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Abstract. Depth-sensing is important for both navigation and scene
understanding. However, procuring RGB images with corresponding depth
data for training deep models is challenging; large-scale, varied, datasets
with ground truth training data are scarce. Consequently, several recent
methods have proposed treating the training of monocular color-to-depth
estimation networks as an image reconstruction problem, thus forgoing
the need for ground truth depth.
There are multiple concepts and design decisions for these networks that
seem sensible, but give mixed or surprising results when tested. For exam-
ple, binocular stereo as the source of self-supervision seems cumbersome
and hard to scale, yet results are less blurry compared to training with
monocular videos. Such decisions also interplay with questions about ar-
chitectures, loss functions, image scales, and motion handling. In this
paper, we propose a simple yet effective model, with several general ar-
chitectural and loss innovations, that surpasses all other self-supervised
depth estimation approaches on KITTI.
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1 Introduction

We seek to automatically infer a dense depth map from a single color input
image. Just estimating the relative depths of objects in a single image is an
ill-posed problem. However, even without stereo cues, the human visual system
is remarkably adept at performing this task. While there are possibly many
distinct depth explanations for a given scene, humans learn from navigating and
interacting in the real-world, enabling us to hypothesize plausible solutions in
novel environments.

Accurate monocular depth estimation has many applications, from image
editing through to image understanding. For specific medical applications, where
there may be form factor restrictions, it offers the possibility of using single
cameras instead of stereo pairs. Unlike expensive LIDAR sensors commonly used
in self-driving solutions, traditional cameras are a much cheaper alternative, and
simplify car design. Finally, solving for depth is a powerful way to use large
quantities of unlabeled data for pretraining deep networks, which can then be
used for other discriminative tasks, requiring less supervision [1].

One way to train deep depth estimation models is to use ground truth
depth images paired with their corresponding intensity images as a supervi-
sion signal, e.g. [2,3]. However, collecting large and varied training datasets with
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Fig. 1. Estimated depth. Our method significantly outperforms all previously pub-
lished self-supervised depth estimation methods, whether training with monocular su-
pervision (M), stereo supervision (S), or both (MS).

ground truth depth is itself a formidable challenge. Recently, several approaches
have shown that it is instead possible to train monocular depth estimation mod-
els using only synchronized stereo pairs at training time [4,5,6]. While easier
than laser-scanning, this still requires the collection of binocular stereo images.
As an alternative, [7] successfully showed that monocular video sequences can
be used for training, but with a drop in the quality of test time depth predictions.

Among the two self-supervised approaches, monocular video is an attractive
alternative to stereo based supervision, but it introduces its own set of chal-
lenges. In addition to estimating depth, the model also needs to estimating the
egomotion between temporal image pairs during training. This typically involves
training a separate pose network that takes a sequence of frames as input, and
outputs the corresponding camera transformations. Using stereo data for train-
ing makes the camera-pose estimation a one-time offline step, but can cause
issues related to occlusion and texture-copy artifacts [6]. To address these is-
sues, we propose a new architecture that shares weights between the pose and
depth networks in the monocular setting, and also drastically reduces texture-
copy artifacts by performing image sampling at the input scale (see Fig. 1).

In this work, we propose several architectural and loss innovations that, when
combined, lead to large improvements in monocular depth estimation, using ei-
ther monocular video, stereo pairs, or a combination as training data. We present
the following three contributions: (1) A novel architecture and loss function for
the problem of self-supervised monocular depth estimation. Our models achieve
state-of-the-art results on the KITTI dataset [8] in the self-supervised setting,
and simplify many of the common components found in existing networks that
use either monocular or stereo training data. (2) A detailed evaluation, and list
of best practices, that highlights how each component of our model lends itself
to improved test time performance. (3) Finally, we show that KITTI, the most
commonly used evaluation dataset for monocular depth estimation, is not an
informative benchmark for real-world monocular training moving forward, as it
contains only a limited number of independently moving objects. These three
contributions are a result of findings that may be non-obvious or even surprising,
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e.g. training with high resolution images is better than with low resolutions, and
training with monocular video is improved by expressly excluding footage with
moving objects.

2 Related Work

Given a single color image at test time, our goal is to predict the depth of each
pixel in the input image. Here we review work that takes a single color image as
input test time. This is in contrast to multi-view stereo based approaches, which
have access to multiple input frames or temporal sequences at test time.

Supervised Depth Estimation
Depth from a single image is an inherently ill-posed problem as the same input
image can project to multiple plausible depths. To address this issue, learning
based methods have shown themselves capable of fitting predictive models that
exploit the relationship between input images and their corresponding depth
maps. Various methods, such as combining local predictions [9,2], non-parametric
scene sampling [10], through to convolution neural networks [3,11] have been
explored. Learning based algorithms are also among some of the best performing
for conventional stereo estimation [12,13,14,15] and optical flow [16,17,18].

The majority of the above approaches are fully supervised, requiring access
to ground truth depth data at training time. However, ground truth depth is
challenging to acquire in varied real-world settings. There is a growing body of
work that exploits weakly supervised training data in the form of known ob-
ject sizes [19], sparse supervision [20,21], supervised appearance matching terms
[12,22], or unpaired depth supervision [23], but they still require the collection
of additional depth or other annotations. Synthetic data is a promising alterna-
tive [24], but it is not trivial to generate large amounts of synthetic data that
includes all the variety of real-world appearance and motion.

Self-supervised Stereo Training
An alternative to depth based supervision is to use self-supervision in the form
of synchronized stereo pairs. The key observation is to pose depth estimation as
an image reconstruction problem at training time. A model that can perform
monocular depth prediction at test-time can be trained by predicting the warping
function that maps one image from a stereo pair onto the other. With known focal
length and camera baseline the predicted disparity map, i.e. the inverse depth
map, can then be converted into scaled metric depth. This type of approach has
also been used for novel view synthesis [25,4], where the estimated depth map
is used to select pixels from the input views to generate novel viewpoints.

Initial work in this space used discretized representations [4] or simple im-
age reconstruction losses [5] limiting the quality of the output depth maps. By
including a more sophisticated reconstruction loss and a left-right depth con-
sistency term [6] was able to generate results that were superior to existing su-
pervised approaches at the time. This approach was extended by training with
semi-supervised data [26,27] and by including additional temporal information
[28,22].
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Using rectified stereo data at training time has the benefit of reducing the
depth estimation problem to that of a 1D disparity search problem. Importantly,
when the stereo cameras are synchronized they are not affected by scene motion.
However, occlusion and dis-occlusion are still an issue as parts of the scene may
not be visible given a fixed camera baseline. Another challenge is that large cor-
pora of stereo data are not as readily available compared to traditional monocular
videos. In this work we show that with careful design choices training with only
a single view can reach the performance of stereo training on existing datasets
and results can be improved even further by including temporal information.

Self-supervised Monocular Training
A more unconstrained form of self-supervision is to use only monocular videos
during training. Here, a similar type of image reconstruction loss as in the stereo
supervision case is used. However, instead of using stereo pairs, neighboring
temporal frames from the input video provide the training signal. The added
challenge during training is that the depth estimation model has to also estimate
the camera pose between the input frames in addition to coping with the motion
of objects in the scene. Unlike the stereo training regime that can cope with
static cameras, in the monocular training setting there must be some non-trivial
camera motion between the input images or there will be no training signal.

In one of the first works that used monocular self-supervision, [7] trained a
depth estimation network along with a separate pose estimation network. The
goal of the pose network is to predict the relative camera transformation between
each subsequent temporal image pair. This estimated camera pose is only needed
at training time to help constrain the depth estimation network. To deal with
non-rigid scene motion, an additional motion explanation mask was learned al-
lowing the model to ignore specific regions that violated the rigid scene assump-
tion when computing the image reconstruction loss during training. However,
later iterations of their model available online disables this term and achieves
superior performance. Inspired by [29], [30] proposed a more sophisticated mo-
tion model, where each image pixel is explained by a combination of multiple
rigid transformations defined by multiple motion masks. However, this motion
decomposition is not fully evaluated making it difficult to know its utility. [31]
also decompose motion into rigid and non-rigid components using the projected
depth and a predicted residual optical flow to explain object motion. This im-
proves the final optical flow estimation, but the authors report no improvement
when jointly training the residual flow estimator and the depth network. Thus,
their depth estimation is not improved by this additional non-rigid motion term.

Recent approaches are beginning to close the performance gap between monoc-
ular and stereo based training supervision by making use of several different con-
straints during training. [32] constrained the output depth to be consistent with
predicted surface normals. [33] used an approximate ICP based geometry match-
ing loss to enforce temporal depth consistency. [34] observed that the commonly
used depth smoothness term has a preference towards smaller depth maps mak-
ing the training of these models more unstable. To overcome this limitation, they
normalize the predicted depth maps before computing the smoothness term, re-



Digging Into Self-Supervised Monocular Depth Estimation 5

sulting in better performance. However, most of these methods do not explicitly
deal with scene motion and as a result fail on moving objects during training.

We propose several architectural and loss innovations that simplify many of
these recent approaches yet still produces superior performance. We show that
object motion is a challenge for monocular based methods and can be alleviated
by either ignoring those scenes during training or by the inclusion of stereo data
at training time when available.

3 Method

Here we describe our monocular depth prediction network, which requires only a
single color image at test time. We first review the key idea behind self-supervised
training for monocular depth estimation, and then describe our depth and pose
estimation networks and combined training loss.

3.1 Self-supervised Training

The key idea behind self-supervised depth estimation is to frame the learning
problem as one of novel view-synthesis, essentially teaching the network to pre-
dict the appearance of a target image from the viewpoint of another image. By
constraining the network to perform image synthesis using an intermediary vari-
able, in our case depth or disparity, we can then extract out this interpretable
depth from the model. This is an ill-posed problem as there are an extremely
large number of possible wrong depths per pixel which can correctly reconstruct
the novel view given a relative transformation between those two views. This is
essentially the same problem faced by binocular and multi-view stereo methods.
These methods typically address this ambiguity through enforcing smoothness
in the depth maps by computing photo-consistency on patches and solving for
the optimal depths for each pixel in a global optimization framework [35].

Like [5,6,7], we also formulate our problem as the minimization of a photo-
metric reprojection error at training time. For a target color image It, multiple
source views It′ , and the relative rigid transformation between those views and
the target view Tt→t′ which minimizes the photometric reprojection error Lp we
predict a dense depth map Dt such that

argmin
Dt

Lp, (1)

with Lp =
∑
t′

pe(It, It′→t), (2)

and It′→t = It′
[
proj(Dt, Tt→t′ ,K)

]
. (3)

Here pe is a photometric reconstruction error, e.g. the L1 or L2 distance in
pixel space, proj are the resulting 2d coordinates of the projected depths Dt

in It′ and
[]

is the sampling operator. For simplicity of notation we assume
the intrinsics K of all the views to be identical, they can however be different.
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Following [36] we use bilinear sampling to sample the source images, which is
locally sub-differentiable. This locality is a limitation which we overcome by
making use of a multi-scale reconstruction approach, further improved by our
upsampled multi-scale sampling.

Until now, we have assumed that we know the relative transformations Tt→t′

between our target view It and source view It′ . This is generally not the case
for monocular sequences. However, if the target image and its source image
are from a rectified stereo pair, the transformation between the pairs is purely
horizontal. Stereo based training approaches like [5,6] make use of this constraint
when training single frame depth estimation models. For more general monocular
training, [7] showed that it is possible to train a second pose estimation network
jointly with the depth estimation network. Where the goal is to predict the
relative poses Tt→t′ used in the projection function proj. Also solving for the
camera transformations, in addition to the depth, our objective becomes

argmin
Dt,Tt→t′

Lp. (4)

3.2 Improved Monocular Depth Estimation

Here, we describe several improvements to existing self-supervised depth esti-
mation models. We step through the details of our approach, working through
the design decisions taken regarding pose, loss functions, and scale.

Pose Estimation
The majority of current state-of-the-art models for monocular depth estima-
tion that use monocular training data employ a very similar architecture e.g.
[7,33,31,34]. This involves a standard U-Net model [37] for the depth estimator
and a separate pose estimation network, see Fig. 2. The pose estimation net-
work, which is not necessary for depth estimation at test time, takes as input
a sequence of two or more concatenated input frames and estimates the pose
transformation between them. We argue that this base design is sub-optimal.
Concatenating several input frames only makes learning harder as the training
set remain finite in size but the dimensionality of the input data grows with the
number of frames in the input sequence. Moreover, the pose estimation model
has to learn the difficult task of structure-from-motion from a short ordered
sequence, with the only supervision signal being from the reprojection error. Im-
provements have been proposed by [34] who use direct methods in combination
with the estimated depth maps, and [33] who use a 3d alignment loss between
the predicted depth maps in the input sequence to improve both the pose and
depth estimation. These approaches build on the idea that the combination of
the predicted monocular depth maps in the training sequence is a very strong
geometric signal that can be used to better estimate the relative poses. How-
ever, both approaches involve a more complicated training procedure, resulting
in only relatively minor test time improvements.

We instead propose a simple modification to the base architecture, that re-
sults in a significant improvement in depth accuracy as well as a reduction in the
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Fig. 2. Overview of our network architecture. Unlike existing approaches for
monocular depth estimation that make use of a separate pose network (right), we
share weights between our depth encoder (left) and pose network (middle), resulting in
faster convergence and improved performance. The pose estimation network outputs a
6-dimensional vector for each source image (red block), representing the relative rigid
transformation of the camera pose between frames.

number of parameters that need to be learned. We make the observation that the
deepest features of our depth encoder are only a small number of convolutional
layers away from producing depth. We thus concatenate the last features from
our depth encoder, and feed them through a small three layer fully convolutional
network i.e. the pose decoder, followed by a global average pooling, see Fig. 2
(middle). In effect, we are replacing the concatenation of the input images by the
concatenation of the depth features. This results in the pose decoder receiving
abstract features which have an intrinsic understanding of the geometry of each
of the input images. Our pose decoder is identical to the last three layers of the
standard pose network from [7], but produces significantly better results.

Appearance Matching Loss
When computing the reprojection error from multiple source images, existing
self-supervised depth estimation methods use the average reprojection error de-
scribed in Eqn. (4). This is problematic with pixels that are visible in the target
image but are not visible in some of the source images. If the network predicts
the correct depth for such a pixel, the corresponding color in an occluded source
image will likely not match the target one, inducing a photometric error penalty.
Such problematic pixels are from two categories: out-of-view pixels due to ego-
motion at image boundaries and dis-occluded pixels. As we show in Fig. 5, using
an average reprojection error typically results in black holes (infinite depth)
around image edges and soft occlusion boundaries, for each category respec-
tively. The effect of out-of-view pixels can be reduced by simply ignoring such
pixels in the reprojection loss [33,30], this however doesn’t handle dis-occluded
pixels.

We propose an improvement which deals with both issues at once. Instead of
averaging the photometric error per pixel over all source images, we simply use
the per-pixel minimum. As shown in Fig. 5, this significantly reduces artifacts
at image borders, improves the sharpness of occlusion boundaries, and leads to
better accuracy. Following [38,6], we use a combination of L1 and SSIM [39] as
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our photometric error function pe. Our final photometric loss is

Lp = min
t′
pe(It, It′→t), (5)

where pe(Ia, Ib) = α
1− SSIM(Ia, Ib)

2
+ (1− α)‖Ia − Ib‖1. (6)

We also make use of edge aware smoothness on the predicted disparities

Ls = |∂xd∗t | e−|∂xIt| + |∂yd∗t | e−|∂yIt|, (7)

with d∗t = dt/dt, (8)

where d∗t is the mean-normalized inverse depth for It as used by [34].

Multi-scale Estimation
Because of the gradient locality of the bilinear sampler, existing models use
multi-scale depth prediction and image reconstruction to constrain the training
objective, where the total loss is typically the average of the individual losses
at each scale. The original formulations from [5] and [6] compute the photomet-
ric error on downsampled images, which we observe has the tendency to create
‘holes’ in large low-texture regions, such as roads or the sky, in the intermediate
lower resolution depth maps. This can be explained by the lack of texture infor-
mation at these resolutions, thus effectively making the photometric error more
ambiguous. This in turn complicates the task of the depth estimation network
which is then free to predict an incorrect depth for a given pixel at the low
resolution resulting in a low reprojection error at that scale, which in turn leads
to a large photometric error at higher resolutions.

We propose an improvement to this multi-scale formulation. Instead of com-
puting the photometric error on the ambiguous low-resolution images, we first
upsample the lower resolution depth maps to the input image resolution and
then warp and compute the photometric error pe at this higher input resolu-
tion. This effectively constrains the depth maps from each resolution to work
towards the exact same objective i.e. reconstructing the high resolution input
target image as accurately as possible. We found that this significantly improves
the depth accuracy, while also reducing the texture-copy artifacts which are very
noticeable in the previous multi-scale formulation as can be seen in Fig. 5. This
is related to matching patches, a standard practice in stereo reconstruction [40],
as a low-resolution disparity value will be responsible for reprojecting an entire
patch of pixels in the high resolution image.

Final Training Loss
We combine our photometric and smoothness terms into a final training loss

L = Lp + λLs, (9)

which is averaged per pixel, per scale, and per batch.

3.3 Implementation Details

Our depth estimation network is based on the general U-Net architecture [37],
which is essentially an encoder-decoder network, with skip connections enabling
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us to represent both deep abstract features as well as local information. We
use a Resnet18 [41], pretrained on ImageNet [42], as our encoder. Our depth
decoder is similar to [6] and uses ELU [43] activation functions except on the
output depth layers which use sigmoids. We then turn this output into depth
by scaling and inverting the predicted disparities. We also make use of reflection
padding, in place of zero padding, in the decoder layers, and return the value of
the closest border pixels in the source image during reprojection, instead of zero,
when samples land outside of the image boundaries. We found that these steps
significantly reduce the border artifacts commonly found in existing approaches
e.g. [6]. During training, we set the weight of the smoothness term, λ, to 0.001.

We adopt the inverse depth normalization trick of [34] in all our experiments
to avoid catastrophic shrinking of the estimated depth. For pose estimation,
we follow [34] and predict the rotation using an axis-angle representation and
scale the rotation and translation outputs by 0.01 and 0.001 respectively. When
training with stereo data we use the left and right pairs as the input views, for
monocular training we use a set of three frames, t − 1, t, and t + 1. All our
networks were implemented in PyTorch [44] and trained for 15 epochs, with a
batch size of 8, using Adam [45], and with an initial learning rate of 10−4 for
the first 10 epochs which was then dropped to 10−5. Training on the KITTI
dataset [8] with an input image size of 128 × 416 pixels, which we refer to as
Low Resolution (LR), takes 8 hours on a Titan X Maxwell, and twice as long
for 192× 640 pixels. The output depth map resolution is the same resolution as
the input image one.

We also tried several other components which we found to not help perfor-
mance. Including using a feature reconstruction loss in the appearance matching
term, as in [46,47,22], by computing the L1 distance on the reprojected and nor-
malized relu1 1 features from an ImageNet pretrained VGG16 [48] as our pe
function, but observed a slight decrease in accuracy compared to SSIM on KITTI
for a significant increase in training time. We explored using explanation masks
[7], discrete motion models [30], and temporal depth consistency [30,28], none
of which made any significant improvements in our implementation. Finally, we
tried adding batch normalization [49] to the decoder but observed persistent
ghosting artifacts in the predicted depth.

4 Experiments

In this section we compare the performance of our models to existing state-of-
the-art on the KITTI [8] and Make3D [2] datasets. We also show qualitative
results the Cityscapes [50] and a wandering video dataset which we compiled
from YouTube.

4.1 KITTI

We use the original data split from Eigen et al. [51] and follow Zhou’s et al. [7]
preprocessing to remove static frames and set the input sequence length to 3.
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This results in 39,810 and 4,424 monocular triplets for training and validation.
We used the same camera intrinsics for all images, where we set the principal
point of the camera to the image center and the focal length to the average
of all the focal lengths in KITTI. For stereo and mixed training (monocular
and stereo) we fix the transformation between the two stereo frames to be a
pure horizontal translation of fixed length. We perform horizontal flips and the
following data augmentations during training with 50% chance: random bright-
ness, contrast, saturation, and hue jitter with respective ranges of ±0.2, ±0.2,
±0.2 and ±0.1. Results are presented using the standard cap of 80 meters. For
our monocular models, we report results using the same median ground truth
scaling as [7]. With stereo training data, scale can be inferred from the known
camera baseline, and for fairness we do not use median scaling for our models
that use any stereo supervision. In practice, we observe that this adds a small,
but noticeable, improvement to the stereo models if included.

Results
We compare the results of several variants of our model trained with different
types of self-supervision: monocular only, stereo only, and both. In Table 1 we see
that we outperform all existing state-of-the-art approaches with the exception
of models that make use of extensive depth supervision at training time i.e.
[26,27]. Our best performing variant uses a combination of monocular and stereo
training data where the results are most noticeable on metrics that are sensitive
to large depth errors i.e. RMSE. We also see that our monocular supervised
model, whether trained at 128 × 416 or 192 × 640, outperforms all previously
published self-supervised methods, whether they used monocular supervision
[7,33,34,32], stereo supervision [5,6] or both [28,22]. Qualitative results can be
seen in Fig. 3.

To better understand how each component of our model contributes to the
overall performance, in Table 2 we perform an ablation study by turning off
different parts of our model, one at a time, in the monocular setting. ‘PoseCNN’
corresponds to our implementation of the strong baseline used in [34], with the
standard separate pose encoder from [7], but without their direct visual odome-
try. We see that the inclusion of our shared pose encoder in ‘Ours LR’ improves
the results. ‘Avg. projection’ is the average projection used by [7], as opposed to
our minimum based projection from Eqn. 5. ‘Low-res multi-scale’ is the multi-
scale reconstruction evaluation performed by [6], in contrast to our reconstruc-
tion which is performed at the input resolution. ‘No pretraining’ is our model
without using pretrained on ImageNet weights. As previously discussed in [33],
we see that SSIM plays an important role in improving results. When combined
in ‘Ours LR’, all these components lead to a significant improvement.

Monocular vs. Stereo Supervision
From Table 1, we see that monocular trained models perform worse than stereo
based approaches, even when including the significant boost provided by median
scaling at test time. Moving objects are an issue for these approaches, but the
KITTI dataset does not feature a large number of such objects. This problem
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Table 1. Comparison to existing methods on KITTI 2015 [8] using the Eigen split. D
refers to methods that use KITTI depth supervision at training time, D* use auxiliary
depth supervision, S use stereo, and M use monocular supervision. †indicates newer
results from the respective online implementations. LR is our model trained to predict
at 128× 416 resolution, otherwise we use 192× 640.

Method Train Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Train set mean D 0.361 4.826 8.102 0.377 0.638 0.804 0.894
Eigen [3] D 0.203 1.548 6.307 0.282 0.702 0.890 0.890
Liu [52] D 0.201 1.584 6.471 0.273 0.680 0.898 0.967
AdaDepth [23] D* 0.167 1.257 5.578 0.237 0.771 0.922 0.971
Kuznietsov [26] DS 0.113 0.741 4.621 0.189 0.862 0.960 0.986
SVSM [27] D*S 0.102 0.700 4.681 0.200 0.872 0.954 0.978
SVSM FT [27] DS 0.094 0.626 4.252 0.177 0.891 0.965 0.984

UnDeepVO [28] MS 0.183 1.730 6.57 0.268 - - -
Zhan Temporal [22] MS 0.144 1.391 5.869 0.241 0.803 0.928 0.969
Zhan FullNYU [22] D*MS 0.135 1.132 5.585 0.229 0.820 0.933 0.971
Ours LR MS 0.124 1.148 5.273 0.213 0.849 0.947 0.975
Ours MS 0.114 0.991 5.029 0.203 0.864 0.951 0.978

Monodepth [6] S 0.148 1.344 5.927 0.247 0.803 0.922 0.964
Garg [5]† S 0.152 1.226 5.849 0.246 0.784 0.921 0.967
Ours LR S 0.122 1.041 5.304 0.218 0.847 0.943 0.973
Ours S 0.115 1.010 5.164 0.212 0.858 0.946 0.974

Zhou [7]† M 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang [32] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian [33] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968
GeoNet [31] M 0.155 1.296 5.857 0.233 0.793 0.931 0.973
DDVO [34] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Ours LR M 0.133 1.158 5.370 0.208 0.841 0.949 0.978
Ours M 0.129 1.112 5.180 0.205 0.851 0.952 0.978

commonly manifests itself as ‘holes’ in the predicted test time depth maps for
objects that are typically observed to be moving during training e.g. the missing
car for the monocular methods in Fig. 4. If the moving object has the same
speed and direction as the camera, then the reprojection error is low if the dis-
parity is 0, i.e. a depth of infinity, for that object. In KITTI, this can happen
when the camera is following a moving car in the same lane at the same speed.
Unfortunately, monocular video alone is not sufficient to disambiguate pixels in
the ‘car following’ scenario.

Solely to explore this hypothesis, we trained another version of the ‘Ours
LR’ model on a subset of the KITTI dataset, where we manually removed six
entire sequences that featured a moving car in front of the main camera. This
resulted in 37,294 training images. In Table 2, we see this model, denoted as ‘No
motion’ performs better on the Sq Rel and RMSE metrics, despite having less
training data. Further, we observe that pretraining on Cityscapes [50], which was
shown to be very useful in the case of stereo training [6], actually hurts in our
monocular setting. We hypothesize that the increased proportion of motion in
Cityscapes “helps” the network learn unrealistic depths that actually reproject
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Table 2. Results for different variants of our model that use monocular training on
KITTI 2015 [8] using Eigen’s split. For training, C is Cityscapes [50] and K is the
KITTI [8]. All models are trained using a resolution of 128× 416.

Method Train Dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

PoseCNN M K 0.147 1.227 5.653 0.219 0.811 0.943 0.977
Avg. reprojection M K 0.149 1.729 5.679 0.229 0.832 0.941 0.973
Low-res multi-scale M K 0.181 2.975 6.198 0.253 0.802 0.929 0.966
No pretraining M K 0.154 1.218 5.699 0.231 0.798 0.932 0.973
No SSIM M K 0.185 3.029 6.186 0.258 0.796 0.927 0.965
Ours LR M K 0.133 1.158 5.370 0.208 0.841 0.949 0.978

Ours LR M C 0.233 3.533 7.412 0.292 0.700 0.892 0.953
Ours LR M CK 0.138 1.430 5.609 0.215 0.843 0.948 0.975
Ours LR No motion M K* 0.134 1.075 5.242 0.208 0.842 0.949 0.978

correctly. For example, cars moving at the same speed as the camera are mapped
to a distance of infinity.
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Fig. 3. Qualitative results on the KITTI Eigen split. We can see that our ap-
proaches in the last three rows produce the sharpest depth maps, which is reflected by
the quantitative results in Table 1.
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Input Zhou [7] Mahjourian [33]

DDVO [34] Ours M Ours MS

Fig. 4. Monocular failures. Monocular methods can fail at predicting depth for
objects that were typically observed to be in motion during training e.g. moving cars.

Input Ours with Avg. reprojection Ours with Low-res multi-scale Ours M

Fig. 5. Comparison with ‘Low-res multi-scale’ and ‘Avg. reprojection’. We
see that our model results in less artifacts in the final depth image.

4.2 Additional Results

Table 3. Make3D results.

Method Type Abs Rel Sq Rel RMSE log10
Train set mean D 0.893 13.98 12.27 0.307
Karsch [10] D 0.428 5.079 8.389 0.149
Liu [53] D 0.475 6.562 10.05 0.165
Laina [11] D 0.204 1.840 5.683 0.084
Monodepth [6] S 0.544 10.94 11.760 0.193
Zhou [7] M 0.383 5.321 10.470 0.478
DDVO [34] M 0.387 4.720 8.090 0.204
Ours M 0.361 4.170 7.821 0.175

Here we present quantita-
tive results on the Make3D
dataset [2] using our model
trained on KITTI monocular
data. In Table 3 we outper-
form all methods that do not
use depth supervision. How-
ever, caution should be taken
with Make3D, as the ground
truth depth and input images
are not well aligned in the original dataset, causing potential evaluation issues.
Qualitative results can be seen in Figs. 6 and 7 and our supplementary material.

Input Zhou et al. [7] DDVO et al. [34] Ours M Ground truth

Fig. 6. Qualitative results on the Make3D dataset. All methods were trained on
KITTI using monocular supervision.
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Input Ours MS Input Ours MS

Fig. 7. Qualitative results on the Cityscapes and Wander datasets. VGG
feature loss was used for Wander as it produced more complete, yet blurrier depth
maps.

4.3 Discussion

Across the different self-supervised settings we studied, we observed that the
following design decisions are important for realizing better quality depth esti-
mation models: (1) Independent object motion is very challenging for monocular
methods. This can be substantially mitigated by excluding frames with signif-
icant motion from training, if possible, or by including them through the use
of stereo pairs, where available. However it is clear that an explicit handling
of object motion is required to truly exploit general monocular sequences. (2)
Higher resolution leads to increased performance. This is observed at both the
final depth resolution, and during multi-scale image reconstruction. (3) When
predicting camera pose, it is beneficial to use shared weights between the depth
and pose networks. This results in more stable training, fewer parameters to
learn, and better performance. (4) Compared to the averaging baseline, a min-
imum reprojection loss is a simple and elegant solution to deal with occluded
pixels. (5) Pretraining encoders on general image recognition tasks enables faster
convergence, and results in better accuracy for depth estimation.

5 Conclusions

We presented a versatile model for self-supervised monocular depth estimation.
We showed that with some careful, but non-obvious design choices, our model can
outperform the existing state-of-the-art depth estimation algorithms, whether
they leverage self-supervision with monocular training data, stereo training data,
or both. We observed that models that are trained with stereo images still out-
perform those that use only monocular videos. Existing datasets like KITTI
slightly conceal motion-induced limitations, due to the relatively small number
of moving objects at training time. We expect scene-flow based performance dif-
ferences to become more apparent as the community moves to more complex
and general-world training imagery.

Acknowledgements We would like to thank Chaoyang Wang, Luo Yue, Reza
Mahjourian, Zhichao Yin and Huangying Zhan for sharing their KITTI results
with us. We would also like to thank Peter Hedman for sharing his stereo tricks.



Digging Into Self-Supervised Monocular Depth Estimation 15

References

1. Jiang, H., Learned-Miller, E., Larsson, G., Maire, M., Shakhnarovich, G.: Self-
supervised depth learning for urban scene understanding. arXiv preprint
arXiv:1712.04850 (2017)

2. Saxena, A., Sun, M., Ng, A.Y.: Make3d: Learning 3d scene structure from a single
still image. PAMI (2009)

3. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image
using a multi-scale deep network. In: NIPS. (2014)

4. Xie, J., Girshick, R., Farhadi, A.: Deep3d: Fully automatic 2d-to-3d video conver-
sion with deep convolutional neural networks. In: ECCV. (2016)

5. Garg, R., Kumar BG, V., Reid, I.: Unsupervised CNN for single view depth
estimation: Geometry to the rescue. In: ECCV. (2016)

6. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth esti-
mation with left-right consistency. In: CVPR. (2017)

7. Zhou, T., Brown, M., Snavely, N., Lowe, D.: Unsupervised learning of depth and
ego-motion from video. In: CVPR. (2017)

8. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for Autonomous Driving? The
KITTI Vision Benchmark Suite. In: CVPR. (2012)

9. Hoiem, D., Efros, A.A., Hebert, M.: Automatic photo pop-up. TOG (2005)
10. Karsch, K., Liu, C., Kang, S.B.: Depth transfer: Depth extraction from video using

non-parametric sampling. PAMI (2014)
11. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth

prediction with fully convolutional residual networks. In: 3DV. (2016)
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Digging Into Self-Supervised
Monocular Depth Estimation -

Supplementary Material

1 Effect of moving cars

Cars moving at the same speed as the camera, or close to it, can appear seemingly
static for many consecutive frames - masquerading as if they were extremely far
away objects. This often causes a monocular video based network to assign a
very large depth to such cars, to reach a low reprojection error. These incor-
rect predictions can be seen at test time, as shown in Fig. 1. This problem is
amplified by pretraining on Cityscapes data [5], as this dataset contains many
more sequences with such ambiguous situations, where the camera is following
similar-speed cars. As we can see in Fig. 1, our monocular model, pretrained
on Cityscapes, makes more dramatic mistakes in certain specific situations: cars
just ahead are interpreted as “punched” out depths.

While we can mitigate the problem by excluding such nearly-matched-speed
cars when training on KITTI, we found a better overall solution: we found that
training with both monocular and stereo supervision addresses the issue directly.

2 Network architecture

In Table 1 we describe the parameters of each layer used in our depth decoder
and pose network. The depth decoder makes use of ELU non-linearities [6].

3 Single scale test time evaluation

Our approach, like all self-supervised baselines, has no guarantee of producing
results with a metric scale. Nonetheless, we anticipate that there could be value
in estimating depth-outputs that are, without special measures, consistent with
each other over the length of a video clip.

To evaluate the stability of our depth estimation, we modified the evaluation
protocol from [1] to scale (or align) the predicted depths with a single scalar
per method, instead of a different scalar per test depth map. In [1], the authors
independently scale each predicted depth map by the ratio of the median of
the ground truth and predicted depth map - for each individual test image.
This is in contrast to stereo based training where the scale is known and as
a result no additional scaling is required during the evaluation e.g. [7, 8]. This
per-image depth scaling hides unstable scale estimation in both depth and pose
estimation and presents a best case scenario for the monocular training case i.e.
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Table 1. Our network architecture Here k is the kernel size, s the stride, chns the
number of output channels for each layer, res is the downscaling factor for each layer
relative to the input image, and input corresponds to the input of each layer where ↑
is a 2× nearest-neighbor upsampling of the layer.

Depth Decoder

layer k s chns res input

upconv5 3 1 256 32 econv5
iconv5 3 1 256 16 ↑upconv5, econv4

upconv4 3 1 128 16 iconv5
iconv4 3 1 128 8 ↑upconv4, econv3
disp4 3 1 1 1 iconv4

upconv3 3 1 64 8 iconv4
iconv3 3 1 64 4 ↑upconv3, econv2
disp3 3 1 1 1 iconv3

upconv2 3 1 32 4 iconv3
iconv2 3 1 32 2 ↑upconv2, econv1
disp2 3 1 1 1 iconv2

upconv1 3 1 16 2 iconv2
iconv1 3 1 16 1 ↑upconv1
disp1 3 1 1 1 iconv1

Shared-encoder pose network

layer k s chns res input

pconv0 1 1 256 32 econv5

pconv1 3 2 256 64 pconv0t−1, pconv0t, pconv0t+1

pconv2 3 2 256 128 pconv1
pconv3 1 1 12 128 pconv3

if a method outputs wildly varying scales for each sequence, then this evaluation
protocol will significantly hide the issue. We thus modified the original protocol
to instead use a single scale for all predicted depth maps of each method. For
each method, we compute this single scale by averaging all the individual ratios
of the depth medians on the test set. While this is still not ideal as it makes use
of the ground truth depth, we believe it to be a more fair and representative
of the performance of each method. We also calculated the standard deviation
σscale of the individual scales, where lower values indicate more consistent output
depth map scales. As can be seen in Table 2, our method still outperforms all
previously published self-supervised monocular methods, and is more stable.

Table 2. Comparison to existing monocular supervised methods on KITTI
2015 [9] using the Eigen split using a single scale for each method. † in-
dicates newer results from the respective online implementations. Here we compare
our monocular trained model, where LR is our model trained to predict at 128 × 416
resolution, otherwise we use 192× 640.

Method σscale Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou [1]† 0.201 0.278 2.636 7.428 0.335 0.576 0.836 0.930
Mahjourian [3] 0.184 0.234 1.874 6.616 0.297 0.642 0.871 0.948
GeoNet [4] 0.167 0.216 1.778 6.389 0.277 0.681 0.890 0.957
DDVO [2] 0.104 0.167 1.408 5.770 0.243 0.778 0.923 0.970
Ours LR 0.100 0.149 1.259 5.525 0.221 0.810 0.943 0.976
Ours 0.089 0.139 1.165 5.253 0.214 0.832 0.946 0.977
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4 Effect of pre-training

While pre-training provides an improvement in both convergence speed and final
accuracy, our method isn’t relying on it. As we can see in Table 3 our method
still outperforms all but one [2] published state of the art methods.

Table 3. Even without pre-training, our model still outperforms or matches recent
SoA methods at depth estimation (best two shown). The best result is bolded, second
is underlined.

Method Train Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

UnDeepVO [10] MS 0.183 1.730 6.57 0.268 - - -
Zhan Temporal [22] MS 0.144 1.391 5.869 0.241 0.803 0.928 0.969
Zhan FullNYU [22] D*MS 0.135 1.132 5.585 0.229 0.820 0.933 0.971
Ours scratch LR MS 0.137 1.155 5.660 0.234 0.810 0.930 0.970
Ours scratch MS 0.135 1.161 5.470 0.229 0.821 0.934 0.971
Ours MS 0.114 0.991 5.029 0.203 0.864 0.951 0.978

Garg [5]† S 0.152 1.226 5.849 0.246 0.784 0.921 0.967
Monodepth R50 [6] S 0.133 1.142 5.533 0.230 0.830 0.936 0.970
Ours scratch LR S 0.140 1.300 5.649 0.235 0.818 0.930 0.968
Ours scratch S 0.130 1.214 5.468 0.226 0.836 0.935 0.970
Ours S 0.111 1.012 5.127 0.209 0.861 0.947 0.975

Zhou [1]† M 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang [11] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian [3] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968
GeoNet [31] M 0.155 1.296 5.857 0.233 0.793 0.931 0.973
DDVO [34] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Ours scratch LR M 0.154 1.218 5.699 0.231 0.798 0.932 0.973
Ours scratch M 0.154 1.270 5.610 0.229 0.803 0.933 0.972
Ours M 0.129 1.112 5.180 0.205 0.851 0.952 0.978

5 Odometry

In Table 4 we evaluate our pose estimation network following Zhou et al. [1] eval-
uation protocol. We trained our monocular model with 3 frames on sequences 0-8
from the KITTI odometry split and tested on 9-10. The absolute trajectory error
(ATE) is averaged over all overlapping 5-frame snippets in the test sequences.
Here, unlike [1] and others, that use specific architectures for the odometry task,
we use the same architecture for this task as our depth estimation network from
Table 1, and simply train it again from scratch on these new sequences. In order
to compare our 3-frame model, we only use one relative transformation Tt→t−1
and combine the frame-to-frame estimates to form local trajectories. For com-
pleteness we repeat the same process with Zhou’s [1] predicted poses, which we
indicate with a ∗ in the table. As we can see in Table 4, our frame-to-frame poses
are better than both [1] and the previous state-of-the-art for monocular depth
estimation [2]. They however fall short of the independent 5-frame estimations
from previous self-supervised methods i.e. [3, 4].
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Table 4. Odometry results on the KITTI [9] odometry dataset. Results show
the average absolute trajectory error, and standard deviation, in meters. †indicates
newer results from the respective online implementations.

Sequence 09 Sequence 10

ORB-Slam [12] 0.014±0.008 0.012±0.011

Zhou [1] 0.021±0.017 0.020±0.015

Zhou [1]† 0.016±0.009 0.013±0.009

Mahjourian [3] 0.013±0.010 0.012±0.011

GeoNet [4] 0.012±0.007 0.012±0.009

DDVO [2] 0.045±0.108 0.033±0.074

Zhou* [1] 0.050±0.039 0.034±0.028

Ours LR 0.023±0.013 0.018±0.014

Table 5. Comparison of the revised evaluation code on KITTI 2015 [9] using
the Eigen split. D refers to methods that use KITTI depth supervision at training time,
D* use auxiliary depth supervision, S use stereo, and M use monocular supervision.
LR is our model trained to predict at 128×416 resolution, otherwise we use 192×640.

Method Train Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Ours LR MS 0.122 1.164 5.244 0.212 0.850 0.947 0.975
Ours MS 0.114 0.991 5.029 0.203 0.864 0.951 0.978

Ours LR S 0.118 1.044 5.264 0.216 0.849 0.944 0.974
Ours S 0.111 1.012 5.127 0.209 0.861 0.947 0.975

Ours LR M 0.137 1.153 5.353 0.212 0.836 0.947 0.978
Ours M 0.133 1.111 5.182 0.209 0.845 0.950 0.977

6 Revised evaluation code

For the main paper we used the evaluation code from [8] which is also used
by most subsequent work. We found that it uses an incorrect flag which made
the depths to be computed with respect to the LIDAR instead of the cameras.
Because most competing methods use this evaluation code, we evaluated with-
out any changes. However for completeness we present our evaluation with this
revised evaluation code in Table 5. In the first version of this paper on arXiv,
we incorrectly stated that the main paper evaluation was computed using the
revised evaluation code.

7 Convergence

In Fig. 2 we see that our model with the shared pose encoder converges faster,
and to a better accuracy, compared to using a separate pose network. This test
accuracy is not monitored during training as all our networks are trained for 15
epochs.
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8 Additional qualitative comparisons

We include additional qualitative results from the KITTI test set in Fig. 3. We
also include a supplementary video that shows qualitative results on KITTI,
Cityscapes, and a dataset collected from Youtube that features an individual
walking with a hand-held camera in a non-European environment. This last
video is quite different from the car mounted cameras of KITTI and Cityscapes
as it only features a monocular hand-held camera that we use for training i.e.
there is no stereo data.
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Fig. 1. Moving cars and Cityscapes pretraining. All monocular methods tend to
put cars which are ahead of the camera at a very large depth value. Pretraining on
Cityscapes [5], which has more moving cars in the training data compared to KITTI,
only makes things worse especially for our method. Training with the addition of stereo
data significantly reduces the impact of this problem.
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Fig. 2. Convergence comparison. Here we compare the depth prediction accuracy
of our model with our shared pose network (ours) and our model with the separate
pose network (ours with posecnn) using the δ < 1.25 metric on the KITTI test set,
where higher values are better.
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Fig. 3. Qualitative results on test images from the KITTI Eigen split. We
can see that our approaches in the last three rows produce the sharpest depth maps.
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