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Let’s play a game

Set up: given a vector v ∈ Rd , a polyhedral
cone C ⊆ Rd , and a set of linear transforma-
tions S = {A1, . . . ,An} ⊆ GL(d ,Q).

Objective: escape C (find B1, . . . ,Bm ∈ S ,
such that B1B2 · · ·Bmv ̸∈ C).
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A “universal” game

Set up: given a vector v ∈ Rd , a polyhedral
cone C ⊆ Rd , and a set of linear transforma-
tions S = {A1, . . . ,An} ⊆ GL(d ,Q).

Objective: for every v ∈ C, escape C (find
B1, . . . ,Bm ∈ S , such that B1B2 · · ·Bmv ̸∈
C).
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Termination of linear loops

Let’s consider the complement of the previous problem:

Definition

Termination of linear loops is the following decision problem.
Input: a closed polyhedral cone C ⊆ Rd \ {0d} generated by rational
vectors, a set of matrices S ⊆ GL(d ,Q).
Output: whether there exists v ∈ C, such that ⟨S⟩ · v ⊆ C?

Theorem

Termination of linear loops is decidable for commuting matrices.

In other words, let S = {A1, . . . ,An} be a set of pairwise commuting
matrices. It is decidable whether there exists v , such that

Ak1
1 Ak2

2 · · ·A
kn
n v ∈ C for all k1, . . . , kn ∈ N.
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Proof idea. Step 1: dual problem

Suppose C is defined by

{x ∈ Rd \ {0d} | c⊤1 x ≥ 0, . . . , c⊤m x ≥ 0},

where c1, . . . , cm ∈ Rd .

Termination of linear loops

⇐⇒ there exists v ∈ Rd , s.t. Ak1
1 · · ·A

kn
n v ∈ C for all k1, . . . , kn ∈ N

⇐⇒ there exists v ∈ Rd , s.t. c⊤i Ak1
1 · · ·A

kn
n v ≥ 0 for all i = 1, . . . ,m,

and k1, . . . , kn ∈ N

⇐⇒ A⊤
n

kn · · ·A⊤
1

k1
ci are in some closed halfspace H := {x | v⊤x ≥ 0}

for all i = 1, . . . ,m, k1, . . . , kn ∈ N

Let S⊤ := {A⊤
1 , . . . ,A

⊤
n }. Denote by ⟨c1, . . . , cm⟩ the cone generated by

c1, . . . , cm. It suffices to decide whether the orbit ⟨S⊤⟩ · ⟨c1, . . . , cm⟩ lies
in a closed halfspace.
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Proof idea. Step 2: halfspace

It suffices to decide whether the orbit ⟨S⊤⟩ · ⟨c1, . . . , cm⟩ lies in a closed
halfspace.
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Proof idea. Step 3: salient cone

Instead of deciding whether ⟨S⊤⟩ · ⟨c1, . . . , cm⟩ lies in a closed halfspace,
we first decide whether it is salient.

Definition

A cone C ⊆ Rd is called salient if x ,−x ∈ C =⇒ x = 0d .
A set O ⊆ Rd is called salient if the cone it generates is salient.

Halfspace Salient

Lemma

Suppose we have a procedure that decides whether ⟨S⊤⟩ · ⟨c1, . . . , cm⟩ is
salient, then we can decide whether it is contained in a closed halfspace.
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Step 4: from salient cone to positive polynomials

Now it suffices to whether ⟨S⊤⟩ · ⟨c1, . . . , cm⟩ is salient. That is, whether
there exist x ̸= 0d such that both x and −x are in the cone generated by
⟨S⊤⟩ · ⟨c1, . . . , cm⟩.

Suppose such x exists, for example, x = c1 + 2A⊤
1 A

⊤
2
2
c1.
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2
2
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1 A
⊤
2
2
) · c1 + A⊤

2 · c3.
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Step 4: from salient cone to positive polynomials

Then 0d = (1 + A⊤
1 + 2A⊤

1 A
⊤
2
2
) · c1 + A⊤

2 · c3.
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Step 4: from salient cone to positive polynomials

Then 0d = (1 + A⊤
1 + 2A⊤

1 A
⊤
2

2
)︸ ︷︷ ︸

polynomials over A⊤
1 ,A⊤

2

with positive coefficients

·c1 + A⊤
2︸︷︷︸ ·c3.

Proposition

The orbit ⟨S⊤⟩ · ⟨c1, . . . , cm⟩ is not salient if and only if there exist
“positive polynomials” f1, . . . , fm ∈ R≥0[X1, . . . ,Xn], not all zero, such
that 0d = f1(A

⊤
1 , . . . ,A

⊤
n ) · c1 + · · ·+ fm(A

⊤
1 , . . . ,A

⊤
n ) · cm.
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Step 5: positive polynomial in a module

LetM be the R[X1, . . . ,Xn]-submodule of R[X1, . . . ,Xn]
m consisting of

all tuples (f1, . . . , fm) such that

0d = f1(A
⊤
1 , . . . ,A

⊤
n ) · c1 + · · ·+ fm(A

⊤
1 , . . . ,A

⊤
n ) · cm.

Proposition

The orbit ⟨S⊤⟩ · ⟨c1, . . . , cm⟩ is not salient if and only if

M∩ (R≥0[X1, . . . ,Xn])
m ̸= {0m}.

Proposition (“multivariate”, “m-dimensional” Cayley-Hamilton theorem)

A finite set of generators forM can be effectively computed.

Proof idea: the characteristic polynomials of A⊤
1 , . . . ,A

⊤
n are inM. The

module R[X1, . . . ,Xn]
m becomes finite dimensional R-linear space after

quotient by these characteristic polynomials, the rest is linear algebra.
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Step 6: local-global principle by Einsiedler et al.

It suffices to decide whetherM∩ (R≥0[X1, . . . ,Xn]
∗)m is empty.

Example: suppose polynomials are univariate andM is the solution set
of the linear equation

0 = f1 · (2X 2 − 1) + f2 · (X + 2). (1)

i.e. does (1) have solution f1, f2 ∈ R≥0[X
±]∗?

No! Evaluate X = 1, then 0 = f1(1) + 3f2(1). No solution over R>0.

IfM∩ (R≥0[X1, . . . ,Xn]
∗)m is empty, such “certificate” always exists!

Theorem (Einsiedler, Mouat, Tuncel (2003))

LetM be an R[X1, . . . ,Xn]-submodule of R[X1, . . . ,Xn]
m. Then there

exists f ∈M∩ (R≥0[X1, . . . ,Xn]
∗)m if and only if:

1 For every r ∈ Rn
>0, there exists f r ∈M such that f r (r) ∈ Rm

>0.

2 For every v ∈ (Rn)∗, there exists f v ∈M, whose initial polynomial
inv (f v ) is in (R≥0[X1, . . . ,Xn]

∗)m.
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>0.

2 For every v ∈ (Rn)∗, there exists f v ∈M, whose initial polynomial
inv (f v ) is in (R≥0[X1, . . . ,Xn]

∗)m.

Condition 1 can be checked using the first order theory of the reals.

Condition 2 only needs to be checked for a finite number of v (consider
the Newton polytopes of a Gröbner basis ofM).

Corollary

Given a finite set of generators for the R[X1, . . . ,Xn]-submoduleM of
R[X1, . . . ,Xn]

m, it is decidable whetherM∩ (R≥0[X1, . . . ,Xn]
∗)m is

empty.
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Conclusion

Termination of linear loops with commuting matrices ←→ whether a
submoduleM of R[X1, . . . ,Xn]

m contains a “positive” element.

Theorem

Termination of linear loops with commuting matrices is decidable.

What about non-commuting matrices?
Let R⟨X1, . . . ,Xn⟩ denote the ring of non-commutative polynomials.

Open Problem

Given the generators of a left submoduleM of R⟨X1, . . . ,Xn⟩m, can we
decide whetherM contains an element with only positive coefficients?

Open Problem (Interesting special cases)

Given f ∈ R⟨X1, . . . ,Xn⟩, decide if there exists g ̸= 0 such that g · f
has only positive coefficients?

Let G be a 2-step nilpotent group, decide if a left ideal of R[G ]
contains an element of R≥0[G ]∗.
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