Permalink
Find file Copy path
471 lines (402 sloc) 18.9 KB
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
"""
Implementation of a GL Program object.
This class parses the source code to obtain the names and types of
uniforms, attributes, varyings and constants. This information is used
to provide the user with a natural way to set variables.
Gloo vs GLIR
------------
Done in this class:
* Check the data shape given for uniforms and attributes
* Convert uniform data to array of the correct type
* Check whether any variables are set that are not present in source code
Done by GLIR:
* Check whether a set uniform/attribute is not active (a warning is given)
* Check whether anactive attribute or uniform is not set (a warning is given)
"""
import re
import numpy as np
from .globject import GLObject
from .buffer import VertexBuffer, IndexBuffer, DataBuffer
from .texture import BaseTexture, Texture2D, Texture3D, Texture1D
from ..util import logger
from .util import check_enum
from ..ext.six import string_types
from .context import get_current_canvas
from .preprocessor import preprocess
# ----------------------------------------------------------- Program class ---
class Program(GLObject):
""" Shader program object
A Program is an object to which shaders can be attached and linked to
create the final program.
Uniforms and attributes can be set using indexing: e.g.
``program['a_pos'] = pos_data`` and ``program['u_color'] = (1, 0, 0)``.
Parameters
----------
vert : str
The vertex shader to be used by this program
frag : str
The fragment shader to be used by this program
count : int (optional)
The program will prepare a structured vertex buffer of count
vertices. All attributes set using ``prog['attr'] = X`` will
be combined into a structured vbo with interleaved elements, which
is more efficient than having one vbo per attribute.
Notes
-----
If several shaders are specified, only one can contain the main
function. OpenGL ES 2.0 does not support a list of shaders.
"""
_GLIR_TYPE = 'Program'
_gtypes = { # DTYPE, NUMEL
'float': (np.float32, 1),
'vec2': (np.float32, 2),
'vec3': (np.float32, 3),
'vec4': (np.float32, 4),
'int': (np.int32, 1),
'ivec2': (np.int32, 2),
'ivec3': (np.int32, 3),
'ivec4': (np.int32, 4),
'bool': (np.int32, 1),
'bvec2': (np.bool, 2),
'bvec3': (np.bool, 3),
'bvec4': (np.bool, 4),
'mat2': (np.float32, 4),
'mat3': (np.float32, 9),
'mat4': (np.float32, 16),
'sampler1D': (np.uint32, 1),
'sampler2D': (np.uint32, 1),
'sampler3D': (np.uint32, 1),
}
# ---------------------------------
def __init__(self, vert=None, frag=None, count=0):
GLObject.__init__(self)
# Init source code for vertex and fragment shader
self._shaders = '', ''
# Init description of variables obtained from source code
self._code_variables = {} # name -> (kind, type_, name)
# Init user-defined data for attributes and uniforms
self._user_variables = {} # name -> data / buffer / texture
# Init pending user-defined data
self._pending_variables = {} # name -> data
# NOTE: we *could* allow vert and frag to be a tuple/list of shaders,
# but that would complicate the GLIR implementation, and it seems
# unncessary
# Check and set shaders
if isinstance(vert, string_types) and isinstance(frag, string_types):
self.set_shaders(vert, frag)
elif not (vert is None and frag is None):
raise ValueError('Vert and frag must either both be str or None')
# Build associated structured vertex buffer if count is given.
# This makes it easy to create a structured vertex buffer
# without having to create a numpy array with structured dtype.
# All assignments must be done before the GLIR commands are
# sent away for parsing (in draw) though.
self._count = count
self._buffer = None # Set to None in draw()
if self._count > 0:
dtype = []
for kind, type_, name, size in self._code_variables.values():
if kind == 'attribute':
dt, numel = self._gtypes[type_]
dtype.append((name, dt, numel))
self._buffer = np.zeros(self._count, dtype=dtype)
self.bind(VertexBuffer(self._buffer))
def set_shaders(self, vert, frag):
""" Set the vertex and fragment shaders.
Parameters
----------
vert : str
Source code for vertex shader.
frag : str
Source code for fragment shaders.
"""
if not vert or not frag:
raise ValueError('Vertex and fragment code must both be non-empty')
# pre-process shader code for #include directives
vert, frag = preprocess(vert), preprocess(frag)
# Store source code, send it to glir, parse the code for variables
self._shaders = vert, frag
self._glir.command('SHADERS', self._id, vert, frag)
# All current variables become pending variables again
for key, val in self._user_variables.items():
self._pending_variables[key] = val
self._user_variables = {}
# Parse code (and process pending variables)
self._parse_variables_from_code()
@property
def shaders(self):
""" Source code for vertex and fragment shader
"""
return self._shaders
@property
def variables(self):
""" A list of the variables in use by the current program
The list is obtained by parsing the GLSL source code.
Returns
-------
variables : list
Each variable is represented as a tuple (kind, type, name),
where `kind` is 'attribute', 'uniform', 'uniform_array',
'varying' or 'const'.
"""
# Note that internally the variables are stored as a dict
# that maps names -> tuples, for easy looking up by name.
return [x[:3] for x in self._code_variables.values()]
def _parse_variables_from_code(self):
""" Parse uniforms, attributes and varyings from the source code.
"""
# Get one string of code with comments removed
code = '\n\n'.join(self._shaders)
code = re.sub(r'(.*)(//.*)', r'\1', code)
# Regexp to look for variable names
var_regexp = (r"\s*VARIABLE\s+" # kind of variable
r"((highp|mediump|lowp)\s+)?" # Precision (optional)
r"(?P<type>\w+)\s+" # type
r"(?P<name>\w+)\s*" # name
r"(\[(?P<size>\d+)\])?" # size (optional)
r"(\s*\=\s*[0-9.]+)?" # default value (optional)
r"\s*;" # end
)
# Parse uniforms, attributes and varyings
self._code_variables = {}
for kind in ('uniform', 'attribute', 'varying', 'const'):
regex = re.compile(var_regexp.replace('VARIABLE', kind),
flags=re.MULTILINE)
for m in re.finditer(regex, code):
gtype = m.group('type')
size = int(m.group('size')) if m.group('size') else -1
this_kind = kind
if size >= 1:
# uniform arrays get added both as individuals and full
for i in range(size):
name = '%s[%d]' % (m.group('name'), i)
self._code_variables[name] = kind, gtype, name, -1
this_kind = 'uniform_array'
name = m.group('name')
self._code_variables[name] = this_kind, gtype, name, size
# Now that our code variables are up-to date, we can process
# the variables that were set but yet unknown.
self._process_pending_variables()
def bind(self, data):
""" Bind a VertexBuffer that has structured data
Parameters
----------
data : VertexBuffer
The vertex buffer to bind. The field names of the array
are mapped to attribute names in GLSL.
"""
# Check
if not isinstance(data, VertexBuffer):
raise ValueError('Program.bind() requires a VertexBuffer.')
# Apply
for name in data.dtype.names:
self[name] = data[name]
def _process_pending_variables(self):
""" Try to apply the variables that were set but not known yet.
"""
# Clear our list of pending variables
self._pending_variables, pending = {}, self._pending_variables
# Try to apply it. On failure, it will be added again
for name, data in pending.items():
self[name] = data
def __setitem__(self, name, data):
""" Setting uniform or attribute data
This method requires the information about the variable that we
know from parsing the source code. If this information is not
yet available, the data is stored in a list of pending data,
and we attempt to set it once new shading code has been set.
For uniforms, the data can represent a plain uniform or a
sampler. In the latter case, this method accepts a Texture
object or a numpy array which is used to update the existing
texture. A new texture is created if necessary.
For attributes, the data can be a tuple/float which GLSL will
use for the value of all vertices. This method also acceps VBO
data as a VertexBuffer object or a numpy array which is used
to update the existing VertexBuffer. A new VertexBuffer is
created if necessary.
By passing None as data, the uniform or attribute can be
"unregistered". This can be useful to get rid of variables that
are no longer present or active in the new source code that is
about to be set.
"""
# Deal with local buffer storage (see count argument in __init__)
if (self._buffer is not None) and not isinstance(data, DataBuffer):
if name in self._buffer.dtype.names:
self._buffer[name] = data
return
# Delete?
if data is None:
self._user_variables.pop(name, None)
self._pending_variables.pop(name, None)
return
if name in self._code_variables:
kind, type_, name, size = self._code_variables[name]
if kind == 'uniform':
if type_.startswith('sampler'):
# Texture data; overwrite or update
tex = self._user_variables.get(name, None)
if isinstance(data, BaseTexture):
pass
elif tex and hasattr(tex, 'set_data'):
tex.set_data(data)
return
elif type_ == 'sampler1D':
data = Texture1D(data)
elif type_ == 'sampler2D':
data = Texture2D(data)
elif type_ == 'sampler3D':
data = Texture3D(data)
else:
# This should not happen
raise RuntimeError('Unknown type %s' % type_)
# Store and send GLIR command
self._user_variables[name] = data
self.glir.associate(data.glir)
self._glir.command('TEXTURE', self._id, name, data.id)
else:
# Normal uniform; convert to np array and check size
dtype, numel = self._gtypes[type_]
data = np.array(data, dtype=dtype).ravel()
if data.size != numel:
raise ValueError('Uniform %r needs %i elements, '
'not %i.' % (name, numel, data.size))
# Store and send GLIR command
self._user_variables[name] = data
self._glir.command('UNIFORM', self._id, name, type_, data)
elif kind == 'uniform_array':
# Normal uniform; convert to np array and check size
dtype, numel = self._gtypes[type_]
data = np.atleast_2d(data).astype(dtype)
need_shape = (size, numel)
if data.shape != need_shape:
raise ValueError('Uniform array %r needs shape %s not %s'
% (name, need_shape, data.shape))
data = data.ravel()
# Store and send GLIR command
self._user_variables[name] = data
self._glir.command('UNIFORM', self._id, name, type_, data)
elif kind == 'attribute':
# Is this a constant value per vertex
is_constant = False
def isscalar(x):
return isinstance(x, (float, int))
if isscalar(data):
is_constant = True
elif isinstance(data, (tuple, list)):
is_constant = all([isscalar(e) for e in data])
if not is_constant:
# VBO data; overwrite or update
vbo = self._user_variables.get(name, None)
if isinstance(data, DataBuffer):
pass
elif vbo is not None and hasattr(vbo, 'set_data'):
vbo.set_data(data)
return
else:
data = VertexBuffer(data)
# Store and send GLIR command
if data.dtype is not None:
numel = self._gtypes[type_][1]
if data._last_dim and data._last_dim != numel:
raise ValueError('data.shape[-1] must be %s '
'not %s for %s'
% (numel, data._last_dim, name))
self._user_variables[name] = data
value = (data.id, data.stride, data.offset)
self.glir.associate(data.glir)
self._glir.command('ATTRIBUTE', self._id,
name, type_, value)
else:
# Single-value attribute; convert to array and check size
dtype, numel = self._gtypes[type_]
data = np.array(data, dtype=dtype)
if data.ndim == 0:
data.shape = data.size
if data.size != numel:
raise ValueError('Attribute %r needs %i elements, '
'not %i.' % (name, numel, data.size))
# Store and send GLIR command
self._user_variables[name] = data
value = tuple([0] + [i for i in data])
self._glir.command('ATTRIBUTE', self._id,
name, type_, value)
else:
raise KeyError('Cannot set data for a %s.' % kind)
else:
# This variable is not defined in the current source code,
# so we cannot establish whether this is a uniform or
# attribute, nor check its type. Try again later.
self._pending_variables[name] = data
def __contains__(self, key):
return key in self._code_variables
def __getitem__(self, name):
""" Get user-defined data for attributes and uniforms.
"""
if name in self._user_variables:
return self._user_variables[name]
elif name in self._pending_variables:
return self._pending_variables[name]
else:
raise KeyError("Unknown uniform or attribute %s" % name)
def draw(self, mode='triangles', indices=None, check_error=True):
""" Draw the attribute arrays in the specified mode.
Parameters
----------
mode : str | GL_ENUM
'points', 'lines', 'line_strip', 'line_loop', 'triangles',
'triangle_strip', or 'triangle_fan'.
indices : array
Array of indices to draw.
check_error:
Check error after draw.
"""
# Invalidate buffer (data has already been sent)
self._buffer = None
# Check if mode is valid
mode = check_enum(mode)
if mode not in ['points', 'lines', 'line_strip', 'line_loop',
'triangles', 'triangle_strip', 'triangle_fan']:
raise ValueError('Invalid draw mode: %r' % mode)
# Check leftover variables, warn, discard them
# In GLIR we check whether all attributes are indeed set
for name in self._pending_variables:
logger.warn('Variable %r is given but not known.' % name)
self._pending_variables = {}
# Check attribute sizes
attributes = [vbo for vbo in self._user_variables.values()
if isinstance(vbo, DataBuffer)]
sizes = [a.size for a in attributes]
if len(attributes) < 1:
raise RuntimeError('Must have at least one attribute')
if not all(s == sizes[0] for s in sizes[1:]):
msg = '\n'.join(['%s: %s' % (str(a), a.size) for a in attributes])
raise RuntimeError('All attributes must have the same size, got:\n'
'%s' % msg)
# Get the glir queue that we need now
canvas = get_current_canvas()
assert canvas is not None
# Associate canvas
canvas.context.glir.associate(self.glir)
# Indexbuffer
if isinstance(indices, IndexBuffer):
canvas.context.glir.associate(indices.glir)
logger.debug("Program drawing %r with index buffer" % mode)
gltypes = {np.dtype(np.uint8): 'UNSIGNED_BYTE',
np.dtype(np.uint16): 'UNSIGNED_SHORT',
np.dtype(np.uint32): 'UNSIGNED_INT'}
selection = indices.id, gltypes[indices.dtype], indices.size
canvas.context.glir.command('DRAW', self._id, mode, selection)
elif indices is None:
selection = 0, attributes[0].size
logger.debug("Program drawing %r with %r" % (mode, selection))
canvas.context.glir.command('DRAW', self._id, mode, selection)
else:
raise TypeError("Invalid index: %r (must be IndexBuffer)" %
indices)
# Process GLIR commands
canvas.context.flush_commands()