On the Identity Problem for Unitriangular Matrices of Dimension Four

Ruiwen Dong

University of Oxford

October 2022

(ロ)、(型)、(E)、(E)、 E) のQ(()

Markov (1940s): is the following decidable?

Input: Set of square matrices $\mathcal{G} = \{A_1, \dots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \dots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = T$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Markov (1940s): is the following decidable?

Input: Set of square matrices $\mathcal{G} = \{A_1, \dots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \dots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = T$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Markov (1940s) : undecidable in $\mathbb{Z}^{6\times 6}$.

Markov (1940s): is the following decidable?

Input: Set of square matrices $\mathcal{G} = \{A_1, \dots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \dots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = T$?

Markov (1940s) : undecidable in $\mathbb{Z}^{6\times 6}$. Michailova (1960s): undecidable in SL(4, \mathbb{Z}).

Markov (1940s): is the following decidable?

Input: Set of square matrices $\mathcal{G} = \{A_1, \dots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \dots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = T$?

Markov (1940s) : undecidable in $\mathbb{Z}^{6\times 6}$. Michailova (1960s): undecidable in SL(4, \mathbb{Z}).

Specialization: is the following decidable?

Input: Set of element $\mathcal{G} = \{A_1, \dots, A_K\}$ in a group G. **Output:** Is there a sequence $B_1, B_2, \dots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = I$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Markov (1940s): is the following decidable?

Input: Set of square matrices $\mathcal{G} = \{A_1, \dots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \dots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = T$?

Markov (1940s) : undecidable in $\mathbb{Z}^{6\times 6}$. Michailova (1960s): undecidable in SL(4, \mathbb{Z}).

Specialization: is the following decidable?

Input: Set of element $\mathcal{G} = \{A_1, \dots, A_K\}$ in a group G. **Output:** Is there a sequence $B_1, B_2, \dots, B_m \in \mathcal{G}$, s.t. $B_1B_2 \cdots B_m = I$?

Bell, Potapov (2000s) : undecidable in $SL(4,\mathbb{Z})$.

the Identity Problem and the Membership Problem

Definition (Identity Problem)

Given a finite set of square matrices $\mathcal{G} = \{A_1, \ldots, A_k\}$, decide whether the (multiplicative) semigroup $\langle \mathcal{G} \rangle$ generated by A_1, \ldots, A_k contains *I*.

Definition (Membership Problem)

Given a finite set of square matrices $\mathcal{G} = \{A_1, \ldots, A_k\}$ and a matrix A, decide whether the semigroup $\langle \mathcal{G} \rangle$ generated by A_1, \ldots, A_k contains A.

the Identity Problem and the Membership Problem

Definition (Identity Problem)

Given a finite set of square matrices $\mathcal{G} = \{A_1, \ldots, A_k\}$, decide whether the (multiplicative) semigroup $\langle \mathcal{G} \rangle$ generated by A_1, \ldots, A_k contains *I*.

Definition (Membership Problem)

Given a finite set of square matrices $\mathcal{G} = \{A_1, \ldots, A_k\}$ and a matrix A, decide whether the semigroup $\langle \mathcal{G} \rangle$ generated by A_1, \ldots, A_k contains A.

Known results.

group types	Membership Prob.	Identity Prob.
	$T\in \langle \mathcal{G} angle ?$	$I \in \langle \mathcal{G} \rangle$?
Commutative	NP-complete	PTIME
$SL(2,\mathbb{Z})$	Decidable	NP-complete
$SL(3,\mathbb{Z})$?	?
$SL(4,\mathbb{Z})$	Undecidable	Undecidable

 $UT(n,\mathbb{Z})$

Definition $(UT(n,\mathbb{Z}))$

Define $UT(n, \mathbb{Z})$ to be the group of $n \times n$ upper triangular integer matrices with ones on the diagonal.

$$\begin{pmatrix} 1 & * & \cdots & * \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $UT(n,\mathbb{Z})$

Definition $(UT(n,\mathbb{Z}))$

Define $UT(n, \mathbb{Z})$ to be the group of $n \times n$ upper triangular integer matrices with ones on the diagonal.

$$\begin{pmatrix} 1 & * & \cdots & * \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Known results.

group types	Group Mem.	Semigroup Mem.	Identity Prob.	
	$T \in \langle \mathcal{G} \rangle_{grp}$?	$T \in \langle \mathcal{G} \rangle$?	$I \in \langle \mathcal{G} \rangle$?	
UT(3,ℤ)	Decidable	Decidable	PTIME	
$UT(4,\mathbb{Z})$	Decidable	?	PTIME	
$UT(11,\mathbb{Z})$	Decidable	?	PTIME	
$UT(n,\mathbb{Z})$	Decidable	Undecidable	?	

Two layers of $UT(4, \mathbb{Z})$

First layer: Multiplication acts additively on the superdiagonal.

$$\begin{pmatrix} 1 & a_1 & * & * \\ 0 & 1 & b_1 & * \\ 0 & 0 & 1 & c_1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & a_2 & * & * \\ 0 & 1 & b_2 & * \\ 0 & 0 & 1 & c_2 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a_1 + a_2 & * & * \\ 0 & 1 & b_1 + b_2 & * \\ 0 & 0 & 1 & c_1 + c_2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Second layer: If superdiagonal vanishes, multiplication acts additively.

$$\begin{pmatrix} 1 & 0 & d_1 & f_1 \\ 0 & 1 & 0 & e_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & d_2 & f_2 \\ 0 & 1 & 0 & e_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & d_1 + d_2 & f_1 + f_2 \\ 0 & 1 & 0 & e_1 + e_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

・ロト・4回ト・ミト・ミート
 ・ロト・4回ト・ミート

Structure of $UT(4, \mathbb{Z})$

Short exact sequence:

$$\{I\} \longrightarrow \mathbb{Z}^3 \longrightarrow \mathsf{UT}(4,\mathbb{Z}) \xrightarrow{\varphi} \mathbb{Z}^3 \longrightarrow \{I\}$$
$$\varphi : \begin{pmatrix} 1 & a & d & f \\ 0 & 1 & b & e \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix} \longmapsto (a, b, c)$$
$$\mathsf{U}_1 = \ker \varphi = \left\{ \begin{pmatrix} 1 & 0 & d & f \\ 0 & 1 & 0 & e \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \middle| d, e, f \in \mathbb{Z} \right\} \cong \mathbb{Z}^3$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 U_1 is abelian.

Identity Problem in $UT(4,\mathbb{Z})$

$$\{I\} \longrightarrow \mathbb{Z}^3 \longrightarrow \mathsf{UT}(4,\mathbb{Z}) \xrightarrow{\varphi} \mathbb{Z}^3 \longrightarrow \{I\}$$
$$\varphi : \begin{pmatrix} 1 & a & d & f \\ 0 & 1 & b & e \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix} \longmapsto (a, b, c)$$
$$\mathsf{U}_1 = \ker \varphi \cong \mathbb{Z}^3.$$

The following are equivalent:

1. $B_1B_2 \cdots B_m \in U_1$. 2. $\varphi(B_1) + \varphi(B_2) + \cdots + \varphi(B_m) = \mathbf{0}$. General idea: Given $\mathcal{G} = \{A_1, \dots, A_k\}$, characterize $U_1 \cap \langle \mathcal{G} \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Identity Problem in $UT(4, \mathbb{Z})$: Example

To reach I, we must first reach U₁. $\mathcal{G} = \{A_1, A_2, A_3, A_4\}$.

$$A_{1} = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, A_{2} = \begin{pmatrix} 1 & -1 & 4 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, A_{3} = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, A_{4} = \begin{pmatrix} 1 & 0 & 7 & 5 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

Is $I \in \langle \mathcal{G} \rangle$?

Identity Problem in $UT(4,\mathbb{Z})$: Example

To reach I, we must first reach U₁. $\mathcal{G} = \{A_1, A_2, A_3, A_4\}$.

$$A_{1} = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, A_{2} = \begin{pmatrix} 1 & -1 & 4 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
$$A_{3} = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, A_{4} = \begin{pmatrix} 1 & 0 & 7 & 5 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
$$\langle \mathcal{G} \rangle ?$$
$$A_{1}A_{2}A_{3}A_{4} = \begin{pmatrix} 1 & 0 & 11 & 2 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in U_{1} \cap \langle \mathcal{G} \rangle$$

First layer cleared.

ls *I* ∈

Identity Problem in $UT(4, \mathbb{Z})$: Example

$$A_{1}A_{2}A_{3}A_{4} = \begin{pmatrix} 1 & 0 & 11 & 2 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in U_{1} \cap \langle \mathcal{G} \rangle$$
$$A_{2}^{100}A_{3}^{100}A_{1}^{100}A_{4}^{100} = \begin{pmatrix} 1 & 0 & 6050 & 77350 \\ 0 & 1 & 0 & -4250 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in U_{1} \cap \langle \mathcal{G} \rangle$$
$$A_{2}^{100}A_{1}^{100}A_{3}^{100}A_{4}^{100} = \begin{pmatrix} 1 & 0 & -3950 & 127350 \\ 0 & 1 & 0 & 5750 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in U_{1} \cap \langle \mathcal{G} \rangle$$
$$A_{4}^{100}A_{3}^{100}A_{2}^{100}A_{1}^{100} = \begin{pmatrix} 1 & 0 & -3950 & 127350 \\ 0 & 1 & 0 & 5750 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in U_{1} \cap \langle \mathcal{G} \rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Identity Problem in $UT(4,\mathbb{Z})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Second layer cleared. So $I \in \langle \mathcal{G} \rangle$.

Step 1: Clear first layer using Linear Programming. We have $B_1B_2 \cdots B_m \in U_1$.

Step 2: Clear second layer using permutation and powers of $B_1B_2 \cdots B_m$. For all $\sigma \in S_m, t \in \mathbb{Z}_{>0}, B_{\sigma(1)}^t B_{\sigma(2)}^t \cdots B_{\sigma(m)}^t \in U_1$.

Key: finding a characterization of the cone (in second layer) generated by the matrices $B_{\sigma(1)}^t B_{\sigma(2)}^t \cdots B_{\sigma(m)}^t$, when t, σ vary.

A D N A 目 N A E N A E N A B N A C N

Identity Problem in $UT(4, \mathbb{Z})$

$$B_{\sigma(1)}^{t}B_{\sigma(2)}^{t}\cdots B_{\sigma(m)}^{t} \xrightarrow{t \to \infty} \begin{pmatrix} 1 & 0 & t^{2}D_{\sigma} & t^{3}F_{\sigma} \\ 0 & 1 & 0 & t^{2}E_{\sigma} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

where $D_{\sigma}, E_{\sigma}, F_{\sigma}$ are polynomials in $\varphi(B_i), i = 1, \dots, m$.

Identity Problem in $UT(4,\mathbb{Z})$

$$B_{\sigma(1)}^{t}B_{\sigma(2)}^{t}\cdots B_{\sigma(m)}^{t} \xrightarrow{t \to \infty} \begin{pmatrix} 1 & 0 & t^{2}D_{\sigma} & t^{3}F_{\sigma} \\ 0 & 1 & 0 & t^{2}E_{\sigma} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

where $D_{\sigma}, E_{\sigma}, F_{\sigma}$ are polynomials in $\varphi(B_i), i = 1, \dots, m$.

Example: write $\varphi(B_i) = (a_i, b_i, c_i), i = 1, \dots, m$,

$$F_{\sigma} = \sum_{i < j < k} a_{\sigma(i)} b_{\sigma(j)} c_{\sigma(k)} + \frac{1}{2} \sum_{i < j} (a_{\sigma(i)} b_{\sigma(i)} c_{\sigma(j)} + a_{\sigma(i)} b_{\sigma(j)} c_{\sigma(j)}) + \frac{1}{6} \sum_{i=1}^{m} a_i b_i c_i,$$

~

Key theorem

Idea: $B_{\sigma(1)}^t B_{\sigma(2)}^t \cdots B_{\sigma(m)}^t$ asymptotically approaches $(t^2 D_{\sigma}, t^2 E_{\sigma}, t^3 F_{\sigma})$.

Observation: D_{σ} , E_{σ} , F_{σ} are polynomials in a_i , b_i , c_i , i = 1, ..., m. Where $\varphi(B_i) = (a_i, b_i, c_i)$.

Theorem

- 1. If $\langle \varphi(B_1), \dots, \varphi(B_m) \rangle$ has dimension 3, then $\langle (t^2 D_{\sigma}, t^2 E_{\sigma}, t^3 F_{\sigma}) | t \in \mathbb{Z}_{>0}, \sigma \in S_m \rangle$ has dimension 3.
- If ⟨φ(B₁),...,φ(B_m)⟩ has dimension 2, and not orthogonal to any axis, then ⟨(t²D_σ, t²E_σ, t³F_σ) | t ∈ Z_{>0}, σ ∈ S_m⟩ has dimension 2 and contains the f-axis.
- If ⟨φ(B₁),..., φ(B_m)⟩ has dimension 2, and is orthogonal to some axis, then ∀σ, F_σ = 0, and dim⟨(D_σ, E_σ) | σ ∈ S_m⟩ = 2.

4. If $\langle \varphi(B_1), \ldots, \varphi(B_m) \rangle$ has dimension 1, then $\forall \sigma, D_{\sigma} = E_{\sigma} = F_{\sigma} = 0$.

In short: $\varphi(\mathcal{G})$ determines (asymptotically) the shape of $U_1 \cap \langle \mathcal{G} \rangle$.

Proof of the theorem: computational algebraic geometry.

Extensions

- 1. Identity Problem in $UT(11, \mathbb{Q})$.
- 2. Identity Problem in nilpotent groups of class \leq 10.
- 3. Identity Problem in $T(2, \mathbb{Q})$.
- 4. Other problems in nilpotent groups (semigroup intersection etc.)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Extensions

- 1. Identity Problem in $UT(11, \mathbb{Q})$.
- 2. Identity Problem in nilpotent groups of class \leq 10.
- 3. Identity Problem in $T(2, \mathbb{Q})$.
- 4. Other problems in nilpotent groups (semigroup intersection etc.)
- 5. Membership Problem in $UT(4,\mathbb{Z})$?
- 6. Identity Problem in metabelian groups? $\mathbb{Z} \wr \mathbb{Z}$? solvable groups?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00