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An old decidability problem

Markov (1940s): is the following decidable?

Input: Set of square matrices S = {A1, . . . ,AK}, target matrix T .
Output: Is there a sequence B1,B2, . . . ,Bm ∈ S , s.t. B1B2 · · ·Bm = T?

Markov : undecidable in Z6×6.

Michailova (1960s): is the following decidable?

Input: Set of element S = {a1, . . . , aK} in a group G , target element T .
Output: Is T in the subgroup ⟨S⟩grp generated by S?

Michailova : undecidable in F2 × F2 ↪→ Z4×4.
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Membership problems

⟨S⟩: the semigroup generated by S . ⟨S⟩grp: the group generated by S .
Input: finite set S = {a1, . . . , aK} in ambient group G and target T .

Definition (Semigroup Membership)

Output: T ∈ ⟨S⟩?

Definition (Group Membership)

Output: T ∈ ⟨S⟩grp?

Group Membership is much more tractable than Semigroup Membership.

group types Group Membership Semigroup Membership
free abelian (Zn) PTIME NP-complete
2-step nilpotent Decidable Undecidable
polycylic Decidable Undecidable
metabelian Decidable Undecidable

free (F2) Decidable Decidable
F2 × F2 Undecidable Undecidable
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Intermediate Problems
Input: finite set S = {a1, . . . , aK} in some ambient group G .

Definition

Identity Problem: Let e be the neutral element of G . Is e ∈ ⟨S⟩?
Inverse Problem: Is a−1

1 ∈ ⟨S⟩?
Group Problem: Is ⟨S⟩ a group?

Let S∗ be the set of words over the alphabet S = {a1, . . . , aK}.

π : S∗ →
(
⟨S⟩ ∪ {e}

)
↪→ G .

ai1ai2 · · · aim 7→ ai1 · ai2 · · · · aim
Consider the language π−1({e}).

Proposition

1 The Identity Problem asks if π−1(e) ̸= {ϵ}.
2 The Inverse Problem asks if π−1(e) contains a word that uses the

letter a1.

3 The Group Problem asks if π−1(e) contains a word that uses all the
letters a1, . . . , aK .
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Known results

Let [G ,H] denote the group generated by {ghg−1h−1 | g ∈ G , h ∈ H}.

A group G is metabelian if [G ,G ] is abelian, (equivalently, if there exists
an abelian normal subgroup A⊴ G such that G/A is also abelian).

group types Group
Membership

Intermediate
Problems

Semigroup
Membership

abelian
([G ,G ] = {e})

PTIME PTIME NP-compl.

2-step nilpotent
([G , [G ,G ]] = {e})

Decidable Decidable Undecidable

polycylic Decidable
(Kopytov ’68)

? Undecidable

metabelian
([[G ,G ], [G ,G ]] = {e})

Decidable
(Romanovski ’74)

Decidable
(D. 2023)

Undecidable

free (F2) Decidable Decidable Decidable
F2 × F2 Undecidable

(Mikhailova ’66)
Undecidable
(Bell 2010)

Undecidable
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Representing a metabelian group

Every finitely generated metabelian group admits an A 2-presentation.

Fn : free group over n generators.
Mn := Fn/[[Fn,Fn], [Fn,Fn]] - free metabelian group over n generators.

An A 2-presentation of a metabelian group G is r1, . . . , rm ∈ Mn such that

G = Mn/ ncl(r1, . . . , rm).

(ncl(r1, . . . , rm) is the smallest normal subgroup containing {r1, . . . , rm}.)

Theorem (Magnus, Baumslag)

Suppose we are given an A 2-presentation of G. One can effectively
embed G as a subgroup of Y ⋊ A, where A is f.g. abelian and Y is a f.p.
Z[A]-module.
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Example

From now on we will illustrate using the example G = Z ≀ Z2:

Z ≀ Z2 :=

{(
X a1
1 X a2

2 f
0 1

) ∣∣∣∣ a1, a2 ∈ Z, f ∈ Z[X±
1 ,X±

2 ]

}
.

Group law:(
X a1
1 X a2

2 f
0 1

)(
X

a′1
1 X

a′2
2 f ′

0 1

)
=

(
X

a1+a′1
1 X

a2+a′2
2 f + X a1

1 X a2
2 f ′

0 1

)
.

Let S =

{(
X a11
1 X a12

2 f1
0 1

)
, . . . ,

(
X aK1
1 X aK2

2 fK
0 1

)}
.

As an example, we want to decide the Group Problem.

i.e. is there w ∈ S∗, using every letter in S , such that π(w) =

(
1 0
0 1

)
?
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S-graphs

As an example, take

S =

{
a1 :=

(
X−2
1 X 3

2 f1
0 1

)
, a2 :=

(
X 2
1 f2
0 1

)
, a3 :=

(
X−2
2 f3
0 1

)}
.

For each word w ∈ S∗, associate to it a graph Γ(w) over the lattice Z2.
Example: w = a1a2a2a3a3a1a3
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S-graphs: continued

S =

{
a1 :=

(
X−2
1 X 3

2 f1
0 1

)
, a2 :=

(
X 2
1 f2
0 1

)
, a3 :=

(
X−2
2 f3
0 1

)}
.

Example: w = a1a2a2a3a3a1a3

words w ∈ S∗ such that π(w) =

(
1 ∗
0 1

)
←→ Eulerian graphs

words w ∈ S∗ such that π(w) =

(
∗ 0
0 1

)
←→ ???
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Position polynomials

w = a1a2a2a3a3a1a3.

The position polynomials of w are p1, p2, p3 in N[X±
1 ,X±

2 ], where pi is
the sum of all monomials corresponding to starting points of edges i :

p1 = 1 + X 2
1X

−1
2

p2 = X−2
1 X 3

2 + X 3
2

p3 = X 2
1X

3
2 + X 2

1X2 + X 2
2
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From semigroup to polynomial semiring

Let w ∈ S∗ be a word.

π(w) =

(
1 ∗
0 1

)
⇔ graph Γ(w) is Eulerian.

π(w) =

(
∗ 0
0 1

)
⇔ p1, p2, p3 ∈ N[X±

1 ,X±
2 ] satisfy f1p1 + f2p2 + f3p3 = 0

Can we describe “Eulerian” using p1, p2, p3?

Γ(w) is Eulerian

⇔ at each v ∈ Z2, indeg(v) = outdeg(v), and Γ(w) is connected

⇕ ⇕

X−2
1 X 3

2 p1 + X 2
1 p2 + X−2

2 p3 = p1 + p2 + p3 “degree constraints”
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Degree constraints: face-accessibility
Connectivity is a global property, but p1, p2, p3 describe local properties.

Definition (Face-accessibility)

Let Γ be a graph and C be the convex hull of all its vertices. Γ is called
face-accessible if for every strict face F of C , Γ contains an edge leaving
F .

Figure: Face-accessible graph Figure: Not face-accessible

For v ∈ R2 \ {0}, define degv
(∑

a∈Z2 caX
a
)
:= maxca ̸=0{a · v}.

Γ is face-accessible if and only if

∀v ∈ R2 \ {0},∃i ∈ {1, 2, 3}, degv (pi ) = max
1≤i ′≤3

{degv (pi ′)} and v ̸⊥ (ai1, ai2).
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Degree constraints: from face-accessibility to connectivity

Proposition

Let Γ be a symmetric and face-accessible graph. Then there exist
z1, . . . , zm ∈ Zn, such that the union of translations Γ̂ :=

⋃m
i=1 (Γ + zi ) is

an Eulerian graph.

Figure: Symmetric face-accessible Γ. Figure:
⋃1

i=1 (Γ + zi ).
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Degree constraints: from face-accessibility to connectivity

Proposition

Let Γ be a symmetric and face-accessible graph. Then there exist
z1, . . . , zm ∈ Zn, such that the union of translations Γ̂ :=

⋃m
i=1 (Γ + zi ) is

an Eulerian graph.

Figure: Symmetric face-accessible Γ. Figure:
⋃2

i=1 (Γ + zi ).
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Degree constraints: from face-accessibility to connectivity

Proposition

Let Γ be a symmetric and face-accessible graph. Then there exist
z1, . . . , zm ∈ Zn, such that the union of translations Γ̂ :=

⋃m
i=1 (Γ + zi ) is

an Eulerian graph.

Figure: Symmetric face-accessible Γ. Figure:
⋃3

i=1 (Γ + zi ).
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Degree constraints: from face-accessibility to connectivity

Proposition

Let Γ be a symmetric and face-accessible graph. Then there exist
z1, . . . , zm ∈ Zn, such that the union of translations Γ̂ :=

⋃m
i=1 (Γ + zi ) is

an Eulerian graph.

Figure: Symmetric face-accessible Γ. Figure: Γ̂ =
⋃4

i=1 (Γ + zi ) is Eulerian.

Ruiwen Dong Decision problems in sub-semigroups of metabelian groups



Degree constraints: counterexample

Proposition

Let Γ be a symmetric and face-accessible graph. Then there exist
z1, . . . , zm ∈ Zn, such that the union of translations Γ̂ :=

⋃m
i=1 (Γ + zi ) is

an Eulerian graph.

Figure: Non face-accessible Γ. Figure: Γ̂ cannot be connected.
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Degree constraints: describing face-accessibility

Proposition

Let Γ be a symmetric and face-accessible graph. Then there exist
z1, . . . , zm ∈ Zn, such that the union of translations Γ̂ :=

⋃m
i=1 (Γ + zi ) is

an Eulerian graph.

If the position polynomials of Γ are p1, p2, p3, then that of Γ̂ are
p̂1 := p1 ·

∑m
i=1 X

zi , p̂2 := p2 ·
∑m

i=1 X
zi , p̂3 := p3 ·

∑m
i=1 X

zi .

Homogeneous linear equations satisfied by p1, p2, p3 are satisfied by p̂1, p̂2, p̂3.

Recall that Γ is face-accessible if and only if

∀v ∈ R2\{0},∃i ∈ {1, 2, 3}, degv (pi ) = max
i ′
{degv (pi ′)} and v ̸⊥ (ai1, ai2).

(∗)
We will call (∗) the “degree constraints”.
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From semigroup to polynomial semiring: summing up

⟨S⟩ is a group

⇐⇒ There exists word w ∈ S∗ containing every letter, such that π(w) = e

⇐⇒ There exists an Eulerian graph Γ with position polynomials

p1, p2, p3 ∈ N[X±
1 ,X±

2 ]∗ such that f1p1 + f2p2 + f3p3 = 0

⇐⇒ There exists a connected graph Γ with position polynomials

p1, p2, p3 ∈ N[X±
1 ,X±

2 ]∗ such that f1p1 + f2p2 + f3p3 = 0

and X−2
1 X 3

2 p1 + X 2
1 p2 + X−2

2 p3 = p1 + p2 + p3

⇐⇒ There exists a face-accessible graph Γ with position polynomials

p1, p2, p3 ∈ N[X±
1 ,X±

2 ]∗ such that f1p1 + f2p2 + f3p3 = 0

and X−2
1 X 3

2 p1 + X 2
1 p2 + X−2

2 p3 = p1 + p2 + p3

⇐⇒ There exist p1, p2, p3 ∈ N[X±
1 ,X±

2 ]∗ satisfying “degree constraints”,

such that f1p1 + f2p2 + f3p3 = 0 and

(X−2
1 X 3

2 − 1)p1 + (X 2
1 − 1)p2 + (X−2

2 − 1)p3 = 0
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Local-global principle
We need to decide whether there exist p1, p2, p3 ∈ N[X±]∗ satisfying
“degree constraints” and a system of homogeneous linear equations.

Theorem (Einsiedler, 2003)

LetM be an Z[X±]-submodule of Z[X±]K . ThenM∩
(
N[X±]∗

)K ̸= ∅
if and only if the following are satisfied:

1 For every r ∈ Rn
>0, there exists f r ∈M such that f r (r) ∈ RK

>0.

2 For every v ∈ (Rn)∗, there exists f v ∈M, such that

inv (f v ) ∈
(
N[X±]∗

)K
.

Theorem (Generalization of Einsiedler)

LetM be a submodule of Z[X±]K . There exists f ∈M∩
(
N[X±]∗

)K
with “degree constraints” if and only if the following are satisfied:

1 For every r ∈ Rn
>0, there exists f r ∈M such that f r (r) ∈ RK

>0.

2 For every v ∈ (Rn)∗, there exists f v ∈M, such that

inv (f v ) ∈
(
N[X±]∗

)K
and satisfies some “degree constraints”.
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Einsiedler’s proof

1 “Glue up” all f v to obtain f ∞ satisfying inv (f ∞) ∈
(
N[X±]∗

)K
for

all v ∈ (Rn)∗. In particular, f ∞(r) ∈ RK
>0 for all r ∈ Rn except a

compact set C .

2 “Glue up” all f r to obtain f C satisfying f C (r) ∈ RK
>0 for all r ∈ C .

3 “Glue up” f ∞ and f C to obtain f satisfying
1 f (r) ∈ RK

>0 for all r ∈ Rn
>0,

2 inv (f ) (r) ∈ RK
>0 for all v ∈ (Rn)∗ , r ∈ Rn

>0.

4 Use Handelman’s theorem:

Theorem (Handelman, 1985)

Let f ∈ R[X±] be a polynomial. There exists g ∈ R>0[X
±] such that

fg ∈ R>0[X
±] if and only if f satisfies the two following conditions:

1 For all r ∈ Rn
>0, we have f (r) > 0.

2 For all v ∈ (Rn)∗ and r ∈ Rn
>0, we have inv (f )(r) > 0.

Proof idea: Let F be f replacing all coefficients with their absolute
value. Let S (S+) be the subring (subsemiring) of R[X±, 1

F ] generated

by X a

F where X a is a monomial of F . Consider pure states of S .
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Decidability

Theorem (Generalization of Einsiedler)

LetM be a submodule of Z[X±]K . There exists f ∈M∩
(
N[X±]∗

)K
with “degree constraints” if and only if the following are satisfied:

1 For every r ∈ Rn
>0, there exists f r ∈M such that f r (r) ∈ RK

>0.

2 For every v ∈ (Rn)∗, there exists f v ∈M, such that

inv (f v ) ∈
(
N[X±]∗

)K
and satisfies some “degree constraints”.

We can prove that it suffices to verify condition 2. for a countable
number of v .

To decide whether there exists f ∈M∩
(
N[X±]∗

)K
with “degree

constraints”, run three procedures simultaneously:

1 Procedure A enumerates every element ofM and check if it is in(
N[X±]∗

)K
and satisfies “degree constraints”.

2 Procedure B checks condition 1. using first order theory of reals.

3 Procedure C enumerates the countably many v in condition 2. and
checks the condition on inv (M).
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and satisfies “degree constraints”.

2 Procedure B checks condition 1. using first order theory of reals.

3 Procedure C enumerates the countably many v in condition 2. and
checks the condition on inv (M).
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Open problems

1 Local-global principle on the level of semigroups instead of
semirings?

2 Add a drop of non-commutativity into Handelman and Einsiedler’s
results?

3 Extend to centre-by-metabelian groups ([[[G ,G ], [G ,G ]],G ] = {e})?
4 Word problem in some 3-step solvable groups is undecidable

(Kharlampovich, 1981). What about Intermediate Problems?

5 Do we have better characterization of π−1(e), other than the set of
letters appearing?

6 Any structure onM∩
(
N[X±]∗

)K
?

7 Can we solve one non-homogeneous linear equation over N[X±]?
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