The Identity Problem in $\mathbb{Z} \mathfrak{Z}$ is decidable

Ruiwen Dong
University of Oxford

July 2023

An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?

An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?
i.e. whether $T \in\langle\mathcal{G}\rangle$? $(\langle\mathcal{G}\rangle$ denotes the semigroup generated by $\mathcal{G})$

An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?
i.e. whether $T \in\langle\mathcal{G}\rangle$? $(\langle\mathcal{G}\rangle$ denotes the semigroup generated by $\mathcal{G})$

Markov (1940s) : undecidable in $\mathbb{Z}^{6 \times 6}$.

An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?
i.e. whether $T \in\langle\mathcal{G}\rangle$? $(\langle\mathcal{G}\rangle$ denotes the semigroup generated by $\mathcal{G})$

Markov (1940s) : undecidable in $\mathbb{Z}^{6 \times 6}$. Michailova (1960s): undecidable in $\operatorname{SL}(4, \mathbb{Z})$.

An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?
i.e. whether $T \in\langle\mathcal{G}\rangle$? $(\langle\mathcal{G}\rangle$ denotes the semigroup generated by $\mathcal{G})$

Markov (1940s) : undecidable in $\mathbb{Z}^{6 \times 6}$.
Michailova (1960s): undecidable in $\operatorname{SL}(4, \mathbb{Z})$.

Special case: is the Identity Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=I$? i.e. whether $I \in\langle\mathcal{G}\rangle$?

An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$, target matrix T.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=T$?
i.e. whether $T \in\langle\mathcal{G}\rangle$? $(\langle\mathcal{G}\rangle$ denotes the semigroup generated by $\mathcal{G})$

Markov (1940s) : undecidable in $\mathbb{Z}^{6 \times 6}$.
Michailova (1960s): undecidable in $\operatorname{SL}(4, \mathbb{Z})$.

Special case: is the Identity Problem decidable?
Input: Set of square matrices $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$.
Output: Is there a sequence $B_{1}, B_{2}, \ldots, B_{m} \in \mathcal{G}$, s.t. $B_{1} B_{2} \cdots B_{m}=I$? i.e. whether $I \in\langle\mathcal{G}\rangle$?

Bell, Potapov (2000s) : undecidable in $\mathrm{SL}(4, \mathbb{Z})$.

the Identity Problem and the Membership Problem

Known results.

$\mathrm{SL}(n, \mathbb{Z})$: the group of $n \times n$ integer matrices of determinant one.

Group	Membership Prob. $T \in\langle\mathcal{G}\rangle$?	Identity Prob. $I \in\langle\mathcal{G}\rangle$?
$\mathrm{SL}(2, \mathbb{Z})$	NP-complete	NP-complete
$\mathrm{SL}(3, \mathbb{Z})$	$?$	$?$
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable

the Identity Problem and the Membership Problem

Known results.

$\mathrm{SL}(n, \mathbb{Z})$: the group of $n \times n$ integer matrices of determinant one.

Group	Membership Prob. $T \in\langle\mathcal{G}\rangle$?	Identity Prob. $I \in\langle\mathcal{G}\rangle$?
$\mathrm{SL}(2, \mathbb{Z})$	NP-complete	NP-complete
$\mathrm{SL}(3, \mathbb{Z})$?	?
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable

Membership and Identity Problem might not have the same difficulty:

\mathbb{Z}^{n}	NP-complete	PTIME

the Identity Problem and the Membership Problem

Known results.

$\mathrm{SL}(n, \mathbb{Z})$: the group of $n \times n$ integer matrices of determinant one.

Group	Membership Prob. $T \in\langle\mathcal{G}\rangle$?	Identity Prob. $I \in\langle\mathcal{G}\rangle$?
$\mathrm{SL}(2, \mathbb{Z})$	NP-complete	NP-complete
$\mathrm{SL}(3, \mathbb{Z})$?	?
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable

Membership and Identity Problem might not have the same difficulty:

\mathbb{Z}^{n}	NP-complete	PTIME

or decidability:

$\mathbb{Z} \imath \mathbb{Z}$	Undecidable (ICALP 2013)	Decidable (ICALP 2023)

the Identity Problem and the Membership Problem

Known results.

$\mathrm{SL}(n, \mathbb{Z})$: the group of $n \times n$ integer matrices of determinant one.

Group	Membership Prob. $T \in\langle\mathcal{G}\rangle$?	Identity Prob. $I \in\langle\mathcal{G}\rangle$?
$\mathrm{SL}(2, \mathbb{Z})$	NP-complete	NP-complete
$\mathrm{SL}(3, \mathbb{Z})$?	?
$\mathrm{SL}(4, \mathbb{Z})$	Undecidable	Undecidable

Membership and Identity Problem might not have the same difficulty:

\mathbb{Z}^{n}	NP-complete	PTIME

or decidability:

$\mathbb{Z} \imath \mathbb{Z}$	Undecidable (ICALP 2013)	Decidable (ICALP 2023)

" Z " is the wreath product, important in decomposing finite automata (Krohn-Rhodes theorem), constructing symmetry groups, etc.

What is $\mathbb{Z} \imath \mathbb{Z}$? Its elements

First interpretation: as the set of matrices

$$
\mathbb{Z} \imath \mathbb{Z}:=\left\{\left.\left(\begin{array}{cc}
X^{b} & y \\
0 & 1
\end{array}\right) \right\rvert\, y \in \mathbb{Z}\left[X, X^{-1}\right], b \in \mathbb{Z}\right\} .
$$

What is $\mathbb{Z} \imath \mathbb{Z}$? Its elements

First interpretation: as the set of matrices

$$
\mathbb{Z} \imath \mathbb{Z}:=\left\{\left.\left(\begin{array}{cc}
X^{b} & y \\
0 & 1
\end{array}\right) \right\rvert\, y \in \mathbb{Z}\left[X, X^{-1}\right], b \in \mathbb{Z}\right\} .
$$

Second interpretation: as a "cheap" Turing machine.
Each element of $\mathbb{Z} \imath \mathbb{Z}$ is a configuration

where $\cdots a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2} \cdots \in \mathbb{Z}$.

The arrow \uparrow is placed at 0 . The arrow \downarrow is placed at some integer b.

What is $\mathbb{Z} \imath \mathbb{Z}$? Its elements

First interpretation: as the set of matrices

$$
\mathbb{Z} \imath \mathbb{Z}:=\left\{\left.\left(\begin{array}{cc}
X^{b} & y \\
0 & 1
\end{array}\right) \right\rvert\, y \in \mathbb{Z}\left[X, X^{-1}\right], b \in \mathbb{Z}\right\} .
$$

Second interpretation: as a "cheap" Turing machine.
Each element of $\mathbb{Z} \imath \mathbb{Z}$ is a configuration

where $\cdots a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2} \cdots \in \mathbb{Z}$.

The arrow \uparrow is placed at 0 . The arrow \downarrow is placed at some integer b.
Let $y:=\cdots+a_{-1} X^{-1}+a_{0}+a_{1} X+a_{2} X^{2}+\cdots$, then the configuration represents the element $\left(\begin{array}{cc}X^{b} & y \\ 0 & 1\end{array}\right)$.

What is $\mathbb{Z} \backslash \mathbb{Z}$? the group law

First interpretation: as matrix multiplication

$$
\left(\begin{array}{cc}
X & 2+2 X \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{2} & 3+3 X+3 X^{2} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
X^{3} & 2+5 X+3 X^{2}+3 X^{3} \\
0 & 1
\end{array}\right)
$$

What is $\mathbb{Z} \backslash \mathbb{Z}$? the group law

First interpretation: as matrix multiplication
$\left(\begin{array}{cc}X & 2+2 X \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}X^{2} & 3+3 X+3 X^{2} \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}X^{3} & 2+5 X+3 X^{2}+3 X^{3} \\ 0 & 1\end{array}\right)$

Second interpretation: align \downarrow of first element and \uparrow of second element, then add all cells.

What is $\mathbb{Z} \imath \mathbb{Z}$? the group law

First interpretation: as matrix multiplication

$$
\left(\begin{array}{cc}
X & 2+2 X \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{2} & 3+3 X+3 X^{2} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
X^{3} & 2+5 X+3 X^{2}+3 X^{3} \\
0 & 1
\end{array}\right)
$$

Second interpretation: align \downarrow of first element and \uparrow of second element, then add all cells.

Each element is an "instruction".
$\left(\begin{array}{ll}x & 0 \\
0 & 1\end{array}\right)=\begin{aligned} & 0 \\
& 0\end{aligned}=$ "move right", \(\left(\begin{array}{cc}x^{-1} \& 0

0 \& 1\end{array}\right)=\)| 0 |
| :---: |
| \square |$=$ "move left".

$\left(\begin{array}{ll}1 & 1 \\
0 & 1\end{array}\right)=\square=$ "increase counter", $\left(\begin{array}{cc}1 & -1 \\
0 & 1\end{array}\right)=-1=$ "decrease counter".

What is $\mathbb{Z} \imath \mathbb{Z}$? Membership and Identity Problem

Given a finite set of elements

$$
\mathcal{G}=\left\{\left(\begin{array}{cc}
X^{a_{1}} & y_{1} \\
0 & 1
\end{array}\right), \cdots,\left(\begin{array}{cc}
X^{a_{K}} & y_{K} \\
0 & 1
\end{array}\right)\right\} .
$$

What is $\mathbb{Z} \imath \mathbb{Z}$? Membership and Identity Problem

Given a finite set of elements

$$
\mathcal{G}=\left\{\left(\begin{array}{cc}
X^{a_{1}} & y_{1} \\
0 & 1
\end{array}\right), \cdots,\left(\begin{array}{cc}
X^{a_{K}} & y_{K} \\
0 & 1
\end{array}\right)\right\} .
$$

Membership Problem: whether $\left(\begin{array}{cc}X^{a} & y \\ 0 & 1\end{array}\right) \in\langle\mathcal{G}\rangle$?
Identity Problem: whether $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in\langle\mathcal{G}\rangle$?

What is $\mathbb{Z} \imath \mathbb{Z}$? Membership and Identity Problem

Given a finite set of elements

$$
\mathcal{G}=\left\{\left(\begin{array}{cc}
X^{a_{1}} & y_{1} \\
0 & 1
\end{array}\right), \cdots,\left(\begin{array}{cc}
X^{a_{K}} & y_{K} \\
0 & 1
\end{array}\right)\right\} .
$$

Membership Problem: whether $\left(\begin{array}{cc}X^{a} & y \\ 0 & 1\end{array}\right) \in\langle\mathcal{G}\rangle$?
Identity Problem: whether $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in\langle\mathcal{G}\rangle$?
As a machine: given a finite number of instructions $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$.

What is $\mathbb{Z} \imath \mathbb{Z}$? Membership and Identity Problem

Given a finite set of elements

$$
\mathcal{G}=\left\{\left(\begin{array}{cc}
X^{a_{1}} & y_{1} \\
0 & 1
\end{array}\right), \cdots,\left(\begin{array}{cc}
X^{a_{K}} & y_{K} \\
0 & 1
\end{array}\right)\right\} .
$$

Membership Problem: whether $\left(\begin{array}{cc}X^{a} & y \\ 0 & 1\end{array}\right) \in\langle\mathcal{G}\rangle$?
Identity Problem: whether $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in\langle\mathcal{G}\rangle$?
As a machine: given a finite number of instructions $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$. Membership Problem: can we reach a certain configuration? Identity Problem: can we reach the initial configuration (can we loop)?

What is $\mathbb{Z} \imath \mathbb{Z}$? Membership and Identity Problem

Given a finite set of elements

$$
\mathcal{G}=\left\{\left(\begin{array}{cc}
X^{a_{1}} & y_{1} \\
0 & 1
\end{array}\right), \cdots,\left(\begin{array}{cc}
X^{a_{K}} & y_{K} \\
0 & 1
\end{array}\right)\right\}
$$

Membership Problem: whether $\left(\begin{array}{cc}X^{a} & y \\ 0 & 1\end{array}\right) \in\langle\mathcal{G}\rangle$?
Identity Problem: whether $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in\langle\mathcal{G}\rangle$?
As a machine: given a finite number of instructions $\mathcal{G}=\left\{A_{1}, \ldots, A_{K}\right\}$.
Membership Problem: can we reach a certain configuration?
Identity Problem: can we reach the initial configuration (can we loop)?

Theorem (Lohrey, Steinberg, Zetzsche 2013)

Membership Problem in $\mathbb{Z} \imath \mathbb{Z}$ is undecidable.

Theorem

The Identity Problem in $\mathbb{Z} \imath \mathbb{Z}$ is decidable.

The Identity Problem in $\mathbb{Z} \imath \mathbb{Z}$: a special case

As an example, consider a set of three elements

$$
\mathcal{G}=\left\{\left(\begin{array}{cc}
x & y_{1} \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
x^{-1} & y_{3} \\
0 & 1
\end{array}\right)\right\},
$$

The Identity Problem in \mathbb{Z} Z \mathbb{Z} : a special case

As an example, consider a set of three elements

$$
\mathcal{G}=\left\{\left(\begin{array}{cc}
x & y_{1} \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
x^{-1} & y_{3} \\
0 & 1
\end{array}\right)\right\},
$$

Given three instructions A_{1}, A_{2}, A_{3}, where

- A_{1} is "move right one step, change nearby counters according to y_{1} ",
- A_{2} is "don't move, change nearby counters according to y_{2} ",
- A_{3} is "move left one step, change nearby counters according to y_{3} ".

Identity Problem: can we reach the initial configuration using A_{1}, A_{2}, A_{3} ?

The special case: path of the run
Consider a sequence that might reach I:

$$
\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x^{-1} & y_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
$$

The special case: path of the run
Consider a sequence that might reach I:

$$
\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x^{-1} & y_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x^{-1} & y_{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
$$

The corresponding run:

\cdots	0	0	0	0	0	\cdots
\downarrow						

The special case: path of the run
Consider a sequence that might reach I:

$$
\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x^{-1} & y_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
$$

The corresponding run:

y_{1}							
...	a_{-2}	a_{-1}	a_{0}	a_{1}		a_{2}	\cdots

Where $y_{1}=\cdots+a_{-2} X^{-2}+a_{-1} X^{-1}+a_{0}+a_{1} X+a_{2} X^{2}+\cdots$.

The special case: path of the run
Consider a sequence that might reach I:

$$
\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x^{-1} & y_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x^{-1} & y_{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
$$

The corresponding run:

Where $y_{1}+X \cdot y_{1}=\cdots+b_{-2} X^{-2}+b_{-1} X^{-1}+b_{0}+b_{1} X+b_{2} X^{2}+\cdots$.

The special case: path of the run
Consider a sequence that might reach I:

$$
\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x^{-1} & y_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
$$

The corresponding run:

The special case: path of the run
Consider a sequence that might reach I:

$$
\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
$$

The corresponding run:

The special case: path of the run
Consider a sequence that might reach I:

$$
\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
$$

The corresponding run:

The special case: path of the run
Consider a sequence that might reach I:

$$
\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
$$

The corresponding run: $\overbrace{y_{3}}^{y_{1}}$

The special case: path of the run
Consider a sequence that might reach I:

$$
\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
$$

The corresponding run: $\sum_{y_{3}}^{y_{1}} \sum_{y_{3}}^{y_{1}}{ }_{2}^{y_{2}}$. Decompose into tiles:

The special case: path of the run
Consider a sequence that might reach I:

$$
\left(\begin{array}{cc}
x & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
$$

The corresponding run: $\sum_{y_{3}}^{y_{1}} \sum_{y_{3}}^{y_{1}}$. Decompose into tiles:
It can be decomposed into two tiles of $\sum_{y_{3}}^{y_{1}}$ and one tile of $Q^{y_{2}}$.

The special case: path of the run
Consider a sequence that might reach I:

$$
\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
$$

The corresponding run: $\sum_{y_{3}}^{y_{1}} \sum_{y_{3}}^{y_{1}}$. Decompose into tiles:
It can be decomposed into two tiles of $\sum_{y_{3}}^{y_{1}}$ and one tile of $Q^{y_{2}}$.
The effect of tile $\sum_{y_{3}}^{y_{1}}$ is p_{13} where $\left(\begin{array}{cc}1 & p_{13} \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}X & y_{1} \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}X^{-1} & y_{3} \\ 0 & 1\end{array}\right)$.

The special case: path of the run
Consider a sequence that might reach I:

$$
\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
$$

The corresponding run: $\sum_{y_{3}}^{y_{1}} \sum_{y_{3}}^{y_{1}}$. Decompose into tiles:
It can be decomposed into two tiles of $\sum_{y_{3}}^{y_{1}}$ and one tile of $Q^{y_{2}}$.
The effect of tile $\sum_{y_{3}}^{y_{1}}$ is p_{13} where $\left(\begin{array}{cc}1 & p_{13} \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}X & y_{1} \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}X^{-1} & y_{3} \\ 0 & 1\end{array}\right)$.
The effect of tile $Q^{y_{2}}$ is $p_{2}:=y_{2}$

The special case: path of the run
Consider a sequence that might reach I :

$$
\left(\begin{array}{cc}
x & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X & y_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & y_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
X^{-1} & y_{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
$$

The corresponding run: $\sum_{y_{3}}^{y_{1}} \sum_{y_{3}}^{y_{1}}$. Decompose into tiles:
It can be decomposed into two tiles of $\sum_{y_{3}}^{y_{1}}$ and one tile of $Q^{y_{2}}$.
The effect of tile $\sum_{y_{3}}^{y_{1}}$ is p_{13} where $\left(\begin{array}{cc}1 & p_{13} \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}X & y_{1} \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}X^{-1} & y_{3} \\ 0 & 1\end{array}\right)$.
The effect of tile $Q^{y_{2}}$ is $p_{2}:=y_{2}$
Total effect: $*=(1+X) p_{13}+X^{2} p_{2}$.

Runs vs Polynomials

The effect of each (cyclic) run is described by a linear combination

$$
*=f_{13} p_{13}+f_{2} p_{2} .
$$

For example:

Runs vs Polynomials

The effect of each (cyclic) run is described by a linear combination

$$
*=f_{13} p_{13}+f_{2} p_{2} .
$$

For example:

$$
\begin{array}{ll}
\longrightarrow & *=(1+X) p_{13}+X^{2} p_{2} . \\
\longrightarrow & *=\left(X^{-1}+2+X\right) p_{13}+\left(X+X^{2}\right) p_{2} .
\end{array}
$$

Runs vs Polynomials

The effect of each (cyclic) run is described by a linear combination

$$
*=f_{13} p_{13}+f_{2} p_{2} .
$$

For example:

Runs vs Polynomials

The effect of each (cyclic) run is described by a linear combination

$$
*=f_{13} p_{13}+f_{2} p_{2} .
$$

For example:

$$
*=\underbrace{\left(X^{-1}+2+X\right)}_{\in \mathbb{N}\left[X^{ \pm}\right]} p_{13}+\underbrace{\left(X+X^{2}\right)}_{\in \mathbb{N}\left[X^{ \pm}\right]} p_{2} .
$$

Cyclic runs

$* \in \mathbb{N}\left[X^{ \pm}\right] \cdot p_{13}+\mathbb{N}\left[X^{ \pm}\right] \cdot p_{2}$

Runs vs Polynomials

The effect of each (cyclic) run is described by a linear combination

$$
*=f_{13} p_{13}+f_{2} p_{2} .
$$

For example:

Cyclic runs

$$
* \in \mathbb{N}\left[X^{ \pm}\right] \cdot p_{13}+\mathbb{N}\left[X^{ \pm}\right] \cdot p_{2}
$$

Failure:

$$
\longleftrightarrow \quad *=\left(X^{-1}+1\right) p_{13}+X^{2} p_{2}
$$

Runs vs Polynomials

The effect of each (cyclic) run is described by a linear combination

$$
*=f_{13} p_{13}+f_{2} p_{2} .
$$

For example:

Cyclic runs

$$
* \in \mathbb{N}\left[X^{ \pm}\right] \cdot p_{13}+\mathbb{N}\left[X^{ \pm}\right] \cdot p_{2}
$$

Failure:
$\longrightarrow \longrightarrow \quad *=\left(X^{-1}+1\right) p_{13}+X^{2} p_{2}$.
Not connected

Runs vs Polynomials

The effect of each (cyclic) run is described by a linear combination

$$
*=f_{13} p_{13}+f_{2} p_{2} .
$$

For example:

Cyclic runs

$$
\longleftrightarrow \quad ? \quad * \in \mathbb{N}\left[X^{ \pm}\right] \cdot p_{13}+\mathbb{N}\left[X^{ \pm}\right] \cdot p_{2}
$$

Failure:

Not connected: degree of $f_{2}=X^{2}$ is too big compared to $f_{13}=X^{-1}+1$

Identity Problem vs linear equations over $\mathbb{N}\left[X^{ \pm}\right]$

Proposition

There exists a run whose effect is $*=0$, if and only if the equation $0=f_{13} p_{13}+f_{2} p_{2}$ admits non-zero solutions $f_{13}, f_{2} \in \mathbb{N}\left[X^{ \pm}\right]^{*}$ satisfying "degree constraints".

Identity Problem vs linear equations over $\mathbb{N}\left[X^{ \pm}\right]$

Proposition

There exists a run whose effect is $*=0$, if and only if the equation $0=f_{13} p_{13}+f_{2} p_{2}$ admits non-zero solutions $f_{13}, f_{2} \in \mathbb{N}\left[X^{ \pm}\right]^{*}$ satisfying "degree constraints".
"degree constraints": $\operatorname{deg}_{+}\left(f_{2}\right)<\operatorname{deg}_{+}\left(f_{13}\right), \operatorname{deg}_{-}\left(f_{2}\right) \geq \operatorname{deg}_{-}\left(f_{13}\right)$.

Identity Problem vs linear equations over $\mathbb{N}\left[X^{ \pm}\right]$

Proposition

There exists a run whose effect is $*=0$, if and only if the equation $0=f_{13} p_{13}+f_{2} p_{2}$ admits non-zero solutions $f_{13}, f_{2} \in \mathbb{N}\left[X^{ \pm}\right]^{*}$ satisfying "degree constraints".
"degree constraints": $\operatorname{deg}_{+}\left(f_{2}\right)<\operatorname{deg}_{+}\left(f_{13}\right), \operatorname{deg}_{-}\left(f_{2}\right) \geq \operatorname{deg}_{-}\left(f_{13}\right)$.
Identity Problem \Longleftrightarrow existence of run with effect $*=0$.

Identity Problem vs linear equations over $\mathbb{N}\left[X^{ \pm}\right]$

Proposition

There exists a run whose effect is $*=0$, if and only if the equation $0=f_{13} p_{13}+f_{2} p_{2}$ admits non-zero solutions $f_{13}, f_{2} \in \mathbb{N}\left[X^{ \pm}\right]^{*}$ satisfying "degree constraints".
"degree constraints": $\operatorname{deg}_{+}\left(f_{2}\right)<\operatorname{deg}_{+}\left(f_{13}\right), \operatorname{deg}_{-}\left(f_{2}\right) \geq \operatorname{deg}_{-}\left(f_{13}\right)$.
Identity Problem \Longleftrightarrow existence of run with effect $*=0$.
This not only works for the current example (where we can only move one cell). In general:

Theorem

The Identity Problem in $\mathbb{Z} \imath \mathbb{Z}$ reduces to solving a system of homogeneous linear equations over $\mathbb{N}\left[X^{ \pm}\right]^{*}$, with additional "degree constraints".

Local-global principle

Does $0=f_{13} \cdot\left(2 X^{2}-1\right)+f_{2} \cdot(X+2)$ have solution $f_{13}, f_{2} \in \mathbb{N}\left[X^{ \pm}\right]^{*}$?

Local-global principle

Does $0=f_{13} \cdot\left(2 X^{2}-1\right)+f_{2} \cdot(X+2)$ have solution $f_{13}, f_{2} \in \mathbb{N}\left[X^{ \pm}\right]^{*}$?
No! Evaluate $X=1$, then $0=f_{13}(1)+3 f_{2}(1)$. No solution over \mathbb{N}^{*}.

Local-global principle

Does $0=f_{13} \cdot\left(2 X^{2}-1\right)+f_{2} \cdot(X+2)$ have solution $f_{13}, f_{2} \in \mathbb{N}\left[X^{ \pm}\right]^{*}$?
No! Evaluate $X=1$, then $0=f_{13}(1)+3 f_{2}(1)$. No solution over \mathbb{N}^{*}.
Such a "certificate" always exists if no solution over $\mathbb{N}\left[X^{ \pm}\right]^{*}$:

Theorem (Generalization of Einsiedler, Mouat, Tuncel (2003))

Let \mathcal{M} be an $\mathbb{Z}\left[X^{ \pm}\right]$-submodule of $\mathbb{Z}\left[X^{ \pm}\right]^{K}$. Then there exists $\boldsymbol{f} \in \mathcal{M} \cap\left(\mathbb{N}\left[X^{ \pm}\right]^{*}\right)^{K}$ satisfying "degree constraints" if and only if the following are satisfied:
(1) For every $r \in \mathbb{R}_{>0}$, there exists $\boldsymbol{f}_{r} \in \mathcal{M}$ such that $\boldsymbol{f}_{r}(r) \in \mathbb{R}_{>0}^{K}$.
(2) For $v \in\{+,-\}$, there exists $\boldsymbol{f}_{v} \in \mathcal{M}$ such that $\operatorname{lt}_{v}\left(\boldsymbol{f}_{v}\right) \in\left(\mathbb{N}^{*}\right)^{K}$ satisfies "degree constraints".

Local-global principle

Does $0=f_{13} \cdot\left(2 X^{2}-1\right)+f_{2} \cdot(X+2)$ have solution $f_{13}, f_{2} \in \mathbb{N}\left[X^{ \pm}\right]^{*}$?
No! Evaluate $X=1$, then $0=f_{13}(1)+3 f_{2}(1)$. No solution over \mathbb{N}^{*}.
Such a "certificate" always exists if no solution over $\mathbb{N}\left[X^{ \pm}\right]^{*}$:

Theorem (Generalization of Einsiedler, Mouat, Tuncel (2003))

Let \mathcal{M} be an $\mathbb{Z}\left[X^{ \pm}\right]$-submodule of $\mathbb{Z}\left[X^{ \pm}\right]^{K}$. Then there exists $\boldsymbol{f} \in \mathcal{M} \cap\left(\mathbb{N}\left[X^{ \pm}\right]^{*}\right)^{K}$ satisfying "degree constraints" if and only if the following are satisfied:
(1) For every $r \in \mathbb{R}_{>0}$, there exists $\boldsymbol{f}_{r} \in \mathcal{M}$ such that $\boldsymbol{f}_{r}(r) \in \mathbb{R}_{>0}^{K}$.
(2) For $v \in\{+,-\}$, there exists $\boldsymbol{f}_{v} \in \mathcal{M}$ such that $\operatorname{lt}_{v}\left(\boldsymbol{f}_{v}\right) \in\left(\mathbb{N}^{*}\right)^{K}$ satisfies "degree constraints".

Therefore, instead of searching for solutions, we search for "certificates". This can be done using the first order theory of \mathbb{R}. Decidable (Tarski).

Local-global principle

Does $0=f_{13} \cdot\left(2 X^{2}-1\right)+f_{2} \cdot(X+2)$ have solution $f_{13}, f_{2} \in \mathbb{N}\left[X^{ \pm}\right]^{*}$?
No! Evaluate $X=1$, then $0=f_{13}(1)+3 f_{2}(1)$. No solution over \mathbb{N}^{*}.
Such a "certificate" always exists if no solution over $\mathbb{N}\left[X^{ \pm}\right]^{*}$:

Theorem (Generalization of Einsiedler, Mouat, Tuncel (2003))

Let \mathcal{M} be an $\mathbb{Z}\left[X^{ \pm}\right]$-submodule of $\mathbb{Z}\left[X^{ \pm}\right]^{K}$. Then there exists $\boldsymbol{f} \in \mathcal{M} \cap\left(\mathbb{N}\left[X^{ \pm}\right]^{*}\right)^{K}$ satisfying "degree constraints" if and only if the following are satisfied:
(1) For every $r \in \mathbb{R}_{>0}$, there exists $\boldsymbol{f}_{r} \in \mathcal{M}$ such that $\boldsymbol{f}_{r}(r) \in \mathbb{R}_{>0}^{K}$.
(2) For $v \in\{+,-\}$, there exists $\boldsymbol{f}_{v} \in \mathcal{M}$ such that $\operatorname{lt}_{v}\left(\boldsymbol{f}_{v}\right) \in\left(\mathbb{N}^{*}\right)^{K}$ satisfies "degree constraints".

Therefore, instead of searching for solutions, we search for "certificates". This can be done using the first order theory of \mathbb{R}. Decidable (Tarski).

Theorem

The Identity Problem in $\mathbb{Z} \backslash \mathbb{Z}$ is decidable.

