On the Identity Problem in unipotent matrix groups

Ruiwen Dong

University of Oxford
October 2022

An old decidability problem

Markov (1940s): is the following decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?

An old decidability problem

Markov (1940s): is the following decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?
Markov: undecidable in $\mathbb{Z}^{6 \times 6}$.

An old decidability problem

Markov (1940s): is the following decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?
Markov: undecidable in $\mathbb{Z}^{6 \times 6}$.

Michailova (1960s): is the following decidable?
Input: Set of element $\mathcal{G}=\left\{a_{1}, \ldots, a_{K}\right\}$ in a group G, target element T.
Output: Is T in the subgroup $\langle\mathcal{G}\rangle_{g r p}$ generated by \mathcal{G} ?

An old decidability problem

Markov (1940s): is the following decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?
Markov: undecidable in $\mathbb{Z}^{6 \times 6}$.

Michailova (1960s): is the following decidable?
Input: Set of element $\mathcal{G}=\left\{a_{1}, \ldots, a_{K}\right\}$ in a group G, target element T. Output: Is T in the subgroup $\langle\mathcal{G}\rangle_{\text {grp }}$ generated by \mathcal{G} ?

Michailova : undecidable in $F_{2} \times F_{2} \hookrightarrow \mathbb{Z}^{4 \times 4}$.

Membership problems

$\langle\mathcal{G}\rangle$: the semigroup generated by $\mathcal{G} .\langle\mathcal{G}\rangle_{\text {grp }}$: the group generated by \mathcal{G}. Input: generator set $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$ and target T.

Definition (Semigroup Membership Problem)

Output: $T \in\langle\mathcal{G}\rangle$?

Membership problems

$\langle\mathcal{G}\rangle$: the semigroup generated by $\mathcal{G} .\langle\mathcal{G}\rangle_{\text {grp }}$: the group generated by \mathcal{G}. Input: generator set $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$ and target T.

Definition (Semigroup Membership Problem)

Output: $T \in\langle\mathcal{G}\rangle$?

Definition (Group Membership Problem)
Output: $T \in\langle\mathcal{G}\rangle_{\text {grp }}$?

Membership problems

$\langle\mathcal{G}\rangle$: the semigroup generated by $\mathcal{G} .\langle\mathcal{G}\rangle_{\text {grp }}$: the group generated by \mathcal{G}. Input: generator set $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$ and target T.

Definition (Semigroup Membership Problem)

Output: $T \in\langle\mathcal{G}\rangle$?
Definition (Group Membership Problem)
Output: $T \in\langle\mathcal{G}\rangle_{\text {grp }}$?
Semigroup structure / Invertibility-type problems:
Input: generator set $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$.
Definition (Identity Problem)
Output: $I \in\langle\mathcal{G}\rangle$?

Membership problems

$\langle\mathcal{G}\rangle$: the semigroup generated by $\mathcal{G} .\langle\mathcal{G}\rangle_{\text {grp }}$: the group generated by \mathcal{G}. Input: generator set $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$ and target T.

Definition (Semigroup Membership Problem)

Output: $T \in\langle\mathcal{G}\rangle$?
Definition (Group Membership Problem)
Output: $T \in\langle\mathcal{G}\rangle_{g r p}$?
Semigroup structure / Invertibility-type problems:
Input: generator set $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$.
Definition (Identity Problem)
Output: $I \in\langle\mathcal{G}\rangle$?

Definition (Group Problem)

Output: $\langle\mathcal{G}\rangle=\langle\mathcal{G}\rangle_{\text {grp }}$?

Known results

Known results on matrix groups.

group types	Group Mem. $T \in\langle\mathcal{G}\rangle_{g r p}$?	Semigroup Mem. $T \in\langle\mathcal{G}\rangle$?	Invertibility $I \in\langle\mathcal{G}\rangle ?\langle\mathcal{G}\rangle=\langle\mathcal{G}\rangle_{\mathrm{grp}}$
Commutative	PTIME	NP-complete	PTIME
Nilpotent	Decidable	Undecidable	?
Solvable	Decidable	Undecidable	?
SL($2, \mathbb{Z}$)	PTIME	Decidable	NP-complete
$\mathrm{SL}(3, \mathbb{Z})$?	?	?
SL(4, Z)	Undecidable	Undecidable	Undecidable

Known results

Known results on matrix groups.

group types	Group Mem. $T \in\langle\mathcal{G}\rangle_{g r p} ?$	Semigroup Mem. $T \in\langle\mathcal{G}\rangle ?$	Invertibility $I \in\langle\mathcal{G}\rangle ?\langle\mathcal{G}\rangle=\langle\mathcal{G}\rangle_{\text {grp }}$?
Commutative	PTIME	NP-complete	PTIME
Nilpotent	Decidable	Undecidable	PTIME for class ≤ 10
Solvable	Decidable	Undecidable	?
$\mathrm{SL}(2, \mathbb{Z})$	PTIME	Decidable	NP-complete
$\mathrm{SL}(3, \mathbb{Z})$?	?	?
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable	Undecidable

Nilpotent groups

Definition

The lower central series of a group G is the sequence of subgroups

$$
G=G_{1} \geq G_{2} \geq G_{3} \geq \cdots,
$$

in which $G_{k}=\left[G, G_{k-1}\right]$. ([G,H] is the group generated by $\mathrm{ghg}^{-1} h^{-1}, g \in G, h \in H$.)

Nilpotent groups

Definition

The lower central series of a group G is the sequence of subgroups

$$
G=G_{1} \geq G_{2} \geq G_{3} \geq \cdots,
$$

in which $G_{k}=\left[G, G_{k-1}\right]$. ([G,H] is the group generated by $\mathrm{ghg}^{-1} h^{-1}, g \in G, h \in H$.)
G is nilpotent if $G_{d+1}=\{I\}$ for some d. The smallest such d is the nilpotency class of G.

Nilpotent groups

Definition

The lower central series of a group G is the sequence of subgroups

$$
G=G_{1} \geq G_{2} \geq G_{3} \geq \cdots,
$$

in which $G_{k}=\left[G, G_{k-1}\right] .([G, H]$ is the group generated by $\mathrm{ghg}^{-1} h^{-1}, g \in G, h \in H$.)
G is nilpotent if $G_{d+1}=\{I\}$ for some d. The smallest such d is the nilpotency class of G.

Example

$G=\mathrm{UT}(3, \mathbb{Q})$ has nilpotency class two:
$G_{1}=\left\{\left(\begin{array}{lll}1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1\end{array}\right)\right\} \geq G_{2}=\left\{\left(\begin{array}{lll}1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\right\} \geq G_{3}=\left\{\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\right\}$

Nilpotent groups

Definition

The lower central series of a group G is the sequence of subgroups

$$
G=G_{1} \geq G_{2} \geq G_{3} \geq \cdots,
$$

in which $G_{k}=\left[G, G_{k-1}\right]$. ([G,H] is the group generated by $\mathrm{ghg}^{-1} h^{-1}, g \in G, h \in H$.)
G is nilpotent if $G_{d+1}=\{I\}$ for some d. The smallest such d is the nilpotency class of G.

Example

$G=\mathrm{UT}(3, \mathbb{Q})$ has nilpotency class two:
$G_{1}=\left\{\left(\begin{array}{lll}1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1\end{array}\right)\right\} \geq G_{2}=\left\{\left(\begin{array}{lll}1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\right\} \geq G_{3}=\left\{\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\right\}$
$\mathrm{UT}(n, \mathbb{Q})$ has nilpotency class $n-1$, so does $U T(n, \mathbb{Q})^{k}$.

Embedding in UT (n, \mathbb{Q})

Definition (UT (n, \mathbb{Q}))

Define $\mathrm{UT}(n, \mathbb{Q})$ to be the group of $n \times n$ upper triangular rational matrices with ones on the diagonal.

$$
\left(\begin{array}{ccccc}
1 & * & \cdots & * & * \\
0 & 1 & \cdots & * & * \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & * \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

Theorem

Any finitely generated nilpotent group G admits an embedding $G \hookrightarrow A \times \mathrm{UT}(n, \mathbb{Q})$, where A is finite.

Hence: we can focus on $U T(n, \mathbb{Q})$!

Main results

Theorem

For any group $G \leq \mathrm{UT}(n, \mathbb{Q})$ of nilpotency class ≤ 10, the Identity Problem and the Group Problem in G is decidable in PTIME.

Main results

Theorem

For any group $G \leq \mathrm{UT}(n, \mathbb{Q})$ of nilpotency class ≤ 10, the Identity Problem and the Group Problem in G is decidable in PTIME.

Corollary

The Identity Problem in $\mathrm{UT}(11, \mathbb{Q})^{k}$ is decidable in PTIME.
We can replace \mathbb{Q} by any algebraic number field.

Main results

Theorem

For any group $G \leq \mathrm{UT}(n, \mathbb{Q})$ of nilpotency class ≤ 10, the Identity Problem and the Group Problem in G is decidable in PTIME.

Corollary

The Identity Problem in $\mathrm{UT}(11, \mathbb{Q})^{k}$ is decidable in PTIME.
We can replace \mathbb{Q} by any algebraic number field.

Corollary

The Identity Problem in any nilpotent group of class ≤ 10 are decidable.

Lie algebra

Definition $(\mathfrak{u}(n))$

Define $\mathfrak{u}(n)$ to be the \mathbb{Q}-linear space of n by n upper triangular rational matrices with zeros on the diagonal.

$$
\left(\begin{array}{ccccc}
0 & * & \cdots & * & * \\
0 & 0 & \cdots & * & * \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 0 & * \\
0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

$$
\log : \mathrm{UT}(n, \mathbb{Q}) \rightarrow \mathfrak{u}(n), \quad A \mapsto \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}(A-I)^{k}
$$

and

$$
\exp : \mathfrak{u}(n) \rightarrow \mathrm{UT}(n, \mathbb{Q}), \quad X \mapsto \sum_{k=0}^{n} \frac{1}{k!} X^{k}
$$

are inverse of one another. In particular, $\log I=0$ and $\exp (0)=I$.

Lie group - Lie algebra

$$
\log : \mathrm{UT}(n, \mathbb{Q}) \rightarrow \mathfrak{u}(n)
$$

and

$$
\exp : \mathfrak{u}(n) \rightarrow \mathrm{UT}(n, \mathbb{Q})
$$

are inverse of one another.

$$
\operatorname{group} U T(n, \mathbb{Q}) \underset{\exp }{\stackrel{\log }{\rightleftarrows}} \text { linear space } \mathfrak{u}(n) \text {. }
$$

Example

$$
\begin{aligned}
\log \left(\begin{array}{lll}
1 & 1 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) & =\left(\begin{array}{lll}
0 & 1 & 3 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)-\frac{1}{2}\left(\begin{array}{lll}
0 & 1 & 3 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)^{2}=\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) \\
\exp \left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) & =I+\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)+\frac{1}{2}\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)^{2}=\left(\begin{array}{lll}
1 & 1 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Lie group - Lie algebra : illustration

$\log : \mathrm{UT}(n, \mathbb{Q}) \xrightarrow{\text { "projection" }} \mathfrak{u}(n)$.

Lie group - Lie algebra : commutative case

When A and B commute $(A B=B A)$, we have $\log A B=\log A+\log B$.

Lie semigroup - Cone : commutative cone

$\log :$ group $\xrightarrow{\text { "projection" }}$ linear space .
log: semigroup $\xrightarrow{\text { "projection" }}$ cone .

Lie group - Lie algebra : non-commutative case

If A and B do not commute $(A B \neq B A)$, then $\log A B \neq \log A+\log B$.

Baker-Campbell-Hausdorff formula

$$
\begin{aligned}
\log (A B)= & \log A+\log B+\frac{1}{2}[\log A, \log B] \\
& +\frac{1}{12}[\log A,[\log A, \log B]]-\frac{1}{12}[\log B,[\log A, \log B]]+\cdots
\end{aligned}
$$

where $[X, Y]:=X Y-Y X$ is the Lie bracket.

Baker-Campbell-Hausdorff formula

$$
\begin{aligned}
\log (A B)= & \log A+\log B+\frac{1}{2}[\log A, \log B] \\
& +\frac{1}{12}[\log A,[\log A, \log B]]-\frac{1}{12}[\log B,[\log A, \log B]]+\cdots
\end{aligned}
$$

where $[X, Y]:=X Y-Y X$ is the Lie bracket.
Some properties of the Lie bracket:
(1) Bilinear: $\left[X_{1}+X_{2}, Y\right]=\left[X_{1}, Y\right]+\left[X_{2}, Y\right]$.
(2) Anticommutative: $[X, Y]=-[Y, X]$.
(3) Jacobi Identity: $[X,[Y, Z]]+[Y,[X, Z]]+[Z,[X, Y]]=0$.

Lie brackets

Definition

Given a set $\mathcal{H} \subseteq \mathfrak{u}(n)$ and $k \geq 2$, define

$$
[\mathcal{H}]_{k}:=\left\{\left[\ldots\left[\left[X_{1}, X_{2}\right], X_{3}\right], \ldots, X_{k}\right] \mid X_{1}, X_{2}, \ldots, X_{k} \in \mathcal{H}\right\} .
$$

the set of all "left bracketing" of length k of elements in \mathcal{H}.

Lie brackets

Definition

Given a set $\mathcal{H} \subseteq \mathfrak{u}(n)$ and $k \geq 2$, define

$$
[\mathcal{H}]_{k}:=\left\{\left[\ldots\left[\left[X_{1}, X_{2}\right], X_{3}\right], \ldots, X_{k}\right] \mid X_{1}, X_{2}, \ldots, X_{k} \in \mathcal{H}\right\} .
$$

the set of all "left bracketing" of length k of elements in \mathcal{H}.
Any k-iteration of Lie brackets of elements in \mathcal{H} can be written as a linear combination of elements in $[\mathcal{H}]_{k}$:

$$
\begin{aligned}
{\left[\left[X_{1}, X_{2}\right],\left[X_{3}, X_{4}\right]\right] } & \stackrel{\text { J.I. }}{=}-\left[\left[X_{2},\left[X_{3}, X_{4}\right]\right], X_{1}\right]-\left[\left[\left[X_{3}, X_{4}\right], X_{1}\right], X_{2}\right] \\
& \stackrel{A C}{=}\left[\left[\left[X_{3}, X_{4}\right], X_{2}\right], X_{1}\right]-\left[\left[\left[X_{3}, X_{4}\right], X_{1}\right], X_{2}\right] .
\end{aligned}
$$

Baker-Campbell-Hausdorff formula

Suppose $G \leq U T(n, \mathbb{Q})$ has nilpotency class d.

$$
\begin{equation*}
\log \left(B_{1} \cdots B_{m}\right)=\sum_{i=1}^{m} \log B_{i}+\sum_{k=2}^{d} H_{k}\left(\log B_{1}, \ldots, \log B_{m}\right), \tag{1}
\end{equation*}
$$

where $H_{k}\left(\log B_{1}, \ldots, \log B_{m}\right), k=2,3, \ldots$, can be expressed as \mathbb{Q}-linear combinations of elements in $\left[\left\{\log B_{1}, \ldots, \log B_{m}\right\}\right]_{k}$.

Baker-Campbell-Hausdorff formula

Suppose $G \leq U T(n, \mathbb{Q})$ has nilpotency class d.

$$
\begin{equation*}
\log \left(B_{1} \cdots B_{m}\right)=\sum_{i=1}^{m} \log B_{i}+\sum_{k=2}^{d} H_{k}\left(\log B_{1}, \ldots, \log B_{m}\right), \tag{1}
\end{equation*}
$$

where $H_{k}\left(\log B_{1}, \ldots, \log B_{m}\right), k=2,3, \ldots$, can be expressed as \mathbb{Q}-linear combinations of elements in $\left[\left\{\log B_{1}, \ldots, \log B_{m}\right\}\right]_{k}$.

Some first terms $\left(C_{i}=\log B_{i}\right)$:

$$
\begin{aligned}
H_{2}\left(C_{1}, \ldots, C_{m}\right)= & \frac{1}{2} \sum_{i<j}\left[C_{i}, C_{j}\right] \\
H_{3}\left(C_{1}, \ldots, C_{m}\right)= & \sum_{i<j<k}\left(\frac{1}{3}\left[C_{i},\left[C_{j}, C_{k}\right]\right]+\frac{1}{6}\left[\left[C_{i}, C_{k}\right], C_{j}\right]\right) \\
& +\frac{1}{12} \sum_{i<j}\left(\left[C_{i},\left[C_{i}, C_{j}\right]\right]+\left[\left[C_{i}, C_{j}\right], C_{j}\right]\right)
\end{aligned}
$$

Expression for H_{k} : Dynkin formula

Filtered Lie algebra

For any set $\mathcal{H} \subseteq \log G$, denote

$$
\mathfrak{L}_{\geq k}(\mathcal{H}):=\left\langle\bigcup_{i \geq k}[\mathcal{H}]_{i}\right\rangle_{\mathbb{Q}} .
$$

the linear space spanned by the set of all "left bracketing" of length at least k of elements in \mathcal{H}.

Theorem (Mal'cev correspondence)
G has nilpotency class $\leq d$ iff $\mathfrak{L}_{\geq d+1}(G)=\{0\}$.

Filtered Lie algebra

For any set $\mathcal{H} \subseteq \log G$, denote

$$
\mathfrak{L}_{\geq k}(\mathcal{H}):=\left\langle\bigcup_{i \geq k}[\mathcal{H}]_{i}\right\rangle_{\mathbb{Q}} .
$$

the linear space spanned by the set of all "left bracketing" of length at least k of elements in \mathcal{H}.
Theorem (Mal'cev correspondence)
G has nilpotency class $\leq d$ iff $\mathfrak{L} \geq d+1(G)=\{0\}$.

Property: if G has nilpotency class d, then
(1) $\mathfrak{L}_{\geq 1}(\mathcal{H}) \supseteq \mathfrak{L}_{\geq 2}(\mathcal{H}) \supseteq \cdots \supseteq \mathfrak{L}_{\geq d+1}(\mathcal{H})=\{0\}$.
(2. $\left[\mathfrak{L}_{\geq i}(\mathcal{H}), \mathfrak{L}_{\geq j}(\mathcal{H})\right] \subseteq \mathfrak{L}_{\geq i+j}(\mathcal{H})$.

Filtered Lie algebra

For any set $\mathcal{H} \subseteq \log G$, denote

$$
\mathfrak{L}_{\geq k}(\mathcal{H}):=\left\langle\bigcup_{i \geq k}[\mathcal{H}]_{i}\right\rangle_{\mathbb{Q}} .
$$

the linear space spanned by the set of all "left bracketing" of length at least k of elements in \mathcal{H}.
Theorem (Mal'cev correspondence)
G has nilpotency class $\leq d$ iff $\mathfrak{L}_{\geq d+1}(G)=\{0\}$.

Property: if G has nilpotency class d, then
(1) $\mathfrak{L}_{\geq 1}(\mathcal{H}) \supseteq \mathfrak{L}_{\geq 2}(\mathcal{H}) \supseteq \cdots \supseteq \mathfrak{L}_{\geq d+1}(\mathcal{H})=\{0\}$.
(2) $\left[\mathfrak{L}_{\geq i}(\mathcal{H}), \mathfrak{L}_{\geq j}(\mathcal{H})\right] \subseteq \mathfrak{L}_{\geq i+j}(\mathcal{H})$.

In particular:

$$
\sum_{k=2}^{n} H_{k}\left(\log B_{1}, \ldots, \log B_{m}\right) \in \mathfrak{L}_{\geq 2}\left(\left\{\log B_{1} \cdots \log B_{m}\right\}\right)
$$

Example

Example

$\{\log A, \log B\}=\log \mathcal{G} \quad \subseteq \mathfrak{u}(n) \quad=\left(\begin{array}{llll}0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0\end{array}\right)$
$H_{2}(\log A, \log B) \in \mathfrak{L}_{2}(\log \mathcal{G}) \subseteq \quad \mathfrak{L}_{\geq 2}(\mathfrak{u}(n))=\left(\begin{array}{llll}0 & 0 & * & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$H_{3}(\log A, \log B) \in \mathfrak{L}_{3}(\log \mathcal{G}) \subseteq \quad \mathfrak{L}_{\geq 3}(\mathfrak{u}(n))=\left(\begin{array}{llll}0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$H_{4}(\log A, \log B) \in \mathfrak{L}_{4}(\log \mathcal{G}) \quad \subseteq \quad \mathfrak{L}_{\geq 4}(\mathfrak{u}(n))=\mathbf{0}$

Lie group - Lie algebra : non-commutative case

We have $\log A B \in \log A+\log B+\mathfrak{L}_{2}(\{\log A, \log B\})$!

Lie group - Lie algebra : non-commutative case

$\log \langle A, B\rangle$ falls in the purple area generated by $\log A, \log B$ and $\mathfrak{L}_{2}(\{\log A, \log B\})$.

Key theorem

$$
\log w=\log \left(B_{1} \cdots B_{m}\right)=\underbrace{\sum_{i=1}^{K} \ell_{i} \log A_{i}}_{\text {linear form in } \ell}+\underbrace{\sum_{k=2}^{d} H_{k}\left(\log B_{1}, \ldots, \log B_{m}\right)}_{\in \mathfrak{L}_{\geq 2}\left(\left\{\log B_{1}, \ldots, \log B_{m}\right\}\right)}
$$

Theorem (Very technical theorem)

Let $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$ be such that $\mathfrak{L}_{\geq 11}(\log \mathcal{G})=\{0\}$.
(1) $\langle\mathcal{G}\rangle=\langle\mathcal{G}\rangle_{g r p}$ if and only if there exist strictly positive integers $\ell_{i} \in \mathbb{Z}_{>0}$ for $i=1, \ldots, K$, such that

$$
\sum_{i=1}^{K} \ell_{i} \log A_{i} \in \mathfrak{L}_{\geq 2}(\log \mathcal{G})
$$

(2) $I \in\langle\mathcal{G}\rangle$ if and only if there exist a non-empty subset $\mathcal{H} \subseteq \mathcal{G}$ and strictly positive integers $\ell_{i} \in \mathbb{Z}_{>0}$ for all i with $A_{i} \in \mathcal{H}$, such that

$$
\sum_{A_{i} \in \mathcal{H}} \ell_{i} \log A_{i} \in \mathfrak{L} \geq 2(\log \mathcal{H}) .
$$

Key theorem

$$
\log w=\log \left(B_{1} \cdots B_{m}\right)=\underbrace{\sum_{i=1}^{K} \ell_{i} \log A_{i}}_{\text {linear form in } \ell}+\underbrace{\sum_{k=2}^{d} H_{k}\left(\log B_{1}, \ldots, \log B_{m}\right)}_{\in \mathfrak{L}_{\geq 2}\left(\left\{\log B_{1}, \ldots, \log B_{m}\right\}\right)}
$$

Theorem (Very technical theorem)

Let $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$ be such that $\mathfrak{L}_{\geq 11}(\log \mathcal{G})=\{0\}$.
(1) $\langle\mathcal{G}\rangle=\langle\mathcal{G}\rangle_{g r p}$ if and only if there exist strictly positive integers $\ell_{i} \in \mathbb{Z}_{>0}$ for $i=1, \ldots, K$, such that

$$
\sum_{i=1}^{K} \ell_{i} \log A_{i} \in \mathfrak{L}_{\geq 2}(\log \mathcal{G})
$$

(2) $I \in\langle\mathcal{G}\rangle$ if and only if there exist a non-empty subset $\mathcal{H} \subseteq \mathcal{G}$ and strictly positive integers $\ell_{i} \in \mathbb{Z}_{>0}$ for all i with $A_{i} \in \mathcal{H}$, such that

$$
\sum_{A_{i} \in \mathcal{H}} \ell_{i} \log A_{i} \in \mathfrak{L} \geq 2(\log \mathcal{H}) .
$$

Key to the proof: understanding H_{k} using Dynkin's formula.
Tools: Lie algebra + computer algebra software.

Identity Problem in UT $(4, \mathbb{Q})$: An example

$\mathcal{G}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$.

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
0 & 1 & 1 & 3 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), A_{2}=\left(\begin{array}{cccc}
1 & -1 & 4 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
& A_{3}=\left(\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & -1 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), A_{4}=\left(\begin{array}{cccc}
1 & 0 & 7 & 5 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

Is $I \in\langle\mathcal{G}\rangle$?

Identity Problem in UT $(4, \mathbb{Q})$: An example

$\mathcal{G}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$.

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
0 & 1 & 1 & 3 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), A_{2}=\left(\begin{array}{cccc}
1 & -1 & 4 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
& A_{3}=\left(\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & -1 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), A_{4}=\left(\begin{array}{cccc}
1 & 0 & 7 & 5 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

Is $I \in\langle\mathcal{G}\rangle$?

$$
\mathfrak{L}_{\geq 1}(\log \mathcal{G}) \subseteq\left\{\left(\begin{array}{llll}
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)\right\}, \mathfrak{L} \geq 2(\log \mathcal{G}) \subseteq\left\{\left(\begin{array}{llll}
0 & 0 & * & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right\}
$$

Identity Problem in UT $(4, \mathbb{Q})$: An example

$$
\begin{aligned}
& \log A_{1}=\left(\begin{array}{lllc}
0 & 1 & \frac{3}{2} & -\frac{1}{6} \\
0 & 0 & 1 & \frac{5}{2} \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right), \log A_{2}=\left(\begin{array}{cccc}
0 & -1 & 4 & -\frac{3}{2} \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& \log A_{3}=\left(\begin{array}{llcc}
0 & 0 & -2 & 0 \\
0 & 0 & -1 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \log A_{4}=\left(\begin{array}{cccc}
0 & 0 & 7 & \frac{17}{2} \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

Is $0 \in \log \langle\mathcal{G}\rangle$?

Identity Problem in UT $(4, \mathbb{Q})$: An example

$$
\begin{aligned}
\log A_{1}= & \left(\begin{array}{cccc}
0 & 1 & \frac{3}{2} & -\frac{1}{6} \\
0 & 0 & 1 & \frac{5}{2} \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right), \log A_{2}=\left(\begin{array}{cccc}
0 & -1 & 4 & -\frac{3}{2} \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
\log A_{3} & =\left(\begin{array}{llcc}
0 & 0 & -2 & 0 \\
0 & 0 & -1 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \log A_{4}=\left(\begin{array}{cccc}
0 & 0 & 7 & \frac{17}{2} \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

Is $0 \in \log \langle\mathcal{G}\rangle$?
Let $\ell=(1,1,1,1)$, then $\sum_{i=1}^{4} \ell_{i} \log A_{i} \in \mathfrak{L} \geq 2(\log \mathcal{G})$.

$$
\begin{array}{r}
\log \left(A_{1} A_{2} A_{3} A_{4}\right)=\sum_{i=1}^{4} \log A_{i}+H_{2}\left(\log A_{1}, \ldots, \log A_{4}\right)+H_{3}\left(\log A_{1}, \ldots, \log A_{4}\right) \\
=\left(\begin{array}{cccc}
0 & 0 & 11 & 2 \\
0 & 0 & 0 & 8 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \in \mathfrak{L}_{\geq 2}(\log \mathcal{G})
\end{array}
$$

Identity Problem in UT $(4, \mathbb{Q})$: An example

$$
\begin{aligned}
& \log A_{1}^{\prime}=\log A_{1} A_{2} A_{3} A_{4}=\left(\begin{array}{llcc}
0 & 0 & 11 & 2 \\
0 & 0 & 0 & 8 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \in \mathfrak{L}_{\geq 2}(\log \mathcal{G}) \\
& \log A_{2}^{\prime}=\log A_{2}^{100} A_{3}^{100} A_{1}^{100} A_{4}^{100}=\left(\begin{array}{cccc}
0 & 0 & 6050 & 77350 \\
0 & 0 & 0 & -4250 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \in \mathfrak{L} \geq 2(\log \mathcal{G}) \\
& \log A_{3}^{\prime}=\log A_{2}^{100} A_{1}^{100} A_{3}^{100} A_{4}^{100}=\left(\begin{array}{cccc}
0 & 0 & -3950 & 127350 \\
0 & 0 & 0 & 5750 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \in \mathfrak{L}_{\geq 2}(\log \mathcal{G}) \\
& \log A_{4}^{\prime}=\log A_{4}^{100} A_{3}^{100} A_{2}^{100} A_{1}^{100}=\left(\begin{array}{ccccc}
0 & 0 & -3950 & -287650 \\
0 & 0 & 0 & -4250 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \in \mathfrak{L}_{\geq 2}(\log \mathcal{G})
\end{aligned}
$$

Identity Problem in UT(4, ©)

Observation:

$$
\mathfrak{L} \geq 2\left(\mathfrak{L}_{\geq 2}(\log \mathcal{G})\right)=\{0\} .
$$

Hence

$$
\left[\log A_{i}^{\prime}, \log A_{j}^{\prime}\right]=0
$$

$$
\begin{aligned}
& \log \left(A_{1}^{\prime 1880000} A_{2}^{\prime 14443} A_{3}^{\prime 16261} A_{4}^{\prime 11096}\right) \\
= & 1880000 \log A_{1}^{\prime}+14443 \log A_{2}^{\prime}+16261 \log A_{3}^{\prime}+11096 \log A_{4}^{\prime} \\
= & 1880000 \cdot\left(\begin{array}{llcc}
0 & 0 & 11 & 2 \\
0 & 0 & 0 & 8 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+14443 \cdot\left(\begin{array}{cccc}
0 & 0 & 6050 & 77350 \\
0 & 0 & 0 & -4250 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& +16261 \cdot\left(\begin{array}{llll}
0 & 0 & -3950 & 127350 \\
0 & 0 & 0 & 5750 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+11096 \cdot\left(\begin{array}{cccc}
0 & 0 & -3950 & -287650 \\
0 & 0 & 0 & -4250 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
= & 0
\end{aligned}
$$

So $0 \in \log \langle\mathcal{G}\rangle, I \in\langle\mathcal{G}\rangle$.

Takeway:

(1) Solving problems in Lie algebra could be easier than solving problems in (semi)groups.
(2) Semigroup generated by \mathcal{G} is closely related to the cone generated by $\log \mathcal{G}$.
(0) The Identity Problem is easier than the Membership Problem, because it is partially a "local" property.
(9) The key to the Identity Problem in $\mathrm{UT}(n, \mathbb{Q})$ is the structure of H_{k}.

Takeaway, future work

Takeway:

(1) Solving problems in Lie algebra could be easier than solving problems in (semi)groups.
(2) Semigroup generated by \mathcal{G} is closely related to the cone generated by $\log \mathcal{G}$.
(3) The Identity Problem is easier than the Membership Problem, because it is partially a "local" property.
(9) The key to the Identity Problem in $\mathrm{UT}(n, \mathbb{Q})$ is the structure of H_{k}.

Future work:
(1) What about polycyclic/solvable groups? (It's doable for $\mathrm{T}(2, \mathbb{Q})$!)
(2) Non-solvable groups?
© Any chance to solve the Membership Problem in low dimensions?

