A Proposal for Control Engineering Virtual Lab

Dr. Rajeev Kumar Chauhan Department of Electrical Engineering Dayalbagh Educational Institute (Deemed to be University), Agra Email: rajeevchr_nitj@yahoo.com Phone: +91-9411860126

I. Objectives of the Virtual Lab

- 1. To provide the students with the knowledge and practice of the modeling of physical dynamical systems to become a proficient control Engineer
- 2. To prepare qualified engineers to build control algorithms.

II. List of experiments

S. No.	Name of Experiment	Pedagogy
1.	 Analyze the transfer function and pole zero plot of a control system. To obtain: Pole zero, gain values from a given transfer function Transfer function model from pole, zero, gain values Pole, zero plot of a transfer function 	Analysis
2.	Find and Plot the step and impulse response for a first order unity feedback system.	Evaluation
3.	Find and Plot the step and impulse response for a second order unity feedback system.	Evaluation
4.	Find and Plot the step and impulse response for a type '0', type '1', type '2' systems.	Evaluation
5.	Show the effect of addition of zeros to the forward path transfer function of a closed loop system.	Analysis

6.	Show the effect of addition of poles to the forward path transfer function of a closed loop system.	Analysis
7.	 Plot the root locus for the given transfer function and show i. Break away point ii. Intersection with Imaginary axis, iii. Range of K for Stability iv. Closed loop transfer function at any value of K. 	Analysis
8.	Show the bode plot for a given transfer function of the system.	Evaluation
9.	Obtain Nyquist Plot of a system	Analysis
10.	Study the effect of PI, PD and PID controller on system performance	Understanding

III. Target Group

≻ UG, PG

IV. Mapping of proposed lab with AICTE course

Control System (PCC-EE17)

V. Mapping of proposed lab with UGC approved universities

S. No.	Discipline	Lab Name	University Name	Semester
1	Electrical & Electronics Engineering (EEE)	Control System (EE332)	Muffakham Jha College of Engineering & Technology, Hydrabad	3 rd
2.	Electronics & Instrumentation Engineering (EIE)	Control System (EE332)	Muffakham Jha College of Engineering & Technology, Hydrabad	4 th
3.	Electrical & Electronics Engineering (EEE)	Control System (EE2257)	SSN College of Engineering Kalavakkam	3 rd
4.	Electrical & Computer Engineering	Fundamentals of Control System (E6.LEC372)	Concordia University	3 rd

5.	Electrical Engineering (EE)	Control System (3130905)	Amiraj College of Engineering & Technology	3 rd
6.	Electrical & Electronics Engineering (EEE)	Control System (EE2257)	Dhanalakshmi College of Engineering	3 rd
7.	Electrical Engineering (EEE)	Control System (EL181412)	Jorhat Engineering College, Asam	4 th
8.	Electrical Engineering (EE)	Control System (01EE0403)	Marwadi University, Rajkot Gujrat	4^{th}
9.	Electrical & Electronics Engineering (EEE)	Control System Lab (EE301P)	IIT Mandi	3 rd
10	Electrical & Electronics Engineering (EEE)	Control System Lab (REE553)	AKTU Lucknow and Their Affiliated Colleges	5 th
11.	Electronics and Communication Engineering (ECE)	Control System-I Lab (KIC- 652)	AKTU Lucknow and Their Affiliated Colleges	6 th
12.	Electronics and Instrumentation Engineering (EIE)	Control System Lab (RIC653)	AKTU Lucknow and Their Affiliated Colleges	6^{th}
13.	Instrumentation and Control Engineering (ICE)	Control System-I Lab (NIC551)	AKTU Lucknow and Their Affiliated Colleges	5 th
14.	Electronics and Communication Engineering (ECE)	Control System Lab (PEE652)	Uttarakhand Technical University and Their Affiliated Colleges	6 th
15.	Electrical Engineering (EE)	Control Engineering Lab (EEM502)	Dayalbagh Educational Institute, Agra	5 th

VI. **Proposed date of completion** – One Year from the date of grant sectioned

VII. Budget (Max. Rs 2 Lakhs per experiment)

S. No.	Equipment/Activity	Budget [#] (In Lakh Rupees)
1	Hardware, software, and other equipment	Rs 5.0 Lakh
2	Manpower	Rs 7.2 Lakh
3	Consumables	Rs 0.4 Lakh
4	Contingency	Rs 2.7 Lakh
5	Miscellaneous	Rs 2.7 Lakh
6	Honoraria for Faculty developer	Rs. 2 Lakh
	TOTAL	Rs 20 Lakh

Table I. Budget for Concrete Technology Lab

To be released on 30:40:30 proportion

VIII. Justification of the Budget requirement

(a) Details of Hardware and other equipment

S. No.	Device Specification	Quantity	Total Cost (in Lakh rupees)
1	Workstation with at least 8-Core CPU 8-Core GPU512GB Storage, 512GB storage, 8GB unified memory, 24-inch, 4.5K Retina display, Two Thunderbolt / USB 4 ports, Two USB 3 ports, Gigabit Ethernet	01	1.8
2	Online UPS with battery and peripheral		0.6

3	Mobile Computer Workstation with at least 10-Core CPU, 16	01	2.6
	Core GPU, 16GB Unified Memory, 512GB SSD Storage, 16-core		
	Neural Engine, 16.2-inch, Liquid Retina XDR display, Three		
	Thunderbolt 4 ports, HDMI port, SDXC card slot, MagSafe 3 port,		
	Magic Keyboard with Touch ID, Force Touch trackpad		
		Total	5.0

(b) Details of Software (should be Free and open-source Software)

- Windows (or any other free Windows Distro)
- Html, css, java script, chart.js, MathJax

(c) Details of Manpower (no., cost per man-months, honoraria etc)

- a. No. of project staff, cost per man-months Development Engineer (1), Project Associate/JRF, Student interns (3)
- b. Honoraria for Faculty developing the Virtual Lab –2.0 Lakh
- c. Honoraria for Other staff associated with the project –

S. No.	Staff Designation	Number of staff	Salary Per Month	Total per annum (LPA)
1	Development Engineer/SRF	01	Rs. 30,000/-	3.6
2	Student Interns	03	Rs. 10,000/-	3.6
			Total	7.2

(d) Details of Consumables

Stationery products, printer refill, pen drives, digitizers, books etc.

- (e) Details of Miscellaneous cost
 - a. Production/manufacturing cost
 - b. Field Trials
 - c. Others

IX. Virtualization

- How do you intend to virtualize the experiments?
 - 1. There is option for the user to insert the values. Also having the option to vary them.
 - 2. There is visualization of the output according to the feed values.
 - 3. Step by Step output visualization.
 - 4. There is visualization of the graphical views of the plots and impressions of the pointed parameters.
 - 5. An example (step response of 2nd order system) of the visualization is as below:

Enter Denominator values	MATLAB PROGRAM WINDOW Below is a maniful program, that you can run line by line by pressing the run button and see the coupled of the particular line below it m = 1 sol m = 1 sol m = 1 sol m = 1 sol getf(num, den) $\frac{1}{7s + 4 + 6}$ t=feedback(g,1) $\frac{1}{7s + 4 + 6}$ step(1, 'b')	Results
7s + 4 + 5 After feedback: $\frac{1}{7s + 4 + 6}$		0.16667 - 0.1667 * e ^{-0.2944} * cos(2.33) - 0.0204 * e ^{-0.2944} * sin(2.33) ∧ □ ♥ 0) ♥ ⁵³⁴⁴ 5002022

- How will the student get a feel for a 'real lab'?
 - a. Student will virtually perform all the steps of the experiments which will provide them the feel of the 'real lab'.
 - b. Students work will be validated in the form of mathematical outputs as well as in the form of plots.
- Will you be using animations? No
 We are using the real time simulation for various steps of experiments and graphical representation of results.

X. Technology Used

- Software to be used for Web interface (should be Free and open-source Software) Open source software such as Scilab would be used
- Software to be used for back-end (should be Free and Open-source Software) Open source software like Scilab would be used
- > Any other

XI. How it improves or otherwise complements the existing efforts

- The proposed lab giving ease of access to students to the control systems experiments with varying quantities.
- By adjusting the quantities students will be able to learn how the system response will change according to the different inputs.
- There is no need to install a purchased software only open source will be used to develop the experiments.
- The experiments are device friendly. Students can perform experiments by using mobile, tablet, i-pad, laptop or desktop etc.

XII. Documentation

- Online manual Yes
- Step-by-step procedure Yes
- Pre-test Yes

- Post-test Yes
- Related resources Yes
- Additional help Yes

XIII. Expected outcome

- Hardware/software
- > Website
- Manual and related material would be available

XIV. Student Feedback and Learning

- How will you collect feedback and use them?
- Feedback will be provided at the end of the experiment and the same will be used to improve the animation and content if required.
 - What is the actual learning component?
 - > An open-source software and powerful implementation hardware.
 - After the Virtual Lab experience, can the student perform the experiment in the real lab?
 - Students can easily perform and design the system after learning from the proposed lab.