Termination of linear loops under commutative updates

Ruiwen Dong

University of Oxford

July 2023

Ruiwen Dong Termination of linear loops under commutative updates

э

回 と く ヨ と く ヨ と

÷.

Set up: given a vector $v \in \mathbb{R}^d$

æ –

→ < ∃ →</p>

Set up: given a vector $v \in \mathbb{R}^d$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^d$

문어 문

Set up: given a vector $v \in \mathbb{R}^d$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^d$, and a set of linear transformations $S = \{A_1, \ldots, A_n\} \subseteq GL(d, \mathbb{Q})$.

Set up: given a vector $v \in \mathbb{R}^d$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^d$, and a set of linear transformations $S = \{A_1, \ldots, A_n\} \subseteq GL(d, \mathbb{Q})$.

Objective: escape C (find $B_1, \ldots, B_m \in S$, such that $B_1B_2 \cdots B_m v \notin C$).

Set up: given a vector $v \in \mathbb{R}^d$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^d$, and a set of linear transformations $S = \{A_1, \ldots, A_n\} \subseteq GL(d, \mathbb{Q})$.

Objective: escape C (find $B_1, \ldots, B_m \in S$, such that $B_1B_2 \cdots B_m v \notin C$).

As a decidability problem:

Input: $v \in \mathbb{R}^d$, polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^d$, matrices $S = \{A_1, \ldots, A_n\}$.

Output: does there exist $M \in \langle S \rangle$ such that $Mv \notin C$? ($\langle S \rangle$ denotes the semigroup generated by S.)

Set up: given a vector $v \in \mathbb{R}^d$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^d$, and a set of linear transformations $S = \{A_1, \ldots, A_n\} \subseteq GL(d, \mathbb{Q})$.

Objective: escape C (find $B_1, \ldots, B_m \in S$, such that $B_1B_2 \cdots B_m v \notin C$).

As a decidability problem:

Input: $v \in \mathbb{R}^d$, polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^d$, matrices $S = \{A_1, \ldots, A_n\}$.

Output: does there exist $M \in \langle S \rangle$ such that $Mv \notin C$? ($\langle S \rangle$ denotes the semigroup generated by S.)

General case: undecidable.

Set up: given a vector $v \in \mathbb{R}^d$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^d$, and a set of linear transformations $S = \{A_1, \ldots, A_n\} \subseteq GL(d, \mathbb{Q}).$

Objective: escape C (find $B_1, \ldots, B_m \in S$, such that $B_1B_2 \cdots B_m v \notin C$).

As a decidability problem:

Input: $v \in \mathbb{R}^d$, polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^d$, matrices $S = \{A_1, \ldots, A_n\}$.

Output: does there exist $M \in \langle S \rangle$ such that $Mv \notin C$? ($\langle S \rangle$ denotes the semigroup generated by S.)

General case: undecidable.

Special case where card(S) = 1: open, subsumes hard problems in Diophantine approximation. (Worrell, Ouaknine 2014)

Set up: given a vector $v \in \mathbb{R}^d$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^d$, and a set of linear transformations $S = \{A_1, \ldots, A_n\} \subseteq GL(d, \mathbb{Q})$.

Objective: for every $v \in C$, escape C (find $B_1, \ldots, B_m \in S$, such that $B_1B_2 \cdots B_m v \notin C$).

Set up: given a vector $v \in \mathbb{R}^d$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^d$, and a set of linear transformations $S = \{A_1, \ldots, A_n\} \subseteq GL(d, \mathbb{Q})$.

Objective: for every $v \in C$, escape C (find $B_1, \ldots, B_m \in S$, such that $B_1B_2 \cdots B_m v \notin C$).

As a decidability problem:

Input: polyhedral cone $C \subseteq \mathbb{R}^d$, matrices $S = \{A_1, \ldots, A_n\}.$

Output: whether for every $v \in C$, there exist $M \in \langle S \rangle$ such that $Mv \notin C$?

Set up: given a vector $v \in \mathbb{R}^d$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^d$, and a set of linear transformations $S = \{A_1, \ldots, A_n\} \subseteq GL(d, \mathbb{Q})$.

Objective: for every $v \in C$, escape C (find $B_1, \ldots, B_m \in S$, such that $B_1B_2 \cdots B_m v \notin C$).

As a decidability problem:

Input: polyhedral cone $C \subseteq \mathbb{R}^d$, matrices $S = \{A_1, \ldots, A_n\}.$

Output: whether for every $v \in C$, there exist $M \in \langle S \rangle$ such that $Mv \notin C$?

General case: open.

Special case where card(S) = 1: easy using Jordan Normal Form.

Set up: given a vector $v \in \mathbb{R}^d$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^d$, and a set of linear transformations $S = \{A_1, \ldots, A_n\} \subseteq GL(d, \mathbb{Q})$.

Objective: for every $v \in C$, escape C (find $B_1, \ldots, B_m \in S$, such that $B_1B_2 \cdots B_m v \notin C$).

As a decidability problem:

Input: polyhedral cone $C \subseteq \mathbb{R}^d$, matrices $S = \{A_1, \ldots, A_n\}.$

Output: whether for every $v \in C$, there exist $M \in \langle S \rangle$ such that $Mv \notin C$?

General case: open.

Special case where card(S) = 1: easy using Jordan Normal Form.

Motivation: verify termination of linear programs.

Termination of linear loops

Let's consider the complement of the previous problem:

Definition

Termination of linear loops is the following decision problem. **Input:** a closed polyhedral cone $C \subseteq \mathbb{R}^d \setminus \{0^d\}$ generated by rational vectors, a set of matrices $S \subseteq GL(d, \mathbb{Q})$. **Output:** whether there exists $v \in C$, such that $\langle S \rangle \cdot v \subseteq C$?

Termination of linear loops

Let's consider the complement of the previous problem:

Definition

Termination of linear loops is the following decision problem. **Input:** a closed polyhedral cone $C \subseteq \mathbb{R}^d \setminus \{0^d\}$ generated by rational vectors, a set of matrices $S \subseteq GL(d, \mathbb{Q})$. **Output:** whether there exists $v \in C$, such that $\langle S \rangle \cdot v \subseteq C$?

Theorem

Termination of linear loops is decidable for commuting matrices.

Termination of linear loops

Let's consider the complement of the previous problem:

Definition

Termination of linear loops is the following decision problem. **Input:** a closed polyhedral cone $C \subseteq \mathbb{R}^d \setminus \{0^d\}$ generated by rational vectors, a set of matrices $S \subseteq GL(d, \mathbb{Q})$. **Output:** whether there exists $v \in C$, such that $\langle S \rangle \cdot v \subseteq C$?

Theorem

Termination of linear loops is decidable for commuting matrices.

In other words, let $S = \{A_1, \ldots, A_n\}$ be a set of pairwise commuting matrices. It is decidable whether there exists v, such that

$$A_1^{k_1}A_2^{k_2}\cdots A_n^{k_n}v\in \mathcal{C}$$
 for all $k_1,\ldots,k_n\in\mathbb{N}$.

Suppose ${\mathcal C}$ is defined by

$$\{x \in \mathbb{R}^d \setminus \{0^d\} \mid c_1^\top x \ge 0, \dots, c_m^\top x \ge 0\},\$$

where $c_1, \ldots, c_m \in \mathbb{R}^d$.

< 注→ 注

Suppose ${\mathcal C}$ is defined by

$$\{x \in \mathbb{R}^d \setminus \{0^d\} \mid c_1^\top x \ge 0, \dots, c_m^\top x \ge 0\},\$$

where $c_1, \ldots, c_m \in \mathbb{R}^d$.

Termination of linear loops

 $\iff \text{ there exists } v \in \mathbb{R}^d, \text{ s.t. } A_1^{k_1} \cdots A_n^{k_n} v \in \mathcal{C} \text{ for all } k_1, \dots, k_n \in \mathbb{N}$

3

Suppose ${\mathcal C}$ is defined by

$$\{x \in \mathbb{R}^d \setminus \{0^d\} \mid c_1^\top x \ge 0, \dots, c_m^\top x \ge 0\},\$$

where $c_1, \ldots, c_m \in \mathbb{R}^d$.

Termination of linear loops

- \iff there exists $v \in \mathbb{R}^d$, s.t. $A_1^{k_1} \cdots A_n^{k_n} v \in \mathcal{C}$ for all $k_1, \ldots, k_n \in \mathbb{N}$
- $\iff \text{ there exists } v \in \mathbb{R}^d, \text{ s.t. } c_i^\top A_1^{k_1} \cdots A_n^{k_n} v \ge 0 \text{ for all } i = 1, \dots, m,$ and $k_1, \dots, k_n \in \mathbb{N}$

Suppose ${\mathcal C}$ is defined by

$$\{x \in \mathbb{R}^d \setminus \{0^d\} \mid c_1^\top x \ge 0, \dots, c_m^\top x \ge 0\},\$$

where $c_1, \ldots, c_m \in \mathbb{R}^d$.

Termination of linear loops

- $\iff \text{ there exists } v \in \mathbb{R}^d, \text{ s.t. } A_1^{k_1} \cdots A_n^{k_n} v \in \mathcal{C} \text{ for all } k_1, \dots, k_n \in \mathbb{N}$
- $\iff \text{ there exists } v \in \mathbb{R}^d, \text{ s.t. } c_i^\top A_1^{k_1} \cdots A_n^{k_n} v \ge 0 \text{ for all } i = 1, \dots, m,$ and $k_1, \dots, k_n \in \mathbb{N}$
- $\iff A_n^{\top^{k_n}} \cdots A_1^{\top^{k_1}} c_i \text{ are in some closed halfspace } \mathcal{H} \coloneqq \{x \mid v^{\top} x \ge 0\}$ for all $i = 1, \dots, m, k_1, \dots, k_n \in \mathbb{N}$

Suppose ${\mathcal C}$ is defined by

$$\{x \in \mathbb{R}^d \setminus \{0^d\} \mid c_1^\top x \ge 0, \dots, c_m^\top x \ge 0\},\$$

where $c_1, \ldots, c_m \in \mathbb{R}^d$.

Termination of linear loops

- $\iff \text{ there exists } v \in \mathbb{R}^d, \text{ s.t. } A_1^{k_1} \cdots A_n^{k_n} v \in \mathcal{C} \text{ for all } k_1, \dots, k_n \in \mathbb{N}$
- $\iff \text{ there exists } v \in \mathbb{R}^d, \text{ s.t. } c_i^\top A_1^{k_1} \cdots A_n^{k_n} v \ge 0 \text{ for all } i = 1, \dots, m,$ and $k_1, \dots, k_n \in \mathbb{N}$
- $\iff A_n^{\top^{k_n}} \cdots A_1^{\top^{k_1}} c_i \text{ are in some closed halfspace } \mathcal{H} \coloneqq \{x \mid v^{\top} x \ge 0\}$ for all $i = 1, \dots, m, k_1, \dots, k_n \in \mathbb{N}$

Let $S^{\top} := \{A_1^{\top}, \ldots, A_n^{\top}\}$. Denote by $\langle c_1, \ldots, c_m \rangle$ the cone generated by c_1, \ldots, c_m . It suffices to decide whether the orbit $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$ lies in a closed halfspace.

э.

Proof idea. Step 2: halfspace

It suffices to decide whether the orbit $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$ lies in a closed halfspace.

æ

Proof idea. Step 2: halfspace

It suffices to decide whether the orbit $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$ lies in a closed halfspace.

æ

Proof idea. Step 2: halfspace

It suffices to decide whether the orbit $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$ lies in a closed halfspace.

æ

Proof idea. Step 3: salient cone

Instead of deciding whether $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$ lies in a closed halfspace, we first decide whether it is **salient**.

э.

Proof idea. Step 3: salient cone

Instead of deciding whether $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$ lies in a closed halfspace, we first decide whether it is **salient**.

Definition

A cone $C \subseteq \mathbb{R}^d$ is called *salient* if $x, -x \in \mathcal{C} \implies x = 0^d$. A set $\mathcal{O} \subseteq \mathbb{R}^d$ is called *salient* if the cone it generates is salient.

э

Proof idea. Step 3: salient cone

Instead of deciding whether $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$ lies in a closed halfspace, we first decide whether it is **salient**.

Definition

A cone $C \subseteq \mathbb{R}^d$ is called *salient* if $x, -x \in \mathcal{C} \implies x = 0^d$. A set $\mathcal{O} \subseteq \mathbb{R}^d$ is called *salient* if the cone it generates is salient.

Lemma

Suppose we have a procedure that decides whether $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$ is salient, then we can decide whether it is contained in a closed halfspace.

Now it suffices to whether $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$ is salient. That is, whether there exist $x \neq 0^d$ such that both x and -x are in the cone generated by $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$.

Now it suffices to whether $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$ is salient. That is, whether there exist $x \neq 0^d$ such that both x and -x are in the cone generated by $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$.

Suppose such x exists, for example, $x = c_1 + 2A_1^{\top}A_2^{\top 2}c_1$.

Now it suffices to whether $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$ is salient. That is, whether there exist $x \neq 0^d$ such that both x and -x are in the cone generated by $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$.

Suppose such x exists, for example, $x = c_1 + 2A_1^{\top}A_2^{\top^2}c_1$. Similarly, say, $-x = A_1^{\top}c_1 + A_2^{\top}c_3$.

Now it suffices to whether $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$ is salient. That is, whether there exist $x \neq 0^d$ such that both x and -x are in the cone generated by $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$.

Suppose such x exists, for example, $x = c_1 + 2A_1^{\top}A_2^{\top 2}c_1$. Similarly, say, $-x = A_1^{\top}c_1 + A_2^{\top}c_3$.

Then
$$0^d = (1 + A_1^\top + 2A_1^\top A_2^\top) \cdot c_1 + A_2^\top \cdot c_3.$$

Proposition

The orbit $\langle S^{\top} \rangle \cdot \langle c_1, \ldots, c_m \rangle$ is not salient if and only if there exist "positive polynomials" $f_1, \ldots, f_m \in \mathbb{R}_{\geq 0}[X_1, \ldots, X_n]$, not all zero, such that $0^d = f_1(A_1^{\top}, \ldots, A_n^{\top}) \cdot c_1 + \cdots + f_m(A_1^{\top}, \ldots, A_n^{\top}) \cdot c_m$.

Let \mathcal{M} be the $\mathbb{R}[X_1, \ldots, X_n]$ -submodule of $\mathbb{R}[X_1, \ldots, X_n]^m$ consisting of all tuples (f_1, \ldots, f_m) such that

$$0^d = f_1(A_1^{\top},\ldots,A_n^{\top}) \cdot c_1 + \cdots + f_m(A_1^{\top},\ldots,A_n^{\top}) \cdot c_m.$$

3

Let \mathcal{M} be the $\mathbb{R}[X_1, \ldots, X_n]$ -submodule of $\mathbb{R}[X_1, \ldots, X_n]^m$ consisting of all tuples (f_1, \ldots, f_m) such that

$$0^d = f_1(A_1^{\top},\ldots,A_n^{\top}) \cdot c_1 + \cdots + f_m(A_1^{\top},\ldots,A_n^{\top}) \cdot c_m.$$

Proposition

The orbit $\langle S^{\top} \rangle \cdot \langle c_1, \dots, c_m \rangle$ is not salient if and only if

 $\mathcal{M} \cap (\mathbb{R}_{\geq 0}[X_1,\ldots,X_n])^m \neq \{0^m\}.$

▲目▶ ▲目▶ 目 のへ⊙

Let \mathcal{M} be the $\mathbb{R}[X_1, \ldots, X_n]$ -submodule of $\mathbb{R}[X_1, \ldots, X_n]^m$ consisting of all tuples (f_1, \ldots, f_m) such that

$$0^d = f_1(A_1^{\top},\ldots,A_n^{\top}) \cdot c_1 + \cdots + f_m(A_1^{\top},\ldots,A_n^{\top}) \cdot c_m$$

Proposition

The orbit $\langle S^{\top} \rangle \cdot \langle c_1, \dots, c_m \rangle$ is not salient if and only if

$$\mathcal{M} \cap (\mathbb{R}_{\geq 0}[X_1,\ldots,X_n])^m \neq \{0^m\}.$$

Proposition ("multivariate", "*m*-dimensional" Cayley-Hamilton theorem) A finite set of generators for \mathcal{M} can be effectively computed.

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → � � �

Let \mathcal{M} be the $\mathbb{R}[X_1, \ldots, X_n]$ -submodule of $\mathbb{R}[X_1, \ldots, X_n]^m$ consisting of all tuples (f_1, \ldots, f_m) such that

$$0^d = f_1(A_1^{\top},\ldots,A_n^{\top}) \cdot c_1 + \cdots + f_m(A_1^{\top},\ldots,A_n^{\top}) \cdot c_m.$$

Proposition

The orbit $\langle S^{\top} \rangle \cdot \langle c_1, \dots, c_m \rangle$ is not salient if and only if

$$\mathcal{M} \cap (\mathbb{R}_{\geq 0}[X_1,\ldots,X_n])^m \neq \{0^m\}.$$

Proposition ("multivariate", "m-dimensional" Cayley-Hamilton theorem)

A finite set of generators for \mathcal{M} can be effectively computed.

Proof idea: the characteristic polynomials of $A_1^{\top}, \ldots, A_n^{\top}$ are in \mathcal{M} . The module $\mathbb{R}[X_1, \ldots, X_n]^m$ becomes finite dimensional \mathbb{R} -linear space after quotient by these characteristic polynomials, the rest is linear algebra.

< 同 > < 回 > < 回 > …

3

It suffices to decide whether $\mathcal{M} \cap (\mathbb{R}_{\geq 0}[X_1, \dots, X_n]^*)^m$ is empty.

ъ.

It suffices to decide whether $\mathcal{M} \cap (\mathbb{R}_{\geq 0}[X_1, \dots, X_n]^*)^m$ is empty.

Example: suppose polynomials are univariate and \mathcal{M} is the solution set of the linear equation

$$0 = f_1 \cdot (2X^2 - 1) + f_2 \cdot (X + 2). \tag{1}$$

i.e. does (1) have solution $f_1, f_2 \in \mathbb{R}_{\geq 0}[X^{\pm}]^*$?

It suffices to decide whether $\mathcal{M} \cap (\mathbb{R}_{\geq 0}[X_1, \dots, X_n]^*)^m$ is empty.

Example: suppose polynomials are univariate and \mathcal{M} is the solution set of the linear equation

$$0 = f_1 \cdot (2X^2 - 1) + f_2 \cdot (X + 2). \tag{1}$$

i.e. does (1) have solution $f_1, f_2 \in \mathbb{R}_{\geq 0}[X^{\pm}]^*$?

No! Evaluate X = 1, then $0 = f_1(1) + 3f_2(1)$. No solution over $\mathbb{R}_{>0}$.

It suffices to decide whether $\mathcal{M} \cap \left(\mathbb{R}_{\geq 0}[X_1,\ldots,X_n]^*\right)^m$ is empty.

Example: suppose polynomials are univariate and \mathcal{M} is the solution set of the linear equation

$$0 = f_1 \cdot (2X^2 - 1) + f_2 \cdot (X + 2). \tag{1}$$

i.e. does (1) have solution $f_1, f_2 \in \mathbb{R}_{\geq 0}[X^{\pm}]^*$?

No! Evaluate X = 1, then $0 = f_1(1) + 3f_2(1)$. No solution over $\mathbb{R}_{>0}$.

If $\mathcal{M} \cap (\mathbb{R}_{\geq 0}[X_1, \dots, X_n]^*)^m$ is empty, such "certificate" always exists!

Theorem (Einsiedler, Mouat, Tuncel (2003))

Let \mathcal{M} be an $\mathbb{R}[X_1, \ldots, X_n]$ -submodule of $\mathbb{R}[X_1, \ldots, X_n]^m$. Then there exists $\mathbf{f} \in \mathcal{M} \cap (\mathbb{R}_{\geq 0}[X_1, \ldots, X_n]^*)^m$ if and only if:

• For every $r \in \mathbb{R}^n_{>0}$, there exists $f_r \in \mathcal{M}$ such that $f_r(r) \in \mathbb{R}^m_{>0}$.

Sor every v ∈ (ℝⁿ)*, there exists f_v ∈ M, whose initial polynomial in_v (f_v) is in (ℝ_{≥0}[X₁,...,X_n]*)^m.

くぼう くほう くほう

Theorem (Einsiedler, Mouat, Tuncel (2003))

Let \mathcal{M} be an $\mathbb{R}[X_1, \ldots, X_n]$ -submodule of $\mathbb{R}[X_1, \ldots, X_n]^m$. Then there exists $\mathbf{f} \in \mathcal{M} \cap (\mathbb{R}_{\geq 0}[X_1, \ldots, X_n]^*)^m$ if and only if:

() For every $r \in \mathbb{R}_{>0}$, there exists $f_r \in \mathcal{M}$ such that $f_r(r) \in \mathbb{R}_{>0}^m$.

For every v ∈ (ℝⁿ)*, there exists f_v ∈ M, whose initial polynomial in_v (f_v) is in (ℝ_{≥0}[X₁,...,X_n]*)^m.

A B M A B M

э.

Theorem (Einsiedler, Mouat, Tuncel (2003))

Let \mathcal{M} be an $\mathbb{R}[X_1, \ldots, X_n]$ -submodule of $\mathbb{R}[X_1, \ldots, X_n]^m$. Then there exists $\mathbf{f} \in \mathcal{M} \cap (\mathbb{R}_{\geq 0}[X_1, \ldots, X_n]^*)^m$ if and only if:

9 For every $r \in \mathbb{R}_{>0}$, there exists $\mathbf{f}_r \in \mathcal{M}$ such that $\mathbf{f}_r(r) \in \mathbb{R}_{>0}^m$.

For every v ∈ (ℝⁿ)*, there exists f_v ∈ M, whose initial polynomial in_v (f_v) is in (ℝ_{≥0}[X₁,...,X_n]*)^m.

Condition 1 can be checked using the first order theory of the reals.

Theorem (Einsiedler, Mouat, Tuncel (2003))

Let \mathcal{M} be an $\mathbb{R}[X_1, \ldots, X_n]$ -submodule of $\mathbb{R}[X_1, \ldots, X_n]^m$. Then there exists $\mathbf{f} \in \mathcal{M} \cap (\mathbb{R}_{\geq 0}[X_1, \ldots, X_n]^*)^m$ if and only if:

• For every $r \in \mathbb{R}_{>0}$, there exists $\mathbf{f}_r \in \mathcal{M}$ such that $\mathbf{f}_r(r) \in \mathbb{R}_{>0}^m$.

Some very v ∈ (ℝⁿ)*, there exists f_v ∈ M, whose initial polynomial in_v (f_v) is in (ℝ_{≥0}[X₁,...,X_n]*)^m.

Condition 1 can be checked using the first order theory of the reals.

Condition 2 only needs to be checked for a finite number of v (consider the Newton polytopes of a Gröbner basis of \mathcal{M}).

Corollary

Given a finite set of generators for the $\mathbb{R}[X_1, \ldots, X_n]$ -submodule \mathcal{M} of $\mathbb{R}[X_1, \ldots, X_n]^m$, it is decidable whether $\mathcal{M} \cap (\mathbb{R}_{\geq 0}[X_1, \ldots, X_n]^*)^m$ is empty.

< 回 > < 三 > < 三 >

3

Termination of linear loops with commuting matrices \longleftrightarrow whether a submodule \mathcal{M} of $\mathbb{R}[X_1, \ldots, X_n]^m$ contains a "positive" element.

Theorem

Termination of linear loops with commuting matrices is decidable.

3

Termination of linear loops with commuting matrices \longleftrightarrow whether a submodule \mathcal{M} of $\mathbb{R}[X_1, \ldots, X_n]^m$ contains a "positive" element.

Theorem

Termination of linear loops with commuting matrices is decidable.

What about non-commuting matrices?

きょうきょう

э.

Termination of linear loops with commuting matrices \longleftrightarrow whether a submodule \mathcal{M} of $\mathbb{R}[X_1, \ldots, X_n]^m$ contains a "positive" element.

Theorem

Termination of linear loops with commuting matrices is decidable.

What about non-commuting matrices? Let $\mathbb{R}\langle X_1, \ldots, X_n \rangle$ denote the ring of non-commutative polynomials.

Open Problem

Given the generators of a left submodule \mathcal{M} of $\mathbb{R}\langle X_1, \ldots, X_n \rangle^m$, can we decide whether \mathcal{M} contains an element with only positive coefficients?

A B M A B M

э.

Termination of linear loops with commuting matrices \longleftrightarrow whether a submodule \mathcal{M} of $\mathbb{R}[X_1, \ldots, X_n]^m$ contains a "positive" element.

Theorem

Termination of linear loops with commuting matrices is decidable.

What about non-commuting matrices? Let $\mathbb{R}\langle X_1, \ldots, X_n \rangle$ denote the ring of non-commutative polynomials.

Open Problem

Given the generators of a left submodule \mathcal{M} of $\mathbb{R}\langle X_1, \ldots, X_n \rangle^m$, can we decide whether \mathcal{M} contains an element with only positive coefficients?

Open Problem (Interesting special cases)

- Given $f \in \mathbb{R}\langle X_1, \ldots, X_n \rangle$, decide if there exists $g \neq 0$ such that $g \cdot f$ has only positive coefficients?
- Let G be a 2-step nilpotent group, decide if a left ideal of ℝ[G] contains an element of ℝ_{≥0}[G]*.