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An old decidability problem

Markov (1940s): is (semigroup) Membership Problem decidable?

Input: Set of square matrices G = {A1, . . . ,AK}, target matrix T .
Output: Is there a sequence B1,B2, . . . ,Bm ∈ G, s.t. B1B2 · · ·Bm = T?

i.e. whether T ∈ ⟨G⟩? (⟨G⟩ denotes the semigroup generated by G)

Markov (1940s) : undecidable in Z6×6.
Michailova (1960s): undecidable in SL(4,Z).

Special case: is the Identity Problem decidable?

Input: Set of square matrices G = {A1, . . . ,AK}.
Output: Is there a sequence B1,B2, . . . ,Bm ∈ G, s.t. B1B2 · · ·Bm = I?
i.e. whether I ∈ ⟨G⟩?

Bell, Potapov (2000s) : undecidable in SL(4,Z).
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the Identity Problem and the Membership Problem

Known results.

SL(n,Z) : the group of n × n integer matrices of determinant one.

Group Membership Prob. T ∈ ⟨G⟩? Identity Prob. I ∈ ⟨G⟩?
SL(2,Z) NP-complete NP-complete
SL(3,Z) ? ?
SL(4,Z) Undecidable Undecidable

Membership and Identity Problem might not have the same difficulty:

Zn NP-complete PTIME

or decidability:

Z ≀ Z Undecidable (ICALP 2013) Decidable (ICALP 2023)

“≀” is the wreath product, important in decomposing finite automata
(Krohn-Rhodes theorem), constructing symmetry groups, etc.
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What is Z ≀ Z? Its elements

First interpretation: as the set of matrices

Z ≀ Z :=

{(
X b y
0 1

) ∣∣∣∣ y ∈ Z[X ,X−1], b ∈ Z
}
.

Second interpretation: as a “cheap” Turing machine.

Each element of Z ≀ Z is a configuration

a0a−1a−2· · · a1 a2 · · ·

where · · · a−2, a−1, a0, a1, a2 · · · ∈ Z.

The arrow ↑ is placed at 0. The arrow ↓ is placed at some integer b.

Let y := · · ·+ a−1X
−1 + a0 + a1X + a2X

2 + · · · , then the configuration

represents the element

(
X b y
0 1

)
.
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What is Z ≀ Z? the group law

First interpretation: as matrix multiplication(
X 2 + 2X
0 1

)(
X 2 3 + 3X + 3X 2

0 1

)
=

(
X 3 2 + 5X + 3X 2 + 3X 3

0 1

)

Second interpretation: align ↓ of first element and ↑ of second element,
then add all cells.

2 2 × 3 3 3 = 2 5 3 3

Each element is an “instruction”.

(
X 0
0 1

)
=

0 0

= “move right”,

(
X−1 0
0 1

)
=

0 0

= “move left”.

(
1 1
0 1

)
=

1

= “increase counter”,

(
1 −1
0 1

)
=

−1
= “decrease counter”.
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What is Z ≀ Z? Membership and Identity Problem
Given a finite set of elements

G =

{(
X a1 y1
0 1

)
, · · · ,

(
X aK yK
0 1

)}
.

Membership Problem: whether

(
X a y
0 1

)
∈ ⟨G⟩?

Identity Problem: whether

(
1 0
0 1

)
∈ ⟨G⟩?

As a machine: given a finite number of instructions G = {A1, . . . ,AK}.
Membership Problem: can we reach a certain configuration?

Identity Problem: can we reach the initial configuration (can we loop)?

Theorem (Lohrey, Steinberg, Zetzsche 2013)

Membership Problem in Z ≀ Z is undecidable.

Theorem

The Identity Problem in Z ≀ Z is decidable.
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The Identity Problem in Z ≀ Z: a special case

As an example, consider a set of three elements

G =

{(
X y1
0 1

)
,

(
1 y2
0 1

)
,

(
X−1 y3
0 1

)}
,

Given three instructions A1,A2,A3, where

A1 is “move right one step, change nearby counters according to y1”,

A2 is “don’t move, change nearby counters according to y2”,

A3 is “move left one step, change nearby counters according to y3”.

Identity Problem: can we reach the initial configuration using A1,A2,A3?
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The special case: path of the run

Consider a sequence that might reach I :(
X y1
0 1

)(
X y1
0 1

)(
1 y2
0 1

)(
X−1 y3
0 1

)(
X−1 y3
0 1

)
=

(
1 ∗
0 1

)

The corresponding run:

000· · · 0 0 · · ·
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The effect of tile
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is p13 where

(
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(
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y2
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Total effect: ∗ = (1 + X )p13 + X 2p2.
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The corresponding run:
y1 y1

y2

y3y3
. Decompose into tiles:

It can be decomposed into two tiles of
y1

y3
and one tile of

y2

.

The effect of tile
y1

y3
is p13 where

(
1 p13
0 1

)
=

(
X y1
0 1

)(
X−1 y3
0 1

)
.

The effect of tile

y2

is p2 := y2

Total effect: ∗ = (1 + X )p13 + X 2p2.
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Runs vs Polynomials

The effect of each (cyclic) run is described by a linear combination

∗ = f13p13 + f2p2.

For example:

−−−−−−−−→ ∗ = (1 + X )p13 + X 2p2.

−−−−−−−−→ ∗ = (X−1 + 2 + X )p13 + (X + X 2)p2.
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p2.

Cyclic runs
?←−−−−−−→ ∗ ∈ N[X±] · p13 + N[X±] · p2

Failure:

←−−−−−−→ ∗ = (X−1 + 1)p13 + X 2p2.

Not connected

: degree of f2 = X 2 is too big compared to f13 = X−1 + 1
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Identity Problem vs linear equations over N[X±]

Proposition

There exists a run whose effect is ∗ = 0, if and only if the equation
0 = f13p13 + f2p2 admits non-zero solutions f13, f2 ∈ N[X±]∗ satisfying
“degree constraints”.

“degree constraints”: deg+(f2) < deg+(f13), deg−(f2) ≥ deg−(f13).

Identity Problem ⇐⇒ existence of run with effect ∗ = 0.

This not only works for the current example (where we can only move
one cell). In general:

Theorem

The Identity Problem in Z ≀ Z reduces to solving a system of
homogeneous linear equations over N[X±]∗, with additional “degree
constraints”.
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Local-global principle

Does 0 = f13 · (2X 2 − 1) + f2 · (X + 2) have solution f13, f2 ∈ N[X±]∗?

No! Evaluate X = 1, then 0 = f13(1) + 3f2(1). No solution over N∗.

Such a “certificate” always exists if no solution over N[X±]∗:

Theorem (Generalization of Einsiedler, Mouat, Tuncel (2003))

LetM be an Z[X±]-submodule of Z[X±]K . Then there exists

f ∈M∩ (N[X±]∗)
K
satisfying “degree constraints” if and only if the

following are satisfied:

1 For every r ∈ R>0, there exists f r ∈M such that f r (r) ∈ RK
>0.

2 For v ∈ {+,−}, there exists f v ∈M such that ltv (f v ) ∈ (N∗)K

satisfies “degree constraints”.

Therefore, instead of searching for solutions, we search for “certificates”.
This can be done using the first order theory of R. Decidable (Tarski).

Theorem

The Identity Problem in Z ≀ Z is decidable.
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