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Identity Problem

We consider the following decision problem:

Definition (Identity Problem)

Input: A set of square matrices S = {A1, . . . ,AK}.
Question: Is there m ≥ 1 and a sequence Ai1 ,Ai2 , . . . ,Aim ∈ S , such that
Ai1Ai2 · · ·Aim = I?

In other words, whether the semigroup ⟨S⟩ generated by S contains the neutral
element I?

Theorem (Bell, Potapov 2010)

Identity Problem is undecidable, even when S ⊆ SL(4,Z).

Theorem (Ko, Niskanen, Potapov 2017)

Identity Problem is undecidable, even when S ⊆ SL(3,Q).

Theorem (Bell, Hirvensalo, Potapov 2017)

Identity Problem is decidable (NP-complete) when S ⊆ SL(2,Z).
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Identity Problem for commuting matrices

Theorem (Babai et al. 1996)

Identity Problem is decidable (in PTIME) when the matrices in S commute.

“proof”: we work with (Zd ,+) instead of (matrices,multiplication).
Let S = {(a11, . . . , a1d)⊤, . . . , (aK1, . . . , aKd)

⊤} ⊂ Zd .
We want to decide whether (0, . . . , 0)⊤ ∈ ⟨S⟩.
The semigroup ⟨S⟩ generated by S isn1 ·

a11
a12
...

a1d

+ · · ·+ nK ·

aK1
aK2
...

aKd


∣∣∣∣∣∣∣ n1, n2, . . . , nK ∈ N, not all zero


So ⟨S⟩ contains the neutral element (0, . . . , 0)⊤ if and only if

n1a11 + · · ·+ nKaK1 = 0
...

n1a1d + · · ·+ nKaKd = 0

has non-trivial solutions n1, n2, . . . , nK ∈ N; if and only if it has non-trivial
solutions over Q≥0. (Linear programming, PTIME)
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Beyond commutativity

Theorem (Babai et al. 1996)

Identity Problem is decidable (in PTIME) in abelian matrix groups.

Our main result:

Theorem (D. 2024)

Identity Problem is decidable in metabelian matrix groups.

Definition (Metabelian groups)

A group G is called metabelian if it has a normal subgroup A, such that both A
and the quotient G/A are abelian.
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Metabelian groups

G is metabelian if it has a normal subgroup A, s.t. both A and G/A are abelian.

Examples of metabelian groups

All finite groups of size at most 23.

The Heisenberg group over any field K:

H3(K) :=


1 a c
0 1 b
0 0 1

 ∣∣∣∣∣∣ a, b, c ∈ K

 .

The group of 2× 2 upper-triangular matrices over any field K:

T(2,K) :=

{(
a c
0 b

) ∣∣∣∣ a, b, c ∈ K, ab ̸= 0

}
.

The wreath product

Z ≀ Zd :=


(
X z1

1 X z2
2 · · ·X zd

d f
0 1

) ∣∣∣∣∣∣∣ z1, . . . , zd ∈ Z, f ∈ Z[X±
1 , . . . ,X±

d ]︸ ︷︷ ︸
Laurent polynomial

 .
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From metabelian groups to polynomials with positive coefficients

Theorem (Magnus, Baumslag)

Any finitely generated metabelian group can be written as a quotient G/H,
where G ,H are subgroups of Z ≀ Zd .

Z ≀ Zd :=


(
X z1

1 X z2
2 · · ·X zd

d f
0 1

) ∣∣∣∣∣∣∣ z1, . . . , zd ∈ Z, f ∈ Z[X±
1 , . . . ,X±

d ]︸ ︷︷ ︸
Laurent polynomial

 .

Proposition (Dong 2024)

Identity Problem in metabelian groups reduces to solving systems of
homogeneous linear equations over N[X±

1 , . . . ,X±
d ]︸ ︷︷ ︸

Laurent polynomials
with positive coefficients

, with possible degree

constraints.
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Polynomials with positive coefficients

Example of such systems

Does the following system of equations

f1 · (X 2
1X2 − 1) + · · ·+ fK · (X−3

1 + 2X2 + 1) = 0,

f1 · (3X1 + X−3
2 ) + · · ·+ fK · (−2X−3

1 X2 − 5) = 0,

have non-trivial solutions (with positive coefficients) f1, . . . , fK ∈ N[X±
1 ,X±

2 ],
satisfying the following degree constraints?

deg(3,2) f1 ≥ deg(3,2) fK ,

deg(a,2) f1 > deg(a,2) fK , for all 0 < a < 3.

weighted degree: deg(a1,a2) X
b1
1 X b2

2 = a1b1 + a2b2.
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Polynomials with positive coefficients

How to decide where a solution exists?

Example 1

Does the following equation have solutions over N[X±]∗?

(X − 2) · f1 + (4− X ) · f2 + (X − 1) · f3 = 0.

No, evaluate X := 3, then f1(3) + f2(3) + 2 · f3(3) = 0.

Example 2

Does the following equation have solutions over N[X±]∗, such that
deg(f1) > deg(f2) > deg(f3)?

(X − 2) · f1 + (3− X ) · f2 + (1− X )f3 = 0.

No, otherwise degree of (X − 2) · f1 would be bigger than
(3− X ) · f2 + (1− X )f3.
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Polynomials with positive coefficients

Proposition (D. 2024)

A system of homogeneous linear equations over N[X±
1 , . . . ,X±

d ], with possible
degree constraints, has solutions if and only if there is no contradictions of any
of the two types: (i) evaluation at positive reals, (ii) degree (i.e. evaluation at
infinity).

Proof: real algebraic geometry (Positivstellensatz-type arguments) and tropical
geometry (gluing Newton polytopes).

We then use a “parallel double procedure” to decide existence of solutions:

Procedure A: enumerate tuples in N[X±
1 , . . . ,X±

d ] and check if is solution.
Procedure B: enumerate a dense set of evaluations and check if is contradiction.
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Decidability of Identity Problem in metabelian groups: proof overview

Identity Problem in metabelian groups

Identity Problem in quotient of Z ≀ Zd

solving systems of homogeneous linear equations over N[X±
1 , . . . ,X±

d ]

decidable

reduce using group theory theorem
of Magnus and Baumslag

reduce using Key technical proposition
(whose proof uses convex polytopes and
graph theory)

solve using real algebraic geometry
and tropical geometry
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