The Identity Problem for nilpotent groups of bounded class

Ruiwen Dong

Saarland University

January 2024

Ruiwen Dong The Identity Problem for nilpotent groups of bounded class

э

Markov (1940s): is Semigroup Membership decidable?

Definition (Semigroup Membership)

Input: Set of square matrices $S = \{A_1, \ldots, A_K\}$, target matrix T. **Output:** Is there a sequence $A_{i_1}, A_{i_2}, \ldots, A_{i_m} \in S$, s.t. $A_{i_1}A_{i_2} \cdots A_{i_m} = T$?

• • = • • = •

∃ 𝒫𝔄𝔄

Markov (1940s): is Semigroup Membership decidable?

Definition (Semigroup Membership)

Input: Set of square matrices $S = \{A_1, \ldots, A_K\}$, target matrix T. **Output:** Is there a sequence $A_{i_1}, A_{i_2}, \ldots, A_{i_m} \in S$, s.t. $A_{i_1}A_{i_2} \cdots A_{i_m} = T$?

Theorem (Mikhailova 1966)

Semigroup Membership is undecidable, even when $S \subseteq SL(4, \mathbb{Z})$.

• • = • • = •

Markov (1940s): is Semigroup Membership decidable?

Definition (Semigroup Membership)

Input: Set of square matrices $S = \{A_1, \ldots, A_K\}$, target matrix T. **Output:** Is there a sequence $A_{i_1}, A_{i_2}, \ldots, A_{i_m} \in S$, s.t. $A_{i_1}A_{i_2} \cdots A_{i_m} = T$?

Theorem (Mikhailova 1966)

Semigroup Membership is undecidable, even when $S \subseteq SL(4, \mathbb{Z})$.

Choffrut, Karhumäki (2000s): is Identity Problem decidable?

Definition (Identity Problem)

Input: Set of square matrices $S = \{A_1, \ldots, A_K\}$. **Output:** Is there a sequence $A_{i_1}, A_{i_2}, \ldots, A_{i_m} \in S$, s.t. $A_{i_1}A_{i_2} \cdots A_{i_m} = I$ (the identity matrix)?

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ � � �

Markov (1940s): is Semigroup Membership decidable?

Definition (Semigroup Membership)

Input: Set of square matrices $S = \{A_1, \ldots, A_K\}$, target matrix T. **Output:** Is there a sequence $A_{i_1}, A_{i_2}, \ldots, A_{i_m} \in S$, s.t. $A_{i_1}A_{i_2} \cdots A_{i_m} = T$?

Theorem (Mikhailova 1966)

Semigroup Membership is undecidable, even when $S \subseteq SL(4, \mathbb{Z})$.

Choffrut, Karhumäki (2000s): is Identity Problem decidable?

Definition (Identity Problem)

Input: Set of square matrices $S = \{A_1, \ldots, A_K\}$. **Output:** Is there a sequence $A_{i_1}, A_{i_2}, \ldots, A_{i_m} \in S$, s.t. $A_{i_1}A_{i_2} \cdots A_{i_m} = I$ (the identity matrix)?

Theorem (Bell, Potapov 2010)

Identity Problem is undecidable, even when $S \subseteq SL(4, \mathbb{Z})$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

э

Theorem (Babai et al. 1996)

Semigroup Membership is decidable (and NP) for commutative matrices. Identity Problem is decidable (and PTIME) for commutative matrices.

"proof": suppose we work with $(\mathbb{Z}^n, +)$ instead of multiplication of commutative matrices. Suppose $S = \{a_1, \ldots, a_K\} \subset \mathbb{Z}^n$ and $t \in \mathbb{Z}^n$.

Theorem (Babai et al. 1996)

Semigroup Membership is decidable (and NP) for commutative matrices. Identity Problem is decidable (and PTIME) for commutative matrices.

"proof": suppose we work with $(\mathbb{Z}^n, +)$ instead of multiplication of commutative matrices. Suppose $S = \{a_1, \ldots, a_K\} \subset \mathbb{Z}^n$ and $t \in \mathbb{Z}^n$.

t is in semigroup generated by $S \iff$ there exist $n_1, \ldots, n_K \in \mathbb{N}$, such that $n_1 \cdot a_1 + \cdots + n_K \cdot a_K = t$.

Theorem (Babai et al. 1996)

Semigroup Membership is decidable (and NP) for commutative matrices. Identity Problem is decidable (and PTIME) for commutative matrices.

"proof": suppose we work with $(\mathbb{Z}^n, +)$ instead of multiplication of commutative matrices. Suppose $S = \{a_1, \ldots, a_K\} \subset \mathbb{Z}^n$ and $t \in \mathbb{Z}^n$.

t is in semigroup generated by $S \iff$ there exist $n_1, \ldots, n_K \in \mathbb{N}$, such that $n_1 \cdot a_1 + \cdots + n_K \cdot a_K = t$.

Solving linear equations over \mathbb{N} : NP (integer programming).

Theorem (Babai et al. 1996)

Semigroup Membership is decidable (and NP) for commutative matrices. Identity Problem is decidable (and PTIME) for commutative matrices.

"proof": suppose we work with $(\mathbb{Z}^n, +)$ instead of multiplication of commutative matrices. Suppose $S = \{a_1, \ldots, a_K\} \subset \mathbb{Z}^n$ and $t \in \mathbb{Z}^n$.

t is in semigroup generated by $S \iff$ there exist $n_1, \ldots, n_K \in \mathbb{N}$, such that $n_1 \cdot a_1 + \cdots + n_K \cdot a_K = t$.

Solving linear equations over \mathbb{N} : NP (integer programming).

e is in semigroup generated by $S \iff$ there exist $n_1, \ldots, n_K \in \mathbb{N}$, not all zero, such that $n_1 \cdot a_1 + \cdots + n_K \cdot a_K = 0^n$.

Theorem (Babai et al. 1996)

Semigroup Membership is decidable (and NP) for commutative matrices. Identity Problem is decidable (and PTIME) for commutative matrices.

"proof": suppose we work with $(\mathbb{Z}^n, +)$ instead of multiplication of commutative matrices. Suppose $S = \{a_1, \ldots, a_K\} \subset \mathbb{Z}^n$ and $t \in \mathbb{Z}^n$.

t is in semigroup generated by $S \iff$ there exist $n_1, \ldots, n_K \in \mathbb{N}$, such that $n_1 \cdot a_1 + \cdots + n_K \cdot a_K = t$.

Solving linear equations over \mathbb{N} : NP (integer programming).

e is in semigroup generated by $S \iff$ there exist $n_1, \ldots, n_K \in \mathbb{N}$, not all zero, such that $n_1 \cdot a_1 + \cdots + n_K \cdot a_K = 0^n$. \iff there exist $n_1, \ldots, n_K \in \mathbb{Q}_{\geq 0}$, not all zero, such that $n_1 \cdot a_1 + \cdots + n_K \cdot a_K = 0^n$.

-

Theorem (Babai et al. 1996)

Semigroup Membership is decidable (and NP) for commutative matrices. Identity Problem is decidable (and PTIME) for commutative matrices.

"proof": suppose we work with $(\mathbb{Z}^n, +)$ instead of multiplication of commutative matrices. Suppose $S = \{a_1, \ldots, a_K\} \subset \mathbb{Z}^n$ and $t \in \mathbb{Z}^n$.

t is in semigroup generated by $S \iff$ there exist $n_1, \ldots, n_K \in \mathbb{N}$, such that $n_1 \cdot a_1 + \cdots + n_K \cdot a_K = t$.

Solving linear equations over \mathbb{N} : NP (integer programming).

e is in semigroup generated by $S \iff$ there exist $n_1, \ldots, n_K \in \mathbb{N}$, not all zero, such that $n_1 \cdot a_1 + \cdots + n_K \cdot a_K = 0^n$. \iff there exist $n_1, \ldots, n_K \in \mathbb{Q}_{\geq 0}$, not all zero, such that $n_1 \cdot a_1 + \cdots + n_K \cdot a_K = 0^n$.

Solving linear equations over $\mathbb{Q}_{\geq 0}$: PTIME (linear programming).

-

commutative groups \subsetneq nilpotent groups \subsetneq solvable groups \subsetneq all groups

æ –

commutative groups \subsetneq **nilpotent groups** \subsetneq solvable groups \subsetneq all groups

Definition

The **lower central series** of a group *G* is the sequence of subgroups

$$G = G_1 \geq G_2 \geq G_3 \geq \cdots,$$

in which $G_k = [G, G_{k-1}]$. ([G, H] is the group generated by $ghg^{-1}h^{-1}, g \in G, h \in H$.)

G is **nilpotent** if $G_{d+1} = \{I\}$ for some *d*. The smallest such *d* is the **nilpotency class** of *G*.

commutative groups \subsetneq **nilpotent groups** \subsetneq solvable groups \subsetneq all groups

Definition

The lower central series of a group G is the sequence of subgroups

$$G=G_1\geq G_2\geq G_3\geq\cdots,$$

in which $G_k = [G, G_{k-1}]$. ([G, H] is the group generated by $ghg^{-1}h^{-1}, g \in G, h \in H$.)

G is **nilpotent** if $G_{d+1} = \{I\}$ for some *d*. The smallest such *d* is the **nilpotency class** of *G*.

Example

 $G = UT(3, \mathbb{Z})$ has nilpotency class two:

$$G_1 = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\} \ge G_2 = \left\{ \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\} \ge G_3 = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

э.

commutative groups \subsetneq nilpotent groups \subsetneq solvable groups \subsetneq all groups

Definition

The lower central series of a group G is the sequence of subgroups

$$G = G_1 \geq G_2 \geq G_3 \geq \cdots,$$

in which $G_k = [G, G_{k-1}]$. ([G, H] is the group generated by $ghg^{-1}h^{-1}, g \in G, h \in H$.)

G is **nilpotent** if $G_{d+1} = \{I\}$ for some *d*. The smallest such *d* is the **nilpotency class** of *G*.

Example

 $G = UT(3, \mathbb{Z})$ has nilpotency class two:

$$G_1 = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\} \ge G_2 = \left\{ \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\} \ge G_3 = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

 $UT(n,\mathbb{Z})$ has nilpotency class n-1, so does $UT(n,\mathbb{Z})^k$.

There exists a finitely generated class-2 nilpotent group, namely $UT(3,\mathbb{Z})^{10000}$, where Semigroup Membership is undecidable.

э

There exists a finitely generated class-2 nilpotent group, namely $UT(3, \mathbb{Z})^{10000}$, where Semigroup Membership is undecidable.

Proof idea: embed polynomial equations over \mathbb{Z} , undecidable (Hilbert's 10th Problem).

There exists a finitely generated class-2 nilpotent group, namely $UT(3,\mathbb{Z})^{10000}$, where Semigroup Membership is undecidable.

Proof idea: embed polynomial equations over \mathbb{Z} , undecidable (Hilbert's 10th Problem).

Theorem (D. 2024)

Identity Problem is decidable (and PTIME) in all finitely generated nilpotent groups of class d, d \leq 10.

There exists a finitely generated class-2 nilpotent group, namely $UT(3,\mathbb{Z})^{10000}$, where Semigroup Membership is undecidable.

Proof idea: embed polynomial equations over \mathbb{Z} , undecidable (Hilbert's 10th Problem).

Theorem (D. 2024)

Identity Problem is decidable (and PTIME) in all finitely generated nilpotent groups of class d, $d \le 10$.

In particular, this means that Identity Problem is decidable (and PTIME) in ${\sf UT}(3,\mathbb{Z})^{10000},$ or even ${\sf UT}(11,\mathbb{Z})^{10000}.$

白 ト イヨ ト イヨ ト

There exists a finitely generated class-2 nilpotent group, namely $UT(3,\mathbb{Z})^{10000}$, where Semigroup Membership is undecidable.

Proof idea: embed polynomial equations over \mathbb{Z} , undecidable (Hilbert's 10th Problem).

Theorem (D. 2024)

Identity Problem is decidable (and PTIME) in all finitely generated nilpotent groups of class d, $d \le 10$.

In particular, this means that Identity Problem is decidable (and PTIME) in UT(3, $\mathbb{Z})^{10000}$, or even UT(11, $\mathbb{Z})^{10000}$.

Theorem (D. 2024)

For each d > 10, subject to a conjecture P_d , the Identity Problem is decidable (and PTIME) in all finitely generated nilpotent groups of class d. For each d, the conjecture P_d can be verified by computer algebra software in case it is true.

くぼ ト く ヨ ト く ヨ ト

э

Identity Problem is decidable (and PTIME) in all finitely generated nilpotent groups of class d, d \leq 10.

э

• • = • • = •

Identity Problem is decidable (and PTIME) in all finitely generated nilpotent groups of class d, d \leq 10.

Denote by $\langle S \rangle_{semigrp}$ the semigroup generated by S.

Lemma (Very easy lemma)

We have $I \in \langle S \rangle_{semigrp}$ if and only if there exists a non-empty subset $H \subseteq S$, such that the semigroup $\langle H \rangle_{semigrp}$ is a group.

A B A A B A

Identity Problem is decidable (and PTIME) in all finitely generated nilpotent groups of class d, d \leq 10.

Denote by $\langle S \rangle_{semigrp}$ the semigroup generated by S.

Lemma (Very easy lemma)

We have $I \in \langle S \rangle_{semigrp}$ if and only if there exists a non-empty subset $H \subseteq S$, such that the semigroup $\langle H \rangle_{semigrp}$ is a group.

Recall that [G, G] denotes the (normal) subgroup of G generated by $ghg^{-1}h^{-1}$, $g, h \in G$. In particular, the quotient group G/[G, G] is abelian.

Proposition (Very difficult proposition)

For $d \leq 10$, let G be a class-d nilpotent group. Let S be the generators of G as a group, then $\langle S \rangle_{semigrp} = G$ if and only if $\langle S[G,G] \rangle_{semigrp} = G/[G,G]$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Example with $UT(4, \mathbb{Z})$

Let's illustrate with $G := UT(4, \mathbb{Z})$.

$$G = \left\{ \begin{pmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{pmatrix} \middle| * \in \mathbb{Z} \right\}, \quad [G, G] = \left\{ \begin{pmatrix} 1 & 0 & * & * \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \middle| * \in \mathbb{Z} \right\}$$

 $G/[G,G] \cong \mathbb{Z}^3$: multiplication acts additively on the superdiagonal.

$$egin{pmatrix} 1 & a_1 & * & * \ 0 & 1 & b_1 & * \ 0 & 0 & 1 & c_1 \ 0 & 0 & 0 & 1 \ \end{pmatrix} imes egin{pmatrix} 1 & a_2 & * & * \ 0 & 1 & b_2 & * \ 0 & 0 & 1 & c_2 \ 0 & 0 & 0 & 1 \ \end{pmatrix} = egin{pmatrix} 1 & a_1 + a_2 & * & * \ 0 & 1 & b_1 + b_2 & * \ 0 & 0 & 1 & c_1 + c_2 \ 0 & 0 & 0 & 1 \ \end{pmatrix}$$

[G, G] itself is also abelian:

$$\begin{pmatrix} 1 & 0 & d_1 & f_1 \\ 0 & 1 & 0 & e_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & d_2 & f_2 \\ 0 & 1 & 0 & e_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & d_1 + d_2 & f_1 + f_2 \\ 0 & 1 & 0 & e_1 + e_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

▶ < ∃ >

э

Identity Problem in $UT(4, \mathbb{Z})$: Example

Proposition (Very difficult proposition)

For $d \leq 10$, let G be a class-d nilpotent group. Let S be the generators of G as a group, then $\langle S \rangle_{semigrp} = G$ if and only if $\langle S[G, G] \rangle_{semigrp} = G/[G, G]$.

Proposition (Very difficult proposition)

For $d \leq 10$, let G be a class-d nilpotent group. Let S be the generators of G as a group, then $\langle S \rangle_{semigrp} = G$ if and only if $\langle S[G,G] \rangle_{semigrp} = G/[G,G]$.

Suppose $S = \{A_1, A_2, A_3, A_4\}$,

$$A_{1} = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, A_{2} = \begin{pmatrix} 1 & -1 & 4 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, A_{3} = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, A_{4} = \begin{pmatrix} 1 & 0 & 7 & 5 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

S generates G as a group.

Proposition (Very difficult proposition)

For $d \leq 10$, let G be a class-d nilpotent group. Let S be the generators of G as a group, then $\langle S \rangle_{semigrp} = G$ if and only if $\langle S[G,G] \rangle_{semigrp} = G/[G,G]$.

Suppose $S = \{A_1, A_2, A_3, A_4\}$,

$$A_{1} = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, A_{2} = \begin{pmatrix} 1 & -1 & 4 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
$$A_{3} = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, A_{4} = \begin{pmatrix} 1 & 0 & 7 & 5 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

S generates G as a group. What is $\langle S[G,G] \rangle_{semigrp}$?

$$S[G,G] = \{A_1[G,G],\ldots,A_4[G,G]\} = \left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\-1 \end{pmatrix} \right\}.$$

So indeed $\langle S[G,G] \rangle_{semigrp} = \mathbb{Z}^3 = G/[G,G].$

Identity Problem in $UT(4, \mathbb{Z})$: Example

Since $\langle S[G,G] \rangle_{semigrp} = G/[G,G]$, the proposition claims that $\langle S \rangle_{semigrp} = G$. We will prove $\langle S \rangle_{semigrp} = G$ for this example.

э

Identity Problem in $UT(4, \mathbb{Z})$: Example

Since $\langle S[G,G] \rangle_{semigrp} = G/[G,G]$, the proposition claims that $\langle S \rangle_{semigrp} = G$. We will prove $\langle S \rangle_{semigrp} = G$ for this example. Since $\langle S[G,G] \rangle_{semigrp} = G/[G,G]$, we have $\langle S \rangle_{semigrp} \cap [G,G] \neq \emptyset$.

$$\begin{aligned} A_1 A_2 A_3 A_4 &= \begin{pmatrix} 1 & 0 & 11 & 2 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \langle S \rangle \cap [G, G], \\ A_2^{100} A_3^{100} A_1^{100} A_4^{100} &= \begin{pmatrix} 1 & 0 & 6050 & 77350 \\ 0 & 1 & 0 & -4250 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \langle S \rangle \cap [G, G], \\ A_2^{100} A_1^{100} A_3^{100} A_4^{100} &= \begin{pmatrix} 1 & 0 & -3950 & 127350 \\ 0 & 1 & 0 & 5750 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \langle S \rangle \cap [G, G], \\ A_4^{100} A_3^{100} A_2^{100} A_1^{100} &= \begin{pmatrix} 1 & 0 & -3950 & -287650 \\ 0 & 1 & 0 & -4250 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \langle S \rangle \cap [G, G]. \end{aligned}$$

$$\begin{pmatrix} 1 & 0 & 11 & 2 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{1880000} \begin{pmatrix} 1 & 0 & 6050 & 77350 \\ 0 & 1 & 0 & -4250 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{16261} \begin{pmatrix} 1 & 0 & -3950 & -287650 \\ 0 & 1 & 0 & -4250 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{16261} \begin{pmatrix} 1 & 0 & -3950 & -287650 \\ 0 & 1 & 0 & -4250 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{1096}$$
$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(1) Therefore
$$(A_1A_2A_3A_4)^{1880000} (A_2^{100}A_3^{100}A_1^{100}A_4^{100})^{14443} \cdots (A_4^{100}A_3^{100}A_2^{100}A_1^{100})^{11096} = I.$$

 $\text{Consequently, } \textit{A}_1^{-1}, \ldots, \textit{A}_4^{-1} \in \langle \textit{A}_1, \textit{A}_2, \textit{A}_3, \textit{A}_4 \rangle_{\textit{semigroup}}. \textit{ i.e. } \langle \textit{S} \rangle_{\textit{semigrp}} = \textit{G}.$

2

In general, we might not be able to find **positive** powers (1880000, 14443 etc.) to cancel elements in $\langle S \rangle \cap [G, G]$. Therefore, we need to prove that such cancellations always exist.

b) 4 (E) b

-

э.

In general, we might not be able to find **positive** powers (1880000, 14443 etc.) to cancel elements in $\langle S \rangle \cap [G, G]$. Therefore, we need to prove that such cancellations always exist.

One can take the **logarithm** of a matrix in $UT(n, \mathbb{Z})$:

$$\log: A \mapsto \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} (A-I)^{k}.$$

In particular, $\log I = 0$.

b) 4 (E) b

In general, we might not be able to find **positive** powers (1880000, 14443 etc.) to cancel elements in $\langle S \rangle \cap [G, G]$. Therefore, we need to prove that such cancellations always exist.

One can take the **logarithm** of a matrix in $UT(n, \mathbb{Z})$:

$$\log: A \mapsto \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} (A-I)^{k}.$$

In particular, $\log I = 0$.

Theorem (Baker-Campbell-Hausdorff formula)

Let $B_1, \ldots, B_m \in UT(n, \mathbb{Z})$, then

$$\log(B_1 \cdots B_m) = \sum_{i=1}^m \log B_i + \sum_{k=2}^d H_k(\log B_1, \dots, \log B_m),$$

where H_k , k = 2, 3, ..., are expressions with explicitly computable forms.

白 ト イヨ ト イヨ ト

In general, we might not be able to find **positive** powers (1880000, 14443 etc.) to cancel elements in $\langle S \rangle \cap [G, G]$. Therefore, we need to prove that such cancellations always exist.

One can take the **logarithm** of a matrix in $UT(n, \mathbb{Z})$:

$$\log: A \mapsto \sum_{k=1}^n \frac{(-1)^{k-1}}{k} (A-I)^k.$$

In particular, $\log I = 0$.

Theorem (Baker-Campbell-Hausdorff formula)

Let $B_1, \ldots, B_m \in UT(n, \mathbb{Z})$, then

$$\log(B_1\cdots B_m) = \sum_{i=1}^m \log B_i + \sum_{k=2}^d H_k(\log B_1,\ldots,\log B_m),$$

where H_k , k = 2, 3, ..., are expressions with explicitly computable forms.

To find cancellation for elements of $\langle S \rangle \cap [G, G]$: cancel H_2, H_3, \ldots, H_d one by one.

We use computer algebra software to find the explicit cancellation pattern for $H_k, k = 2, 3, \cdots$ (These are **fixed** expressions!)

Identity Problem is decidable (and PTIME) in all finitely generated nilpotent groups of class-d, $d \leq 10$.

Theorem (D. 2024)

For each d > 10, subject to a conjecture P_d , the Identity Problem is decidable (and PTIME) in all finitely generated nilpotent groups of class-d. For each d, the conjecture P_d can be verified by computer algebra software in case it is true.

In particular, the conjecture P_d concerns the existence of cancellation for the term H_d , which we were able to verify up to $d \leq 10$.