in (semi)groups.

2 Semigroup generated by G is closely related to the cone generated
by log G.

3 The Identity Problem is easier than the Membership Problem,
because it is partially a “local” property.

4 The key to the Identity Problem in UT(n,Q) is the structure of Hk .

Future work:

1 What about polycyclic/solvable groups? (It’s doable for T(2,Q)!)

2 Non-solvable groups?

3 Any chance to solve the Membership Problem in low dimensions?
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