Decision problems in sub-semigroups of metabelian groups

Ruiwen Dong

Saarland University

November 2023

An old decidability problem

Markov (1940s): is the following decidable?

Input: Set of square matrices $S = \{A_1, \ldots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \ldots, B_m \in S$, s.t. $B_1B_2 \cdots B_m = T$?

An old decidability problem

Markov (1940s): is the following decidable?

Input: Set of square matrices $S = \{A_1, \ldots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \ldots, B_m \in S$, s.t. $B_1B_2 \cdots B_m = T$?

Markov : undecidable in $\mathbb{Z}^{6 \times 6}$.

Markov (1940s): is the following decidable?

Input: Set of square matrices $S = \{A_1, \ldots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \ldots, B_m \in S$, s.t. $B_1B_2 \cdots B_m = T$?

Markov : undecidable in $\mathbb{Z}^{6 \times 6}$.

Michailova (1960s): is the following decidable?

Input: Set of element $S = \{a_1, \ldots, a_K\}$ in a group G, target element T. **Output:** Is T in the subgroup $\langle S \rangle_{grp}$ generated by S? Markov (1940s): is the following decidable?

Input: Set of square matrices $S = \{A_1, \ldots, A_K\}$, target matrix T. **Output:** Is there a sequence $B_1, B_2, \ldots, B_m \in S$, s.t. $B_1B_2 \cdots B_m = T$?

Markov : undecidable in $\mathbb{Z}^{6 \times 6}$.

Michailova (1960s): is the following decidable?

Input: Set of element $S = \{a_1, \ldots, a_K\}$ in a group G, target element T. **Output:** Is T in the subgroup $\langle S \rangle_{grp}$ generated by S?

Michailova : undecidable in $F_2 \times F_2 \hookrightarrow \mathbb{Z}^{4 \times 4}$.

Membership problems

 $\langle S \rangle$: the *semigroup* generated by *S*. $\langle S \rangle_{grp}$: the *group* generated by *S*. **Input:** finite set $S = \{a_1, \ldots, a_K\}$ in ambient group *G* and target *T*.

Definition (Semigroup Membership)

Output: $T \in \langle S \rangle$?

Definition (Group Membership)

Output: $T \in \langle S \rangle_{grp}$?

Membership problems

 $\langle S \rangle$: the *semigroup* generated by *S*. $\langle S \rangle_{grp}$: the *group* generated by *S*. **Input:** finite set $S = \{a_1, \ldots, a_K\}$ in ambient group *G* and target *T*.

Definition (Semigroup Membership)

Output: $T \in \langle S \rangle$?

Definition (Group Membership)

Output: $T \in \langle S \rangle_{grp}$?

Group Membership is much more tractable than Semigroup Membership.

Membership problems

 $\langle S \rangle$: the *semigroup* generated by *S*. $\langle S \rangle_{grp}$: the *group* generated by *S*. **Input:** finite set $S = \{a_1, \ldots, a_K\}$ in ambient group *G* and target *T*.

Definition (Semigroup Membership)

Output: $T \in \langle S \rangle$?

Definition (Group Membership)

Output: $T \in \langle S \rangle_{grp}$?

Group Membership is much more tractable than Semigroup Membership.

group types	Group Membership	Semigroup Membership	
free abelian (\mathbb{Z}^n)	PTIME	NP-complete	
2-step nilpotent	Decidable	Undecidable	
polycylic	Decidable	Undecidable	
metabelian	Decidable	Undecidable	
free (F ₂)	Decidable	Decidable	
$F_2 \times F_2$	Undecidable	Undecidable	

Intermediate Problems

Input: finite set $S = \{a_1, \ldots, a_K\}$ in some ambient group G.

Definition

Identity Problem: Let *e* be the neutral element of *G*. Is $e \in \langle S \rangle$? **Inverse Problem:** Is $a_1^{-1} \in \langle S \rangle$? **Group Problem:** Is $\langle S \rangle$ a group?

Intermediate Problems

Input: finite set $S = \{a_1, \ldots, a_K\}$ in some ambient group G.

Definition

Identity Problem: Let *e* be the neutral element of *G*. Is $e \in \langle S \rangle$? **Inverse Problem:** Is $a_1^{-1} \in \langle S \rangle$? **Group Problem:** Is $\langle S \rangle$ a group?

Let S^* be the set of words over the alphabet $S = \{a_1, \ldots, a_K\}$.

$$\pi\colon S^*\to \big(\langle S\rangle\cup\{e\}\big)\hookrightarrow G$$
$$a_{i_1}a_{i_2}\cdots a_{i_m}\mapsto a_{i_1}\cdot a_{i_2}\cdots a_{i_m}$$

Consider the language $\pi^{-1}(\{e\})$.

Intermediate Problems

Input: finite set $S = \{a_1, \ldots, a_K\}$ in some ambient group G.

Definition

Identity Problem: Let *e* be the neutral element of *G*. Is $e \in \langle S \rangle$? **Inverse Problem:** Is $a_1^{-1} \in \langle S \rangle$? **Group Problem:** Is $\langle S \rangle$ a group?

Let S^* be the set of words over the alphabet $S = \{a_1, \ldots, a_K\}$.

$$\pi\colon S^*\to \big(\langle S\rangle\cup\{e\}\big)\hookrightarrow G.$$
$$a_{i_1}a_{i_2}\cdots a_{i_m}\mapsto a_{i_1}\cdot a_{i_2}\cdots a_{i_m}$$

Consider the language $\pi^{-1}(\{e\})$.

Proposition

- The Identity Problem asks if $\pi^{-1}(e) \neq \{\epsilon\}$.
- On The Inverse Problem asks if π⁻¹(e) contains a word that uses the letter a₁.
- The Group Problem asks if π⁻¹(e) contains a word that uses all the letters a₁,..., a_K.

Known results

Let [G, H] denote the group generated by $\{ghg^{-1}h^{-1} \mid g \in G, h \in H\}$.

A group G is metabelian if [G, G] is abelian, (equivalently, if there exists an abelian normal subgroup $A \subseteq G$ such that G/A is also abelian).

group types	Group	Intermediate	Semigroup
	Membership	Problems	Membership
abelian	PTIME	PTIME	NP-compl.
$([G,G] = \{e\})$			
2-step nilpotent	Decidable	Decidable	Undecidable
$([G, [G, G]] = \{e\})$			
polycylic	Decidable	?	Undecidable
	(Kopytov '68)		
metabelian	Decidable	Decidable	Undecidable
$([[G,G],[G,G]] = \{e\})$	(Romanovski '74)	(D. 2023)	
free (F_2)	Decidable	Decidable	Decidable
$F_2 \times F_2$	Undecidable	Undecidable	Undecidable
	(Mikhailova '66)	(Bell 2010)	

Every finitely generated metabelian group admits an \mathscr{A}^2 -presentation.

Representing a metabelian group

Every finitely generated metabelian group admits an \mathscr{A}^2 -presentation.

 F_n : free group over *n* generators. $M_n := F_n/[[F_n, F_n], [F_n, F_n]]$ - free metabelian group over *n* generators. Every finitely generated metabelian group admits an \mathscr{A}^2 -presentation.

 F_n : free group over *n* generators. $M_n := F_n/[[F_n, F_n], [F_n, F_n]]$ - free metabelian group over *n* generators.

An \mathscr{A}^2 -presentation of a metabelian group G is $r_1, \ldots, r_m \in M_n$ such that

$$G = M_n / \operatorname{ncl}(r_1, \ldots, r_m).$$

 $(ncl(r_1, \ldots, r_m))$ is the smallest normal subgroup containing $\{r_1, \ldots, r_m\}$.

Every finitely generated metabelian group admits an \mathscr{A}^2 -presentation.

 F_n : free group over *n* generators. $M_n := F_n/[[F_n, F_n], [F_n, F_n]]$ - free metabelian group over *n* generators.

An \mathscr{A}^2 -presentation of a metabelian group G is $r_1, \ldots, r_m \in M_n$ such that

$$G = M_n / \operatorname{ncl}(r_1, \ldots, r_m).$$

 $(ncl(r_1,\ldots,r_m)$ is the smallest normal subgroup containing $\{r_1,\ldots,r_m\}$.)

Theorem (Magnus, Baumslag)

Suppose we are given an \mathscr{A}^2 -presentation of G. One can effectively embed G as a subgroup of $\mathcal{Y} \rtimes A$, where A is f.g. abelian and \mathcal{Y} is a f.p. $\mathbb{Z}[A]$ -module.

Example

From now on we will illustrate using the example $G = \mathbb{Z} \wr \mathbb{Z}^2$:

$$\mathbb{Z} \wr \mathbb{Z}^2 \coloneqq \left\{ \begin{pmatrix} X_1^{a_1} X_2^{a_2} & f \\ 0 & 1 \end{pmatrix} \middle| a_1, a_2 \in \mathbb{Z}, f \in \mathbb{Z}[X_1^{\pm}, X_2^{\pm}] \right\}$$

Example

From now on we will illustrate using the example $G = \mathbb{Z} \wr \mathbb{Z}^2$:

$$\mathbb{Z} \wr \mathbb{Z}^2 \coloneqq \left\{ \begin{pmatrix} X_1^{a_1} X_2^{a_2} & f \\ 0 & 1 \end{pmatrix} \middle| a_1, a_2 \in \mathbb{Z}, f \in \mathbb{Z}[X_1^{\pm}, X_2^{\pm}] \right\}.$$

Group law:

$$\begin{pmatrix} X_1^{a_1}X_2^{a_2} & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X_1^{a_1'}X_2^{a_2'} & f' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} X_1^{a_1+a_1'}X_2^{a_2+a_2'} & f+X_1^{a_1}X_2^{a_2}f' \\ 0 & 1 \end{pmatrix}.$$

Example

From now on we will illustrate using the example $G = \mathbb{Z} \wr \mathbb{Z}^2$:

$$\mathbb{Z} \wr \mathbb{Z}^2 := \left\{ \begin{pmatrix} X_1^{a_1} X_2^{a_2} & f \\ 0 & 1 \end{pmatrix} \middle| a_1, a_2 \in \mathbb{Z}, f \in \mathbb{Z}[X_1^{\pm}, X_2^{\pm}] \right\}.$$

Group law:

$$\begin{pmatrix} X_1^{a_1}X_2^{a_2} & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X_1^{a_1'}X_2^{a_2'} & f' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} X_1^{a_1+a_1'}X_2^{a_2+a_2'} & f+X_1^{a_1}X_2^{a_2}f' \\ 0 & 1 \end{pmatrix}.$$

Let
$$S = \left\{ \begin{pmatrix} X_1^{a_{11}} X_2^{a_{12}} & f_1 \\ 0 & 1 \end{pmatrix}, \dots, \begin{pmatrix} X_1^{a_{K1}} X_2^{a_{K2}} & f_K \\ 0 & 1 \end{pmatrix} \right\}.$$

As an example, we want to decide the Group Problem.

i.e. is there $w \in S^*$, using every letter in S, such that $\pi(w) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$?

As an example, take $S = \begin{cases} a_1 := \begin{pmatrix} X_1^{-2} X_2^3 & f_1 \\ 0 & 1 \end{pmatrix}, a_2 := \begin{pmatrix} X_1^2 & f_2 \\ 0 & 1 \end{pmatrix}, a_3 := \begin{pmatrix} X_2^{-2} & f_3 \\ 0 & 1 \end{pmatrix} \end{cases}.$

As an example, take $S = \begin{cases} a_1 := \begin{pmatrix} X_1^{-2} X_2^3 & f_1 \\ 0 & 1 \end{pmatrix}, a_2 := \begin{pmatrix} X_1^2 & f_2 \\ 0 & 1 \end{pmatrix}, a_3 := \begin{pmatrix} X_2^{-2} & f_3 \\ 0 & 1 \end{pmatrix} \end{cases}.$

For each word $w \in S^*$, associate to it a graph $\Gamma(w)$ over the lattice \mathbb{Z}^2 .

As an example, take $S = \begin{cases} a_1 := \begin{pmatrix} X_1^{-2} X_2^3 & f_1 \\ 0 & 1 \end{pmatrix}, a_2 := \begin{pmatrix} X_1^2 & f_2 \\ 0 & 1 \end{pmatrix}, a_3 := \begin{pmatrix} X_2^{-2} & f_3 \\ 0 & 1 \end{pmatrix} \end{cases}.$

For each word $w \in S^*$, associate to it a graph $\Gamma(w)$ over the lattice \mathbb{Z}^2 . **Example:** $w = a_1 a_2 a_2 a_3 a_3 a_1 a_3$

As an example, take $S = \begin{cases} a_1 := \begin{pmatrix} X_1^{-2} X_2^3 & f_1 \\ 0 & 1 \end{pmatrix}, a_2 := \begin{pmatrix} X_1^2 & f_2 \\ 0 & 1 \end{pmatrix}, a_3 := \begin{pmatrix} X_2^{-2} & f_3 \\ 0 & 1 \end{pmatrix} \end{cases}.$

For each word $w \in S^*$, associate to it a graph $\Gamma(w)$ over the lattice \mathbb{Z}^2 . **Example:** $w = \boxed{a_1 a_2 a_2 a_3 a_3 a_1 a_3}$

As an example, take $S = \begin{cases} a_1 := \begin{pmatrix} X_1^{-2} X_2^3 & f_1 \\ 0 & 1 \end{pmatrix}, a_2 := \begin{pmatrix} X_1^2 & f_2 \\ 0 & 1 \end{pmatrix}, a_3 := \begin{pmatrix} X_2^{-2} & f_3 \\ 0 & 1 \end{pmatrix} \end{cases}.$

For each word $w \in S^*$, associate to it a graph $\Gamma(w)$ over the lattice \mathbb{Z}^2 . **Example:** $w = \boxed{a_1 a_2} a_2 a_3 a_3 a_1 a_3$

As an example, take $S = \begin{cases} a_1 := \begin{pmatrix} X_1^{-2} X_2^3 & f_1 \\ 0 & 1 \end{pmatrix}, a_2 := \begin{pmatrix} X_1^2 & f_2 \\ 0 & 1 \end{pmatrix}, a_3 := \begin{pmatrix} X_2^{-2} & f_3 \\ 0 & 1 \end{pmatrix} \end{cases}.$

For each word $w \in S^*$, associate to it a graph $\Gamma(w)$ over the lattice \mathbb{Z}^2 . **Example:** $w = \boxed{a_1 a_2 a_2} a_3 a_3 a_1 a_3$

As an example, take $S = \begin{cases} a_1 := \begin{pmatrix} X_1^{-2} X_2^3 & f_1 \\ 0 & 1 \end{pmatrix}, a_2 := \begin{pmatrix} X_1^2 & f_2 \\ 0 & 1 \end{pmatrix}, a_3 := \begin{pmatrix} X_2^{-2} & f_3 \\ 0 & 1 \end{pmatrix} \end{cases}.$

For each word $w \in S^*$, associate to it a graph $\Gamma(w)$ over the lattice \mathbb{Z}^2 . **Example:** $w = \boxed{a_1 a_2 a_2 a_3} a_3 a_1 a_3$

As an example, take $S = \begin{cases} a_1 := \begin{pmatrix} X_1^{-2} X_2^3 & f_1 \\ 0 & 1 \end{pmatrix}, a_2 := \begin{pmatrix} X_1^2 & f_2 \\ 0 & 1 \end{pmatrix}, a_3 := \begin{pmatrix} X_2^{-2} & f_3 \\ 0 & 1 \end{pmatrix} \end{cases}.$

For each word $w \in S^*$, associate to it a graph $\Gamma(w)$ over the lattice \mathbb{Z}^2 . **Example:** $w = \boxed{a_1 a_2 a_2 a_3 a_3} a_1 a_3$

As an example, take $S = \begin{cases} a_1 := \begin{pmatrix} X_1^{-2} X_2^3 & f_1 \\ 0 & 1 \end{pmatrix}, a_2 := \begin{pmatrix} X_1^2 & f_2 \\ 0 & 1 \end{pmatrix}, a_3 := \begin{pmatrix} X_2^{-2} & f_3 \\ 0 & 1 \end{pmatrix} \end{cases}.$

For each word $w \in S^*$, associate to it a graph $\Gamma(w)$ over the lattice \mathbb{Z}^2 . **Example:** $w = \boxed{a_1 a_2 a_2 a_3 a_3 a_1} a_3$

As an example, take $S = \begin{cases} a_1 := \begin{pmatrix} X_1^{-2} X_2^3 & f_1 \\ 0 & 1 \end{pmatrix}, a_2 := \begin{pmatrix} X_1^2 & f_2 \\ 0 & 1 \end{pmatrix}, a_3 := \begin{pmatrix} X_2^{-2} & f_3 \\ 0 & 1 \end{pmatrix} \end{cases}.$

For each word $w \in S^*$, associate to it a graph $\Gamma(w)$ over the lattice \mathbb{Z}^2 . **Example:** $w = \boxed{a_1 a_2 a_2 a_3 a_3 a_1 a_3}$

S-graphs: continued

$$S = \left\{ a_1 := \begin{pmatrix} X_1^{-2} X_2^3 & f_1 \\ 0 & 1 \end{pmatrix}, a_2 := \begin{pmatrix} X_1^2 & f_2 \\ 0 & 1 \end{pmatrix}, a_3 := \begin{pmatrix} X_2^{-2} & f_3 \\ 0 & 1 \end{pmatrix} \right\}.$$

Example: $w = a_1 a_2 a_2 a_3 a_3 a_1 a_3$

S-graphs: continued

$$S = \left\{ a_1 := \begin{pmatrix} X_1^{-2} X_2^3 & f_1 \\ 0 & 1 \end{pmatrix}, a_2 := \begin{pmatrix} X_1^2 & f_2 \\ 0 & 1 \end{pmatrix}, a_3 := \begin{pmatrix} X_2^{-2} & f_3 \\ 0 & 1 \end{pmatrix} \right\}.$$

Example: $w = a_1 a_2 a_2 a_3 a_3 a_1 a_3$

words
$$w \in S^*$$
 such that $\pi(w) = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \longleftrightarrow$ *Eulerian* graphs
words $w \in S^*$ such that $\pi(w) = \begin{pmatrix} * & 0 \\ 0 & 1 \end{pmatrix} \longleftrightarrow$???

 $w=a_1a_2a_2a_3a_3a_1a_3.$

$$p_1 = 1 + X_1^2 X_2^{-1}$$

$$p_2 = X_1^{-2} X_2^3 + X_2^3$$

$$p_3 = X_1^2 X_2^3 + X_1^2 X_2 + X_2^3$$

 $w = a_1 a_2 a_2 a_3 a_3 a_1 a_3.$

$$p_1 = 1 + X_1^2 X_2^{-1}$$

$$p_2 = X_1^{-2} X_2^3 + X_2^3$$

$$p_3 = X_1^2 X_2^3 + X_1^2 X_2 + \lambda$$

 $w = a_1 a_2 a_2 a_3 a_3 a_1 a_3.$

$$p_1 = 1 + X_1^2 X_2^{-1}$$

$$p_2 = X_1^{-2} X_2^3 + X_2^3$$

$$p_3 = X_1^2 X_2^3 + X_1^2 X_2 + X_2^3$$

 $w = a_1 a_2 a_2 a_3 a_3 a_1 a_3.$

$$\begin{aligned} \rho_1 &= 1 + X_1^2 X_2^{-1} \\ \rho_2 &= X_1^{-2} X_2^3 + X_2^3 \\ \hline \rho_3 &= X_1^2 X_2^3 + X_1^2 X_2 + X_2^2 \end{aligned}$$

 $w = a_1 a_2 a_2 a_3 a_3 a_1 a_3.$

$$p_1 = 1 + X_1^2 X_2^{-1}$$

$$p_2 = X_1^{-2} X_2^3 + X_2^3$$

$$p_3 = X_1^2 X_2^3 + X_1^2 X_2 + X_2^2$$
Position polynomials

 $w = a_1 a_2 a_2 a_3 a_3 a_1 a_3.$

The position polynomials of w are p_1, p_2, p_3 in $\mathbb{N}[X_1^{\pm}, X_2^{\pm}]$, where p_i is the sum of all monomials corresponding to starting points of edges *i*:

$$p_1 = 1 + X_1^2 X_2^{-1}$$

$$p_2 = X_1^{-2} X_2^3 + X_2^3$$

$$p_3 = X_1^2 X_2^3 + X_1^2 X_2 + X_2^2$$

$$\pi(w) = \begin{pmatrix} * & 0 \\ 0 & 1 \end{pmatrix} \iff f_1 \cdot p_1 + f_2 \cdot p_2 + f_3 \cdot p_3 = 0$$

Let $w \in S^*$ be a word.

$$\pi(w) = egin{pmatrix} 1 & * \ 0 & 1 \end{pmatrix} \Leftrightarrow { t graph} \ {\sf \Gamma}(w) ext{ is Eulerian}$$

Let $w \in S^*$ be a word.

$$\pi(w) = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \Leftrightarrow \operatorname{graph} \Gamma(w) \text{ is Eulerian.}$$

$$\pi(w) = \begin{pmatrix} * & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow p_1, p_2, p_3 \in \mathbb{N}[X_1^{\pm}, X_2^{\pm}] \text{ satisfy } f_1p_1 + f_2p_2 + f_3p_3 = 0$$

Let $w \in S^*$ be a word.

$$\pi(w) = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \Leftrightarrow \operatorname{graph} \Gamma(w) \text{ is Eulerian.}$$

$$\pi(w) = \begin{pmatrix} * & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow p_1, p_2, p_3 \in \mathbb{N}[X_1^{\pm}, X_2^{\pm}] \text{ satisfy } f_1 p_1 + f_2 p_2 + f_3 p_3 = 0$$

Can we describe "Eulerian" using p_1, p_2, p_3 ?

Let $w \in S^*$ be a word.

$$\pi(w) = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \Leftrightarrow \operatorname{graph} \Gamma(w) \text{ is Eulerian.}$$

$$\pi(w) = \begin{pmatrix} * & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow p_1, p_2, p_3 \in \mathbb{N}[X_1^{\pm}, X_2^{\pm}] \text{ satisfy } f_1 p_1 + f_2 p_2 + f_3 p_3 = 0$$

Can we describe "Eulerian" using p_1, p_2, p_3 ?

 $\Gamma(w)$ is Eulerian

 \Leftrightarrow at each $v \in \mathbb{Z}^2$, indeg(v) = outdeg(v), and $\Gamma(w)$ is connected

Let $w \in S^*$ be a word.

$$\pi(w) = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \Leftrightarrow \text{graph } \Gamma(w) \text{ is Eulerian.}$$

$$\pi(w) = \begin{pmatrix} * & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow p_1, p_2, p_3 \in \mathbb{N}[X_1^{\pm}, X_2^{\pm}] \text{ satisfy } f_1p_1 + f_2p_2 + f_3p_3 = 0$$

Can we describe "Eulerian" using p_1, p_2, p_3 ?

 $\Gamma(w)$ is Eulerian

 \Leftrightarrow at each $v \in \mathbb{Z}^2$, indeg(v) =outdeg(v), and $\Gamma(w)$ is connected

 $T = \sum_{k=1}^{n} X_1^{-2} X_2^3 p_1 + X_1^2 p_2 + X_2^{-2} p_3 = p_1 + p_2 + p_3$ "degree constraints"

Degree constraints: face-accessibility

Connectivity is a global property, but p_1, p_2, p_3 describe local properties.

Degree constraints: face-accessibility

Connectivity is a global property, but p_1, p_2, p_3 describe local properties.

Definition (Face-accessibility)

Let Γ be a graph and *C* be the convex hull of all its vertices. Γ is called *face-accessible* if for every strict face *F* of *C*, Γ contains an edge leaving *F*.

Figure: Face-accessible graph

Figure: Not face-accessible

Degree constraints: face-accessibility

Connectivity is a global property, but p_1, p_2, p_3 describe local properties.

Definition (Face-accessibility)

Let Γ be a graph and *C* be the convex hull of all its vertices. Γ is called *face-accessible* if for every strict face *F* of *C*, Γ contains an edge leaving *F*.

Figure: Face-accessible graph

For $v \in \mathbb{R}^2 \setminus \{0\}$, define deg_v $\left(\sum_{a \in \mathbb{Z}^2} c_a X^a\right) := \max_{c_a \neq 0} \{a \cdot v\}$.

 $\boldsymbol{\Gamma}$ is face-accessible if and only if

$$\forall v \in \mathbb{R}^2 \setminus \{0\}, \exists i \in \{1, 2, 3\}, \mathsf{deg}_v(p_i) = \max_{1 \leq i' \leq 3} \{\mathsf{deg}_v(p_{i'})\} \text{ and } v \not\perp (a_{i1}, a_{i2}).$$

Let Γ be a symmetric and face-accessible graph. Then there exist $z_1, \ldots, z_m \in \mathbb{Z}^n$, such that the union of translations $\widehat{\Gamma} := \bigcup_{i=1}^m (\Gamma + z_i)$ is an Eulerian graph.

Let Γ be a symmetric and face-accessible graph. Then there exist $z_1, \ldots, z_m \in \mathbb{Z}^n$, such that the union of translations $\widehat{\Gamma} := \bigcup_{i=1}^m (\Gamma + z_i)$ is an Eulerian graph.

Figure: Symmetric face-accessible Γ .

Figure: $\bigcup_{i=1}^{1} (\Gamma + z_i)$.

Let Γ be a symmetric and face-accessible graph. Then there exist $z_1, \ldots, z_m \in \mathbb{Z}^n$, such that the union of translations $\widehat{\Gamma} := \bigcup_{i=1}^m (\Gamma + z_i)$ is an Eulerian graph.

Figure: Symmetric face-accessible Γ .

Figure: $\bigcup_{i=1}^{2} (\Gamma + z_i)$.

Let Γ be a symmetric and face-accessible graph. Then there exist $z_1, \ldots, z_m \in \mathbb{Z}^n$, such that the union of translations $\widehat{\Gamma} := \bigcup_{i=1}^m (\Gamma + z_i)$ is an Eulerian graph.

Figure: Symmetric face-accessible Γ .

Figure: $\bigcup_{i=1}^{3} (\Gamma + z_i)$.

Let Γ be a symmetric and face-accessible graph. Then there exist $z_1, \ldots, z_m \in \mathbb{Z}^n$, such that the union of translations $\widehat{\Gamma} := \bigcup_{i=1}^m (\Gamma + z_i)$ is an Eulerian graph.

Figure: Symmetric face-accessible Γ.

Figure: $\widehat{\Gamma} = \bigcup_{i=1}^{4} (\Gamma + z_i)$ is Eulerian.

Let Γ be a symmetric and face-accessible graph. Then there exist $z_1, \ldots, z_m \in \mathbb{Z}^n$, such that the union of translations $\widehat{\Gamma} := \bigcup_{i=1}^m (\Gamma + z_i)$ is an Eulerian graph.

Figure: Non face-accessible Γ .

Let Γ be a symmetric and face-accessible graph. Then there exist $z_1, \ldots, z_m \in \mathbb{Z}^n$, such that the union of translations $\widehat{\Gamma} := \bigcup_{i=1}^m (\Gamma + z_i)$ is an Eulerian graph.

Figure: Non face-accessible **Γ**.

Let Γ be a symmetric and face-accessible graph. Then there exist $z_1, \ldots, z_m \in \mathbb{Z}^n$, such that the union of translations $\widehat{\Gamma} := \bigcup_{i=1}^m (\Gamma + z_i)$ is an Eulerian graph.

Figure: Non face-accessible **Γ**.

Let Γ be a symmetric and face-accessible graph. Then there exist $z_1, \ldots, z_m \in \mathbb{Z}^n$, such that the union of translations $\widehat{\Gamma} := \bigcup_{i=1}^m (\Gamma + z_i)$ is an Eulerian graph.

Figure: Non face-accessible **Γ**.

Let Γ be a symmetric and face-accessible graph. Then there exist $z_1, \ldots, z_m \in \mathbb{Z}^n$, such that the union of translations $\widehat{\Gamma} := \bigcup_{i=1}^m (\Gamma + z_i)$ is an Eulerian graph.

If the position polynomials of Γ are p_1, p_2, p_3 , then that of $\widehat{\Gamma}$ are $\widehat{p_1} \coloneqq p_1 \cdot \sum_{i=1}^m X^{z_i}, \ \widehat{p_2} \coloneqq p_2 \cdot \sum_{i=1}^m X^{z_i}, \ \widehat{p_3} \coloneqq p_3 \cdot \sum_{i=1}^m X^{z_i}.$

Let Γ be a symmetric and face-accessible graph. Then there exist $z_1, \ldots, z_m \in \mathbb{Z}^n$, such that the union of translations $\widehat{\Gamma} := \bigcup_{i=1}^m (\Gamma + z_i)$ is an Eulerian graph.

If the position polynomials of Γ are p_1, p_2, p_3 , then that of $\widehat{\Gamma}$ are $\widehat{p_1} \coloneqq p_1 \cdot \sum_{i=1}^m X^{z_i}, \ \widehat{p_2} \coloneqq p_2 \cdot \sum_{i=1}^m X^{z_i}, \ \widehat{p_3} \coloneqq p_3 \cdot \sum_{i=1}^m X^{z_i}.$

Homogeneous linear equations satisfied by p_1, p_2, p_3 are satisfied by $\hat{p}_1, \hat{p}_2, \hat{p}_3$.

Let Γ be a symmetric and face-accessible graph. Then there exist $z_1, \ldots, z_m \in \mathbb{Z}^n$, such that the union of translations $\widehat{\Gamma} := \bigcup_{i=1}^m (\Gamma + z_i)$ is an Eulerian graph.

If the position polynomials of Γ are p_1, p_2, p_3 , then that of $\widehat{\Gamma}$ are $\widehat{p_1} \coloneqq p_1 \cdot \sum_{i=1}^m X^{z_i}, \ \widehat{p_2} \coloneqq p_2 \cdot \sum_{i=1}^m X^{z_i}, \ \widehat{p_3} \coloneqq p_3 \cdot \sum_{i=1}^m X^{z_i}.$

Homogeneous linear equations satisfied by p_1, p_2, p_3 are satisfied by $\hat{p}_1, \hat{p}_2, \hat{p}_3$.

Recall that Γ is face-accessible if and only if

 $\forall v \in \mathbb{R}^2 \setminus \{0\}, \exists i \in \{1, 2, 3\}, \deg_v(p_i) = \max_{i'} \{\deg_v(p_{i'})\} \text{ and } v \not\perp (a_{i1}, a_{i2}).$ (*)
We will call (*) the "degree constraints".

 $\langle S
angle$ is a group

 \iff There exists word $w \in S^*$ containing every letter, such that $\pi(w) = e$ \iff There exists an Eulerian graph Γ with position polynomials

 $p_1, p_2, p_3 \in \mathbb{N}[X_1^{\pm}, X_2^{\pm}]^*$ such that $f_1p_1 + f_2p_2 + f_3p_3 = 0$

 $\iff There \ exists \ a \ \underline{connected} \ graph \ \Gamma \ with \ position \ polynomials$

 $p_1, p_2, p_3 \in \mathbb{N}[X_1^{\pm}, X_2^{\pm}]^*$ such that $f_1p_1 + f_2p_2 + f_3p_3 = 0$ and $X_1^{-2}X_2^3p_1 + X_1^2p_2 + X_2^{-2}p_3 = p_1 + p_2 + p_3$

- $\iff \text{There exists a } \frac{face-accessible}{1} \text{ graph } \Gamma \text{ with position polynomials}$ $\stackrel{p_1, p_2, p_3 \in \mathbb{N}[X_1^{\pm}, X_2^{\pm}]^* \text{ such that } f_1 p_1 + f_2 p_2 + f_3 p_3 = 0$ $\text{and } X_1^{-2} X_2^3 p_1 + X_1^2 p_2 + X_2^{-2} p_3 = p_1 + p_2 + p_3$
- $\iff \text{There exist } p_1, p_2, p_3 \in \mathbb{N}[X_1^{\pm}, X_2^{\pm}]^* \text{ satisfying "degree constraints",} \\ \text{ such that } f_1 p_1 + f_2 p_2 + f_3 p_3 = 0 \text{ and} \\ (X_1^{-2} X_2^3 1) p_1 + (X_1^2 1) p_2 + (X_2^{-2} 1) p_3 = 0$

Local-global principle

We need to decide whether there exist $p_1, p_2, p_3 \in \mathbb{N}[\overline{X}^{\pm}]^*$ satisfying "degree constraints" and a system of **homogeneous** linear equations.

Theorem (Einsiedler, 2003)

Let \mathcal{M} be an $\mathbb{Z}[\overline{X}^{\pm}]$ -submodule of $\mathbb{Z}[\overline{X}^{\pm}]^{K}$. Then $\mathcal{M} \cap (\mathbb{N}[\overline{X}^{\pm}]^{*})^{K} \neq \emptyset$ if and only if the following are satisfied:

- For every $r \in \mathbb{R}^n_{>0}$, there exists $f_r \in \mathcal{M}$ such that $f_r(r) \in \mathbb{R}^{\mathcal{K}}_{>0}$.
- For every v ∈ (ℝⁿ)*, there exists f_v ∈ M, such that
 in_v (f_v) ∈ (ℝ[X[±]]*)^K.

Local-global principle

We need to decide whether there exist $p_1, p_2, p_3 \in \mathbb{N}[\overline{X}^{\pm}]^*$ satisfying "degree constraints" and a system of **homogeneous** linear equations.

Theorem (Einsiedler, 2003)

Let \mathcal{M} be an $\mathbb{Z}[\overline{X}^{\pm}]$ -submodule of $\mathbb{Z}[\overline{X}^{\pm}]^{K}$. Then $\mathcal{M} \cap (\mathbb{N}[\overline{X}^{\pm}]^{*})^{K} \neq \emptyset$ if and only if the following are satisfied:

- For every $r \in \mathbb{R}^n_{>0}$, there exists $f_r \in \mathcal{M}$ such that $f_r(r) \in \mathbb{R}^{\mathcal{K}}_{>0}$.
- For every v ∈ (ℝⁿ)*, there exists f_v ∈ M, such that
 in_v (f_v) ∈ (ℝ[X[±]]*)^K.

Theorem (Generalization of Einsiedler)

Let \mathcal{M} be a submodule of $\mathbb{Z}[\overline{X}^{\pm}]^{K}$. There exists $\mathbf{f} \in \mathcal{M} \cap (\mathbb{N}[\overline{X}^{\pm}]^{*})^{K}$ with "degree constraints" if and only if the following are satisfied:

• For every
$$r \in \mathbb{R}^n_{>0}$$
, there exists $m{f}_r \in \mathcal{M}$ such that $m{f}_r(r) \in \mathbb{R}^K_{>0}$.

2 For every v ∈ (ℝⁿ)^{*}, there exists **f**_v ∈ M, such that in_v (**f**_v) ∈ (ℝ[
$$\overline{X}^{\pm}$$
]^{*})^K and satisfies some "degree constraints"

- "Glue up" all f_v to obtain f_∞ satisfying in_v $(f_\infty) \in (\mathbb{R}[\overline{X}^{\pm}]^*)^K$ for all $v \in (\mathbb{R}^n)^*$. In particular, $f_\infty(r) \in \mathbb{R}_{>0}^K$ for all $r \in \mathbb{R}^n$ except a compact set C.
- **3** "Glue up" all f_r to obtain f_c satisfying $f_c(r) \in \mathbb{R}_{>0}^{K}$ for all $r \in C$.

- "Glue up" all f_v to obtain f_∞ satisfying in_v $(f_\infty) \in (\mathbb{N}[\overline{X}^{\pm}]^*)^K$ for all $v \in (\mathbb{R}^n)^*$. In particular, $f_\infty(r) \in \mathbb{R}_{>0}^K$ for all $r \in \mathbb{R}^n$ except a compact set C.
- **(a)** "Glue up" all f_r to obtain f_c satisfying $f_c(r) \in \mathbb{R}_{>0}^{K}$ for all $r \in C$.
- **③** "Glue up" \boldsymbol{f}_{∞} and \boldsymbol{f}_{C} to obtain \boldsymbol{f} satisfying
 - $f(r) \in \mathbb{R}_{>0}^{\kappa}$ for all $r \in \mathbb{R}_{>0}^{n}$,
 - $o \quad \text{in}_{v}\left(\boldsymbol{f}\right)\left(\boldsymbol{r}\right) \in \mathbb{R}_{>0}^{K} \text{ for all } v \in \left(\mathbb{R}^{n}\right)^{*}, \boldsymbol{r} \in \mathbb{R}_{>0}^{n}.$

- "Glue up" all f_v to obtain f_∞ satisfying in_v $(f_\infty) \in (\mathbb{N}[\overline{X}^{\pm}]^*)^{\kappa}$ for all $v \in (\mathbb{R}^n)^*$. In particular, $f_\infty(r) \in \mathbb{R}_{\geq 0}^{\kappa}$ for all $r \in \mathbb{R}^n$ except a compact set C.
- **(a)** "Glue up" all f_r to obtain f_c satisfying $f_c(r) \in \mathbb{R}_{>0}^{K}$ for all $r \in C$.
- **③** "Glue up" f_{∞} and f_{C} to obtain f satisfying
 - $f(r) \in \mathbb{R}_{>0}^{\kappa}$ for all $r \in \mathbb{R}_{>0}^{n}$,
 - $o \quad \text{in}_{v}\left(\boldsymbol{f}\right)\left(\boldsymbol{r}\right) \in \mathbb{R}_{>0}^{K} \text{ for all } v \in \left(\mathbb{R}^{n}\right)^{*}, \boldsymbol{r} \in \mathbb{R}_{>0}^{n}.$
- Use Handelman's theorem:

Theorem (Handelman, 1985)

Let $f \in \mathbb{R}[\overline{X}^{\pm}]$ be a polynomial. There exists $g \in \mathbb{R}_{>0}[\overline{X}^{\pm}]$ such that $fg \in \mathbb{R}_{>0}[\overline{X}^{\pm}]$ if and only if f satisfies the two following conditions:

- For all $r \in \mathbb{R}^n_{>0}$, we have f(r) > 0.
- So For all $v \in (\mathbb{R}^n)^*$ and $r \in \mathbb{R}^n_{>0}$, we have $in_v(f)(r) > 0$.

- "Glue up" all f_v to obtain f_∞ satisfying in_v $(f_\infty) \in (\mathbb{N}[\overline{X}^{\pm}]^*)^K$ for all $v \in (\mathbb{R}^n)^*$. In particular, $f_\infty(r) \in \mathbb{R}_{>0}^K$ for all $r \in \mathbb{R}^n$ except a compact set C.
- **(a)** "Glue up" all f_r to obtain f_c satisfying $f_c(r) \in \mathbb{R}_{>0}^{K}$ for all $r \in C$.
- **③** "Glue up" f_{∞} and f_{C} to obtain f satisfying
 - $f(r) \in \mathbb{R}_{>0}^{K}$ for all $r \in \mathbb{R}_{>0}^{n}$,
 - $o \quad \text{in}_{v}\left(\boldsymbol{f}\right)\left(\boldsymbol{r}\right) \in \mathbb{R}_{>0}^{K} \text{ for all } v \in \left(\mathbb{R}^{n}\right)^{*}, \boldsymbol{r} \in \mathbb{R}_{>0}^{n}.$
- Use Handelman's theorem:

Theorem (Handelman, 1985)

Let $f \in \mathbb{R}[\overline{X}^{\pm}]$ be a polynomial. There exists $g \in \mathbb{R}_{>0}[\overline{X}^{\pm}]$ such that $fg \in \mathbb{R}_{>0}[\overline{X}^{\pm}]$ if and only if f satisfies the two following conditions:

- For all $r \in \mathbb{R}^n_{>0}$, we have f(r) > 0.
- So For all $v \in (\mathbb{R}^n)^*$ and $r \in \mathbb{R}^n_{>0}$, we have $in_v(f)(r) > 0$.

Proof idea: Let *F* be *f* replacing all coefficients with their absolute value. Let *S* (*S*⁺) be the subring (subsemiring) of $\mathbb{R}[\overline{X}^{\pm}, \frac{1}{F}]$ generated by $\frac{\overline{X}^a}{F}$ where \overline{X}^a is a monomial of *F*. Consider <u>pure states</u> of *S*.

Let \mathcal{M} be a submodule of $\mathbb{Z}[\overline{X}^{\pm}]^{K}$. There exists $\mathbf{f} \in \mathcal{M} \cap (\mathbb{N}[\overline{X}^{\pm}]^{*})^{K}$ with "degree constraints" if and only if the following are satisfied:

() For every
$$r \in \mathbb{R}^n_{>0}$$
, there exists $\mathbf{f}_r \in \mathcal{M}$ such that $\mathbf{f}_r(r) \in \mathbb{R}^K_{>0}$.

For every
$$v \in (\mathbb{R}^n)^*$$
, there exists $\mathbf{f}_v \in \mathcal{M}$, such that $\operatorname{in}_v (\mathbf{f}_v) \in (\mathbb{N}[\overline{X}^{\pm}]^*)^K$ and satisfies some "degree constraints".

We can prove that it suffices to verify condition 2. for a countable number of v.

Let \mathcal{M} be a submodule of $\mathbb{Z}[\overline{X}^{\pm}]^{K}$. There exists $\mathbf{f} \in \mathcal{M} \cap (\mathbb{N}[\overline{X}^{\pm}]^{*})^{K}$ with "degree constraints" if and only if the following are satisfied:

() For every
$$r \in \mathbb{R}^n_{>0}$$
, there exists $\mathbf{f}_r \in \mathcal{M}$ such that $\mathbf{f}_r(r) \in \mathbb{R}^K_{>0}$.

We can prove that it suffices to verify condition 2. for a countable number of v.

To decide whether there exists $\boldsymbol{f} \in \mathcal{M} \cap \left(\mathbb{N}[\overline{X}^{\pm}]^*\right)^K$ with "degree constraints", run three procedures simultaneously:

Let \mathcal{M} be a submodule of $\mathbb{Z}[\overline{X}^{\pm}]^{K}$. There exists $\mathbf{f} \in \mathcal{M} \cap (\mathbb{N}[\overline{X}^{\pm}]^{*})^{K}$ with "degree constraints" if and only if the following are satisfied:

() For every
$$r \in \mathbb{R}^n_{>0}$$
, there exists $\mathbf{f}_r \in \mathcal{M}$ such that $\mathbf{f}_r(r) \in \mathbb{R}^K_{>0}$.

For every
$$v \in (\mathbb{R}^n)^*$$
, there exists $\mathbf{f}_v \in \mathcal{M}$, such that $\operatorname{in}_v (\mathbf{f}_v) \in (\mathbb{N}[\overline{X}^{\pm}]^*)^K$ and satisfies some "degree constraints".

We can prove that it suffices to verify condition 2. for a countable number of v.

To decide whether there exists $\boldsymbol{f} \in \mathcal{M} \cap \left(\mathbb{N}[\overline{X}^{\pm}]^*\right)^K$ with "degree constraints", run three procedures simultaneously:

• Procedure A enumerates every element of \mathcal{M} and check if it is in $\left(\mathbb{N}[\overline{X}^{\pm}]^*\right)^{\kappa}$ and satisfies "degree constraints".

Let \mathcal{M} be a submodule of $\mathbb{Z}[\overline{X}^{\pm}]^{K}$. There exists $\mathbf{f} \in \mathcal{M} \cap (\mathbb{N}[\overline{X}^{\pm}]^{*})^{K}$ with "degree constraints" if and only if the following are satisfied:

• For every $r \in \mathbb{R}^n_{>0}$, there exists $f_r \in \mathcal{M}$ such that $f_r(r) \in \mathbb{R}^K_{>0}$.

3 For every $v \in (\mathbb{R}^n)^*$, there exists $\mathbf{f}_v \in \mathcal{M}$, such that

 $\mathsf{in}_{\mathsf{v}}(\boldsymbol{f}_{\mathsf{v}}) \in \left(\mathbb{N}[\overline{X}^{\pm}]^*\right)^{\mathsf{K}}$ and satisfies some <u>"degree constraints"</u>.

We can prove that it suffices to verify condition 2. for a countable number of v.

To decide whether there exists $\boldsymbol{f} \in \mathcal{M} \cap \left(\mathbb{N}[\overline{X}^{\pm}]^*\right)^K$ with "degree constraints", run three procedures simultaneously:

- **Procedure A** enumerates every element of \mathcal{M} and check if it is in $(\mathbb{N}[\overline{X}^{\pm}]^*)^{\mathcal{K}}$ and satisfies "degree constraints".
- **Procedure B** checks condition 1. using first order theory of reals.

Let \mathcal{M} be a submodule of $\mathbb{Z}[\overline{X}^{\pm}]^{K}$. There exists $\mathbf{f} \in \mathcal{M} \cap (\mathbb{N}[\overline{X}^{\pm}]^{*})^{K}$ with "degree constraints" if and only if the following are satisfied:

() For every $r \in \mathbb{R}_{>0}^n$, there exists $\mathbf{f}_r \in \mathcal{M}$ such that $\mathbf{f}_r(r) \in \mathbb{R}_{>0}^K$.

3 For every $v \in (\mathbb{R}^n)^*$, there exists $\mathbf{f}_v \in \mathcal{M}$, such that

 $\mathsf{in}_{\mathsf{v}}(\boldsymbol{f}_{\mathsf{v}}) \in \left(\mathbb{N}[\overline{X}^{\pm}]^*\right)^{\mathsf{K}}$ and satisfies some <u>"degree constraints"</u>.

We can prove that it suffices to verify condition 2. for a countable number of v.

To decide whether there exists $\boldsymbol{f} \in \mathcal{M} \cap \left(\mathbb{N}[\overline{X}^{\pm}]^*\right)^K$ with "degree constraints", run three procedures simultaneously:

- **Procedure A** enumerates every element of \mathcal{M} and check if it is in $\left(\mathbb{N}[\overline{X}^{\pm}]^*\right)^{\mathcal{K}}$ and satisfies "degree constraints".
- **Procedure B** checks condition 1. using first order theory of reals.
- Procedure C enumerates the countably many v in condition 2. and checks the condition on in_v(M).

Local-global principle on the level of semigroups instead of semirings?

- Local-global principle on the level of semigroups instead of semirings?
- Add a drop of non-commutativity into Handelman and Einsiedler's results?
- Solution States States States and States St

- Local-global principle on the level of semigroups instead of semirings?
- Add a drop of non-commutativity into Handelman and Einsiedler's results?
- Solution Extend to centre-by-metabelian groups $([[[G, G], [G, G]], G] = \{e\})$?
- Word problem in some 3-step solvable groups is undecidable (Kharlampovich, 1981). What about Intermediate Problems?
- Local-global principle on the level of semigroups instead of semirings?
- Add a drop of non-commutativity into Handelman and Einsiedler's results?
- Solution States to centre-by-metabelian groups ([[[G, G], [G, G]], G] = {e})?
- Word problem in some 3-step solvable groups is undecidable (Kharlampovich, 1981). What about Intermediate Problems?
- O we have better characterization of π⁻¹(e), other than the set of letters appearing?
- Any structure on $\mathcal{M} \cap \left(\mathbb{N}[\overline{X}^{\pm}]^*\right)^{\kappa}$?
- **②** Can we solve **one non-homogeneous** linear equation over $\mathbb{N}[\overline{X}^{\pm}]$?