Termination of linear loops under commutative updates

Ruiwen Dong

University of Oxford
July 2023

Let's play a game

Let's play a game

Set up: given a vector $v \in \mathbb{R}^{d}$

Let's play a game

Set up: given a vector $v \in \mathbb{R}^{d}$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$

Let's play a game

Set up: given a vector $v \in \mathbb{R}^{d}$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, and a set of linear transformations $S=\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \mathrm{GL}(d, \mathbb{Q})$.

Let's play a game

Set up: given a vector $v \in \mathbb{R}^{d}$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, and a set of linear transformations $S=\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \mathrm{GL}(d, \mathbb{Q})$.

Objective: escape \mathcal{C} (find $B_{1}, \ldots, B_{m} \in S$, such that $\left.B_{1} B_{2} \cdots B_{m} v \notin \mathcal{C}\right)$.

Let's play a game

Set up: given a vector $v \in \mathbb{R}^{d}$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, and a set of linear transformations $S=\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \mathrm{GL}(d, \mathbb{Q})$.
Objective: escape \mathcal{C} (find $B_{1}, \ldots, B_{m} \in S$, such that $\left.B_{1} B_{2} \cdots B_{m} v \notin \mathcal{C}\right)$.

As a decidability problem:
Input: $v \in \mathbb{R}^{d}$, polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, matrices $S=\left\{A_{1}, \ldots, A_{n}\right\}$.

Output: does there exist $M \in\langle S\rangle$ such that
 $M v \notin \mathcal{C}$?
($\langle S\rangle$ denotes the semigroup generated by S.)

Let's play a game

Set up: given a vector $v \in \mathbb{R}^{d}$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, and a set of linear transformations $S=\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \mathrm{GL}(d, \mathbb{Q})$.
Objective: escape \mathcal{C} (find $B_{1}, \ldots, B_{m} \in S$, such that $\left.B_{1} B_{2} \cdots B_{m} v \notin \mathcal{C}\right)$.

As a decidability problem:
Input: $v \in \mathbb{R}^{d}$, polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, matrices $S=\left\{A_{1}, \ldots, A_{n}\right\}$.
Output: does there exist $M \in\langle S\rangle$ such that
 $M v \notin \mathcal{C}$?
($\langle S\rangle$ denotes the semigroup generated by S.)
General case: undecidable.

Let's play a game

Set up: given a vector $v \in \mathbb{R}^{d}$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, and a set of linear transformations $S=\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \mathrm{GL}(d, \mathbb{Q})$.
Objective: escape \mathcal{C} (find $B_{1}, \ldots, B_{m} \in S$, such that $\left.B_{1} B_{2} \cdots B_{m} v \notin \mathcal{C}\right)$.

As a decidability problem:
Input: $v \in \mathbb{R}^{d}$, polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, matrices $S=\left\{A_{1}, \ldots, A_{n}\right\}$.

Output: does there exist $M \in\langle S\rangle$ such that $M v \notin \mathcal{C}$?
($\langle S\rangle$ denotes the semigroup generated by S.)
General case: undecidable.
Special case where $\operatorname{card}(S)=1$: open, subsumes hard problems in Diophantine approximation. (Worrell, Ouaknine 2014)

Set up: given a vector $v \in \mathbb{R}^{d}$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, and a set of linear transformations $S=\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \mathrm{GL}(d, \mathbb{Q})$.
Objective: for every $v \in \mathcal{C}$, escape \mathcal{C} (find $B_{1}, \ldots, B_{m} \in S$, such that $B_{1} B_{2} \cdots B_{m} \vee \notin$ $\mathcal{C})$.

Set up: given a vector $v \in \mathbb{R}^{d}$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, and a set of linear transformations $S=\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \mathrm{GL}(d, \mathbb{Q})$.

Objective: for every $v \in \mathcal{C}$, escape \mathcal{C} (find $B_{1}, \ldots, B_{m} \in S$, such that $B_{1} B_{2} \cdots B_{m} \vee \notin$ $\mathcal{C})$.

As a decidability problem:
Input: polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, matrices $S=\left\{A_{1}, \ldots, A_{n}\right\}$.

Output: whether for every $v \in \mathcal{C}$, there exist $M \in\langle S\rangle$ such that $M v \notin \mathcal{C}$?

Set up: given a vector $v \in \mathbb{R}^{d}$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, and a set of linear transformations $S=\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \mathrm{GL}(d, \mathbb{Q})$.

Objective: for every $v \in \mathcal{C}$, escape \mathcal{C} (find $B_{1}, \ldots, B_{m} \in S$, such that $B_{1} B_{2} \cdots B_{m} \vee \notin$ $\mathcal{C})$.

As a decidability problem:
Input: polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, matrices $S=\left\{A_{1}, \ldots, A_{n}\right\}$.

Output: whether for every $v \in \mathcal{C}$, there exist $M \in\langle S\rangle$ such that $M v \notin \mathcal{C}$?

General case: open.
Special case where $\operatorname{card}(S)=1$: easy using Jordan Normal Form.

Set up: given a vector $v \in \mathbb{R}^{d}$, a polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, and a set of linear transformations $S=\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \mathrm{GL}(d, \mathbb{Q})$.
Objective: for every $v \in \mathcal{C}$, escape \mathcal{C} (find $B_{1}, \ldots, B_{m} \in S$, such that $B_{1} B_{2} \cdots B_{m} \vee \notin$ $\mathcal{C})$.

As a decidability problem:
Input: polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d}$, matrices $S=\left\{A_{1}, \ldots, A_{n}\right\}$.

Output: whether for every $v \in \mathcal{C}$, there exist $M \in\langle S\rangle$ such that $M v \notin \mathcal{C}$?

General case: open.
Special case where $\operatorname{card}(S)=1$: easy using Jordan Normal Form.
Motivation: verify termination of linear programs.

Termination of linear loops

Let's consider the complement of the previous problem:

Definition

Termination of linear loops is the following decision problem.
Input: a closed polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d} \backslash\left\{0^{d}\right\}$ generated by rational vectors, a set of matrices $S \subseteq G L(d, \mathbb{Q})$.
Output: whether there exists $v \in \mathcal{C}$, such that $\langle S\rangle \cdot v \subseteq \mathcal{C}$?

Termination of linear loops

Let's consider the complement of the previous problem:

Definition

Termination of linear loops is the following decision problem.
Input: a closed polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d} \backslash\left\{0^{d}\right\}$ generated by rational vectors, a set of matrices $S \subseteq G L(d, \mathbb{Q})$.
Output: whether there exists $v \in \mathcal{C}$, such that $\langle S\rangle \cdot v \subseteq \mathcal{C}$?

Theorem

Termination of linear loops is decidable for commuting matrices.

Termination of linear loops

Let's consider the complement of the previous problem:

Definition

Termination of linear loops is the following decision problem.
Input: a closed polyhedral cone $\mathcal{C} \subseteq \mathbb{R}^{d} \backslash\left\{0^{d}\right\}$ generated by rational vectors, a set of matrices $S \subseteq G L(d, \mathbb{Q})$.
Output: whether there exists $v \in \mathcal{C}$, such that $\langle S\rangle \cdot v \subseteq \mathcal{C}$?

Theorem

Termination of linear loops is decidable for commuting matrices.

In other words, let $S=\left\{A_{1}, \ldots, A_{n}\right\}$ be a set of pairwise commuting matrices. It is decidable whether there exists v, such that

$$
A_{1}^{k_{1}} A_{2}^{k_{2}} \cdots A_{n}^{k_{n}} v \in \mathcal{C} \quad \text { for all } k_{1}, \ldots, k_{n} \in \mathbb{N}
$$

Proof idea. Step 1: dual problem

Suppose \mathcal{C} is defined by

$$
\left\{x \in \mathbb{R}^{d} \backslash\left\{0^{d}\right\} \mid c_{1}^{\top} x \geq 0, \ldots, c_{m}^{\top} x \geq 0\right\}
$$

where $c_{1}, \ldots, c_{m} \in \mathbb{R}^{d}$.

Proof idea. Step 1: dual problem

Suppose \mathcal{C} is defined by

$$
\left\{x \in \mathbb{R}^{d} \backslash\left\{0^{d}\right\} \mid c_{1}^{\top} x \geq 0, \ldots, c_{m}^{\top} x \geq 0\right\}
$$

where $c_{1}, \ldots, c_{m} \in \mathbb{R}^{d}$.
Termination of linear loops
\Longleftrightarrow there exists $v \in \mathbb{R}^{d}$, s.t. $A_{1}^{k_{1}} \cdots A_{n}^{k_{n}} v \in \mathcal{C}$ for all $k_{1}, \ldots, k_{n} \in \mathbb{N}$

Proof idea. Step 1: dual problem

Suppose \mathcal{C} is defined by

$$
\left\{x \in \mathbb{R}^{d} \backslash\left\{0^{d}\right\} \mid c_{1}^{\top} x \geq 0, \ldots, c_{m}^{\top} x \geq 0\right\}
$$

where $c_{1}, \ldots, c_{m} \in \mathbb{R}^{d}$.
Termination of linear loops
\Longleftrightarrow there exists $v \in \mathbb{R}^{d}$, s.t. $A_{1}^{k_{1}} \cdots A_{n}^{k_{n}} v \in \mathcal{C}$ for all $k_{1}, \ldots, k_{n} \in \mathbb{N}$
\Longleftrightarrow there exists $v \in \mathbb{R}^{d}$, s.t. $c_{i}^{\top} A_{1}^{k_{1}} \cdots A_{n}^{k_{n}} v \geq 0$ for all $i=1, \ldots, m$, and $k_{1}, \ldots, k_{n} \in \mathbb{N}$

Proof idea. Step 1: dual problem

Suppose \mathcal{C} is defined by

$$
\left\{x \in \mathbb{R}^{d} \backslash\left\{0^{d}\right\} \mid c_{1}^{\top} x \geq 0, \ldots, c_{m}^{\top} x \geq 0\right\}
$$

where $c_{1}, \ldots, c_{m} \in \mathbb{R}^{d}$.
Termination of linear loops
\Longleftrightarrow there exists $v \in \mathbb{R}^{d}$, s.t. $A_{1}^{k_{1}} \cdots A_{n}^{k_{n}} v \in \mathcal{C}$ for all $k_{1}, \ldots, k_{n} \in \mathbb{N}$
\Longleftrightarrow there exists $v \in \mathbb{R}^{d}$, s.t. $c_{i}^{\top} A_{1}^{k_{1}} \cdots A_{n}^{k_{n}} v \geq 0$ for all $i=1, \ldots, m$, and $k_{1}, \ldots, k_{n} \in \mathbb{N}$
$\Longleftrightarrow A_{n}^{\top k_{n}} \cdots A_{1}^{\top k_{1}} c_{i}$ are in some closed halfspace $\mathcal{H}:=\left\{x \mid v^{\top} x \geq 0\right\}$ for all $i=1, \ldots, m, k_{1}, \ldots, k_{n} \in \mathbb{N}$

Suppose \mathcal{C} is defined by

$$
\left\{x \in \mathbb{R}^{d} \backslash\left\{0^{d}\right\} \mid c_{1}^{\top} x \geq 0, \ldots, c_{m}^{\top} x \geq 0\right\}
$$

where $c_{1}, \ldots, c_{m} \in \mathbb{R}^{d}$.
Termination of linear loops
\Longleftrightarrow there exists $v \in \mathbb{R}^{d}$, s.t. $A_{1}^{k_{1}} \cdots A_{n}^{k_{n}} v \in \mathcal{C}$ for all $k_{1}, \ldots, k_{n} \in \mathbb{N}$
\Longleftrightarrow there exists $v \in \mathbb{R}^{d}$, s.t. $c_{i}^{\top} A_{1}^{k_{1}} \cdots A_{n}^{k_{n}} v \geq 0$ for all $i=1, \ldots, m$, and $k_{1}, \ldots, k_{n} \in \mathbb{N}$
$\Longleftrightarrow A_{n}^{\top k_{n}} \cdots A_{1}^{\top k_{1}} c_{i}$ are in some closed halfspace $\mathcal{H}:=\left\{x \mid v^{\top} x \geq 0\right\}$ for all $i=1, \ldots, m, k_{1}, \ldots, k_{n} \in \mathbb{N}$

Let $S^{\top}:=\left\{A_{1}^{\top}, \ldots, A_{n}^{\top}\right\}$. Denote by $\left\langle c_{1}, \ldots, c_{m}\right\rangle$ the cone generated by c_{1}, \ldots, c_{m}. It suffices to decide whether the orbit $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ lies in a closed halfspace.

Proof idea. Step 2: halfspace
It suffices to decide whether the orbit $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ lies in a closed halfspace.

Proof idea. Step 2: halfspace

It suffices to decide whether the orbit $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ lies in a closed halfspace.

Proof idea. Step 2: halfspace

It suffices to decide whether the orbit $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ lies in a closed halfspace.

Proof idea. Step 3: salient cone

Instead of deciding whether $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ lies in a closed halfspace, we first decide whether it is salient.

Proof idea. Step 3: salient cone

Instead of deciding whether $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ lies in a closed halfspace, we first decide whether it is salient.

Definition

A cone $C \subseteq \mathbb{R}^{d}$ is called salient if $x,-x \in \mathcal{C} \Longrightarrow x=0^{d}$.
A set $\mathcal{O} \subseteq \mathbb{R}^{d}$ is called salient if the cone it generates is salient.

Proof idea. Step 3: salient cone

Instead of deciding whether $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ lies in a closed halfspace, we first decide whether it is salient.

Definition

A cone $C \subseteq \mathbb{R}^{d}$ is called salient if $x,-x \in \mathcal{C} \Longrightarrow x=0^{d}$.
A set $\mathcal{O} \subseteq \mathbb{R}^{d}$ is called salient if the cone it generates is salient.

Lemma

Suppose we have a procedure that decides whether $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ is salient, then we can decide whether it is contained in a closed halfspace.

Step 4: from salient cone to positive polynomials

Now it suffices to whether $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ is salient. That is, whether there exist $x \neq 0^{d}$ such that both x and $-x$ are in the cone generated by $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$.

Step 4: from salient cone to positive polynomials

Now it suffices to whether $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ is salient. That is, whether there exist $x \neq 0^{d}$ such that both x and $-x$ are in the cone generated by $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$.
Suppose such x exists, for example, $x=c_{1}+2 A_{1}^{\top} A_{2}^{\top 2} c_{1}$.

Step 4: from salient cone to positive polynomials

Now it suffices to whether $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ is salient. That is, whether there exist $x \neq 0^{d}$ such that both x and $-x$ are in the cone generated by $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$.
Suppose such x exists, for example, $x=c_{1}+2 A_{1}^{\top} A_{2}^{\top 2} c_{1}$. Similarly, say, $-x=A_{1}^{\top} c_{1}+A_{2}^{\top} c_{3}$.

Step 4: from salient cone to positive polynomials

Now it suffices to whether $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ is salient. That is, whether there exist $x \neq 0^{d}$ such that both x and $-x$ are in the cone generated by $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$.
Suppose such x exists, for example, $x=c_{1}+2 A_{1}^{\top} A_{2}^{\top 2} c_{1}$. Similarly, say, $-x=A_{1}^{\top} c_{1}+A_{2}^{\top} c_{3}$.

Then $0^{d}=\left(1+A_{1}^{\top}+2 A_{1}^{\top} A_{2}^{\top 2}\right) \cdot c_{1}+A_{2}^{\top} \cdot c_{3}$.

Step 4: from salient cone to positive polynomials

Then $0^{d}=\left(1+A_{1}^{\top}+2 A_{1}^{\top} A_{2}^{\top 2}\right) \cdot c_{1}+A_{2}^{\top} \cdot c_{3}$.

Step 4: from salient cone to positive polynomials

Then $0^{d}=\underbrace{\left(1+A_{1}^{\top}+2 A_{1}^{\top} A_{2}^{\top^{2}}\right)}_{\text {polynomials over } A_{1}^{\top}, A_{2}^{\top}} \cdot c_{1}+\underbrace{A_{2}^{\top}} \cdot c_{3}$.

Step 4: from salient cone to positive polynomials

Then $0^{d}=\underbrace{\left(1+A_{1}^{\top}+2 A_{1}^{\top} A_{2}^{\top 2}\right)}_{\begin{array}{c}\text { polynomials over } A_{1}^{\top}, A_{2}^{\top} \\ \text { with positive coefficients }\end{array}} \cdot c_{1}+\underbrace{A_{2}^{\top}} \cdot c_{3}$.

Step 4: from salient cone to positive polynomials

Then $0^{d}=\underbrace{\left(1+A_{1}^{\top}+2 A_{1}^{\top} A_{2}^{\top}{ }^{2}\right)} \cdot c_{1}+\underbrace{A_{2}^{\top}} \cdot c_{3}$.
polynomials over $A_{1}^{\top}, A_{2}^{\top}$
with positive coefficients

Proposition

The orbit $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ is not salient if and only if there exist "positive polynomials" $f_{1}, \ldots, f_{m} \in \mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]$, not all zero, such that $0^{d}=f_{1}\left(A_{1}^{\top}, \ldots, A_{n}^{\top}\right) \cdot c_{1}+\cdots+f_{m}\left(A_{1}^{\top}, \ldots, A_{n}^{\top}\right) \cdot c_{m}$.

Step 5: positive polynomial in a module

Let \mathcal{M} be the $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$-submodule of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$ consisting of all tuples $\left(f_{1}, \ldots, f_{m}\right)$ such that

$$
0^{d}=f_{1}\left(A_{1}^{\top}, \ldots, A_{n}^{\top}\right) \cdot c_{1}+\cdots+f_{m}\left(A_{1}^{\top}, \ldots, A_{n}^{\top}\right) \cdot c_{m} .
$$

Step 5: positive polynomial in a module

Let \mathcal{M} be the $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$-submodule of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$ consisting of all tuples $\left(f_{1}, \ldots, f_{m}\right)$ such that

$$
0^{d}=f_{1}\left(A_{1}^{\top}, \ldots, A_{n}^{\top}\right) \cdot c_{1}+\cdots+f_{m}\left(A_{1}^{\top}, \ldots, A_{n}^{\top}\right) \cdot c_{m} .
$$

Proposition

The orbit $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ is not salient if and only if

$$
\mathcal{M} \cap\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]\right)^{m} \neq\left\{0^{m}\right\}
$$

Step 5: positive polynomial in a module

Let \mathcal{M} be the $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$-submodule of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$ consisting of all tuples $\left(f_{1}, \ldots, f_{m}\right)$ such that

$$
0^{d}=f_{1}\left(A_{1}^{\top}, \ldots, A_{n}^{\top}\right) \cdot c_{1}+\cdots+f_{m}\left(A_{1}^{\top}, \ldots, A_{n}^{\top}\right) \cdot c_{m} .
$$

Proposition
The orbit $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ is not salient if and only if

$$
\mathcal{M} \cap\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]\right)^{m} \neq\left\{0^{m}\right\}
$$

Proposition ("multivariate", "m-dimensional" Cayley-Hamilton theorem)

A finite set of generators for \mathcal{M} can be effectively computed.

Step 5: positive polynomial in a module

Let \mathcal{M} be the $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$-submodule of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$ consisting of all tuples $\left(f_{1}, \ldots, f_{m}\right)$ such that

$$
0^{d}=f_{1}\left(A_{1}^{\top}, \ldots, A_{n}^{\top}\right) \cdot c_{1}+\cdots+f_{m}\left(A_{1}^{\top}, \ldots, A_{n}^{\top}\right) \cdot c_{m} .
$$

Proposition

The orbit $\left\langle S^{\top}\right\rangle \cdot\left\langle c_{1}, \ldots, c_{m}\right\rangle$ is not salient if and only if

$$
\mathcal{M} \cap\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]\right)^{m} \neq\left\{0^{m}\right\}
$$

Proposition ("multivariate", "m-dimensional" Cayley-Hamilton theorem)

A finite set of generators for \mathcal{M} can be effectively computed.
Proof idea: the characteristic polynomials of $A_{1}^{\top}, \ldots, A_{n}^{\top}$ are in \mathcal{M}. The module $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$ becomes finite dimensional \mathbb{R}-linear space after quotient by these characteristic polynomials, the rest is linear algebra.

Step 6: local-global principle by Einsiedler et al.

It suffices to decide whether $\mathcal{M} \cap\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$ is empty.

Step 6: local-global principle by Einsiedler et al.

It suffices to decide whether $\mathcal{M} \cap\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$ is empty.
Example: suppose polynomials are univariate and \mathcal{M} is the solution set of the linear equation

$$
\begin{equation*}
0=f_{1} \cdot\left(2 X^{2}-1\right)+f_{2} \cdot(X+2) \tag{1}
\end{equation*}
$$

i.e. does (1) have solution $f_{1}, f_{2} \in \mathbb{R}_{\geq 0}\left[X^{ \pm}\right]^{*}$?

Step 6: local-global principle by Einsiedler et al.

It suffices to decide whether $\mathcal{M} \cap\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$ is empty.
Example: suppose polynomials are univariate and \mathcal{M} is the solution set of the linear equation

$$
\begin{equation*}
0=f_{1} \cdot\left(2 X^{2}-1\right)+f_{2} \cdot(X+2) \tag{1}
\end{equation*}
$$

i.e. does (1) have solution $f_{1}, f_{2} \in \mathbb{R}_{\geq 0}\left[X^{ \pm}\right]^{*}$?

No! Evaluate $X=1$, then $0=f_{1}(1)+3 f_{2}(1)$. No solution over $\mathbb{R}_{>0}$.

Step 6: local-global principle by Einsiedler et al.

It suffices to decide whether $\mathcal{M} \cap\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$ is empty.
Example: suppose polynomials are univariate and \mathcal{M} is the solution set of the linear equation

$$
\begin{equation*}
0=f_{1} \cdot\left(2 X^{2}-1\right)+f_{2} \cdot(X+2) \tag{1}
\end{equation*}
$$

i.e. does (1) have solution $f_{1}, f_{2} \in \mathbb{R}_{\geq 0}\left[X^{ \pm}\right]^{*}$?

No! Evaluate $X=1$, then $0=f_{1}(1)+3 f_{2}(1)$. No solution over $\mathbb{R}_{>0}$.
If $\mathcal{M} \cap\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$ is empty, such "certificate" always exists!

Theorem (Einsiedler, Mouat, Tuncel (2003))

Let \mathcal{M} be an $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$-submodule of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$. Then there exists $\boldsymbol{f} \in \mathcal{M} \cap\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$ if and only if:
(1) For every $r \in \mathbb{R}_{>0}^{n}$, there exists $\boldsymbol{f}_{r} \in \mathcal{M}$ such that $\boldsymbol{f}_{r}(r) \in \mathbb{R}_{>0}^{m}$.
(2) For every $v \in\left(\mathbb{R}^{n}\right)^{*}$, there exists $\boldsymbol{f}_{v} \in \mathcal{M}$, whose initial polynomial $\operatorname{in}_{v}\left(\boldsymbol{f}_{v}\right)$ is in $\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$.

Step 6: local-global principle by Einsiedler et al.

Theorem (Einsiedler, Mouat, Tuncel (2003))

Let \mathcal{M} be an $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$-submodule of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$. Then there exists $\boldsymbol{f} \in \mathcal{M} \cap\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$ if and only if:
(1) For every $r \in \mathbb{R}_{>0}$, there exists $\boldsymbol{f}_{r} \in \mathcal{M}$ such that $\boldsymbol{f}_{r}(r) \in \mathbb{R}_{>0}^{m}$.
(2) For every $v \in\left(\mathbb{R}^{n}\right)^{*}$, there exists $\boldsymbol{f}_{v} \in \mathcal{M}$, whose initial polynomial $\operatorname{in}_{v}\left(\boldsymbol{f}_{v}\right)$ is in $\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$.

Step 6: local-global principle by Einsiedler et al.

Theorem (Einsiedler, Mouat, Tuncel (2003))

Let \mathcal{M} be an $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$-submodule of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$. Then there exists $\boldsymbol{f} \in \mathcal{M} \cap\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$ if and only if:
(1) For every $r \in \mathbb{R}_{>0}$, there exists $\boldsymbol{f}_{r} \in \mathcal{M}$ such that $\boldsymbol{f}_{r}(r) \in \mathbb{R}_{>0}^{m}$.
(2) For every $v \in\left(\mathbb{R}^{n}\right)^{*}$, there exists $\boldsymbol{f}_{v} \in \mathcal{M}$, whose initial polynomial $\operatorname{in}_{v}\left(\boldsymbol{f}_{v}\right)$ is in $\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$.

Condition 1 can be checked using the first order theory of the reals.

Step 6: local-global principle by Einsiedler et al.

Theorem (Einsiedler, Mouat, Tuncel (2003))

Let \mathcal{M} be an $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$-submodule of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$. Then there exists $\boldsymbol{f} \in \mathcal{M} \cap\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$ if and only if:
(1) For every $r \in \mathbb{R}_{>0}$, there exists $\boldsymbol{f}_{r} \in \mathcal{M}$ such that $\boldsymbol{f}_{r}(r) \in \mathbb{R}_{>0}^{m}$.
(2) For every $v \in\left(\mathbb{R}^{n}\right)^{*}$, there exists $\boldsymbol{f}_{v} \in \mathcal{M}$, whose initial polynomial $\operatorname{in}_{v}\left(\boldsymbol{f}_{v}\right)$ is in $\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$.

Condition 1 can be checked using the first order theory of the reals.
Condition 2 only needs to be checked for a finite number of v (consider the Newton polytopes of a Gröbner basis of \mathcal{M}).

Corollary

Given a finite set of generators for the $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$-submodule \mathcal{M} of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$, it is decidable whether $\mathcal{M} \cap\left(\mathbb{R}_{\geq 0}\left[X_{1}, \ldots, X_{n}\right]^{*}\right)^{m}$ is empty.

Conclusion

Termination of linear loops with commuting matrices \longleftrightarrow whether a submodule \mathcal{M} of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$ contains a "positive" element.

Theorem

Termination of linear loops with commuting matrices is decidable.

Conclusion

Termination of linear loops with commuting matrices \longleftrightarrow whether a submodule \mathcal{M} of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$ contains a "positive" element.

Theorem

Termination of linear loops with commuting matrices is decidable.
What about non-commuting matrices?

Conclusion

Termination of linear loops with commuting matrices \longleftrightarrow whether a submodule \mathcal{M} of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$ contains a "positive" element.

Theorem

Termination of linear loops with commuting matrices is decidable.
What about non-commuting matrices?
Let $\mathbb{R}\left\langle X_{1}, \ldots, X_{n}\right\rangle$ denote the ring of non-commutative polynomials.

Open Problem

Given the generators of a left submodule \mathcal{M} of $\mathbb{R}\left\langle X_{1}, \ldots, X_{n}\right\rangle^{m}$, can we decide whether \mathcal{M} contains an element with only positive coefficients?

Conclusion

Termination of linear loops with commuting matrices \longleftrightarrow whether a submodule \mathcal{M} of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{m}$ contains a "positive" element.

Theorem

Termination of linear loops with commuting matrices is decidable.
What about non-commuting matrices?
Let $\mathbb{R}\left\langle X_{1}, \ldots, X_{n}\right\rangle$ denote the ring of non-commutative polynomials.

Open Problem

Given the generators of a left submodule \mathcal{M} of $\mathbb{R}\left\langle X_{1}, \ldots, X_{n}\right\rangle^{m}$, can we decide whether \mathcal{M} contains an element with only positive coefficients?

Open Problem (Interesting special cases)

- Given $f \in \mathbb{R}\left\langle X_{1}, \ldots, X_{n}\right\rangle$, decide if there exists $g \neq 0$ such that $g \cdot f$ has only positive coefficients?
- Let G be a 2 -step nilpotent group, decide if a left ideal of $\mathbb{R}[G]$ contains an element of $\mathbb{R}_{\geq 0}[G]^{*}$.

