
Even a cheap inkjet printer knows when it’s out of ink, but even relatively expensive 3D printers have no ability
to detect filament feed issues. This is perhaps the most glaring design deficiency in the 3D printer world. Most
add-on filament detectors are able to detect the presence of filament, but still cannot detect failure-to-feed
situations. In our shop, we have wasted hundreds of dollars’ worth of filament on large-format prints that failed
due to a feed failure rather than a runout, so a good solution offers significant cost savings for our FDM
operations.

In this application, the most straightforward way to reliably detect motion is to use magnets and a Hall-effect
sensor. These are inexpensive and readily available, in configurations tailor-made for the Raspberry Pi
architecture. We developed two sample designs; parts cost on either one is less than $20, and either one can be
used in conjunction with, or instead of, a traditional switch-based filament sensor. The STL files can be
downloaded at https://bit.ly/2AnIDVx.

Because this configuration produces a series of on/off pulses, it can’t be monitored for a “true/false” status like
a traditional switch-based filament detector. The monitoring must involve a “wait for first motion” sequence to
avoid false triggering during the print initialization process (bed leveling, heating, etc.), followed by a timeout-
based pulse detection loop. Each pulse should reset the timer, and if a pulse isn’t detected within the timeout
period, the print should be paused and some sort of notification should occur. An example shell script is
included at the end of this document. If you’re using the Enclosure Plugin (and if not, why not?!), you can
configure a button to trigger the shell script, or you can just start it via init.d or in a terminal session. If you use
an Enclosure Plugin button, you’ll need to use a wrapper script (also included below) that starts the shell script
and exits cleanly; otherwise, Enclosure Plugin will be hung in limbo waiting for the script to exit…which means
that the OctoPrint web interface will not accept new connections as long as the script is running.

The optimal timeout value will depend on your specific setup. Obviously, for a given print, 3mm filament
through a 0.5mm nozzle moves a lot slower than 1.75mm filament through a 0.8mm nozzle. The script keeps
track of the longest pulse time, though, so you can set the timeout fairly long, maybe 30-45s for 1.75mm
filament, 240-300s for 3mm filament, and then check the log file at the end to see the actual longest pulse time,
which will help you figure out a good timeout value for your configuration. Another option would be to modify
the script to:

1. Calculate the length of filament that has gone through the sensor, based on the feed length per sensor pulse,
which will depend on your setup. This would probably work best with Design 1 below; too many feed
length variables with Design 2.

2. Query the OctoPrint API (/usr/bin/curl -s -H "X-Api-Key: YOUR_API_KEY” http://localhost/api/job) to
get the “length” value (total filament needed for the job) and the “completion” value (% job complete), and
use those to calculate the length of filament that should have been fed.

3. Compare the two numbers, and assume there’s a feed issue if they don’t match within some tolerance.

It would require some testing to determine whether this method would detect feed problems faster than a single-
value timeout.

It would also be nice to convert the script to python, so it could be more easily incorporated into an OctoPrint
plugin (either the Enclosure Plugin or a distinct project).  

https://bit.ly/2AnIDVx
http://localhost/api/job

Design 1: Filament Motion Sensor

This design monitors the filament itself, similar to a traditional filament sensor. This requires less
customization, so it may be easier to implement, it can probably detect failure-
to-feed issues faster, and it definitely works better for slow-moving filament.

Procure a magnetic encoder pair kit (it includes two sets)…
https://www.pololu.com/product/3081

…and some #4x3/8” (M3x10mm) pan-head sheet metal
screws, e.g. Lowe’s p/n 54840.

Drill out the center holes in the PCB and magnetic disk with a 5/64” (2mm) drill,
so they slip over a piece of 1.75mm filament.

Solder three wires onto the PCB: GND, OUT A (or OUT B, your choice), and
VCC.

Print the sensor housing & cover. If it will be used inside a heated enclosure, use
ABS, nGen, nylon, or some other heat-resistant filament (not PLA!). Nylon is
preferred, to reduce filament feed friction. For 3mm filament, drill out the feed
hole with a 9/64” (3.5mm) drill. The “nozzle” on the housing outlet is intended
to create some distance between the sensor and the extruder, so the software has
time to detect a filament runout and pause the print (hopefully) before the end of
the filament reaches the extruder. If you don’t want/need it, cut it off.

Use a dab of silicone or other non-conductive adhesive to glue the PCB into the
square recess in the housing. The square end of the PCB (with the solder
terminals) should cover the rectangular slot at one end of the recess. Use a piece
of 1.75mm filament (nylon, if possible) to line up the PCB with the hole in the
housing and serve as a shaft on which the disk will spin.

Drill to 2mm

https://www.pololu.com/product/3081
https://www.lowes.com/pd/Hillman-4-x-3-8-in-Phillips-Drive-Sheet-Metal-Screws-24-Count/3034789

Slip the magnetic disk over the filament, and install the cover.

Secure the cover with two #4x3/8” screws. The
slotted holes in the cover allow you to adjust the
tension between the disk and the filament. You
want just enough tension that the filament feeds
reliably, and the disk rotates reliably.

Connect the wires into your RPi. Red wire goes
to 5V, black to ground, yellow to whatever pin
you’re using for signal input.

slide to adjust te
nsion

5V

GND

GPIO

Option 2: Spool Motion Sensor

This design monitors the rotating filament spool. This reduces filament feed friction, and doesn’t add additional
wiring & hardware to the printer’s flexing arm and extruder head, but it does require a spool support that uses
standard 22mm-diameter sealed bearings. Search thingiverse.com for examples. This design works best for
relatively fast-moving filament.

Procure some 6x2mm strong magnets (http://a.co/cG7rZ2z) and a
Hall sensor module (http://a.co/iOIRnT7).

Print the magnet wheel.

Install the magnets into the wheel, making sure to orient all of the magnet poles
in the same direction. An easy way to accomplish this is to let the magnets stack
(so the poles are automatically lined up) and lay the wheel on a flat surface. Push
the bottom magnet into a hole, then slide the stack sideways off of that magnet,
to the next hole. Repeat until all the holes are filled, then coat the underside with
a layer of your adhesive of choice to hold the magnets in place.

Slip the magnet wheel onto a spool support bearing that will spin reliably when
the spool rotates. Make sure the wheel is aligned straight, so it spins without
wobbling. Use a bit of glue to secure it to the bearing if necessary.

Mount the Hall sensor board in such a way that
the magnets pass near the sensor as the wheel
rotates. The sensor is more sensitive to one
magnetic pole than the other, so you can adjust
the characteristics of the output pulse by
changing the orientation & distance between the
sensor and the wheel.

Connect the wires from the Hall sensor into your RPi. Red wire goes to 5V,
black to ground, yellow to whatever pin you want to use for signal input.

5V

GND

GPIO

http://thingiverse.com
http://a.co/cG7rZ2z
http://a.co/iOIRnT7

These photos show an example configuration of the wheel and sensor, on
a spool support rig for our Lulzbot TAZ6. The sensor should really be
mounted with one of its faces parallel with the magnets (so the PCB is

perpendicular to the wheel), but this
arrangement works too—it’s just more
sensitive to the placement of the sensor. In
this setup, shifting the sensor even 1/16”
in either direction causes it to stop
detecting.

Another example setup on top of a gMax 1.5 XT+. This one has the “correct” sensor orientation.

Sample Shell Script

#!/bin/bash

FilamentMonitor.sh -- Jon L. Gardner, jon@brazoslink.net

Monitors a Raspberry Pi GPIO input for pulses from a filament motion sensor.
Triggers a print pause via OctoPrint API, and optionally notifies via IFTTT.

set timeout in seconds
timeout=$1

if [[! $timeout]]; then
 /bin/echo "Warning: No timeout specified, defaulting to 30s."
 timeout=30
else
 /bin/echo "Timeout set to ${timeout} seconds."
fi

select input pin to monitor for motion sensing
GPI=5

OctoPrint API key
apikey=YOUR_OCTOPRINT_API_KEY

IFTTT API key and event name (from Enclosure Plugin settings)
ifttt_key=YOUR_IFTTT_API_KEY
ifttt_event=YOUR_IFTTT_EVENT_NAME

prepare the pins
IO=/sys/class/gpio
if [[$GPI]]; then
 /bin/echo "Configuring input on BCM ${GPI}."
 if [! -d $IO/gpio${GPI}]; then
 /bin/echo "${GPI}" > $IO/export
 fi
 /bin/echo "in" > $IO/gpio${GPI}/direction
else
 /bin/echo "Error: No GPIO pin specified!"
 exit 1
fi

function trap_ctrlc ()
{
 /usr/bin/printf "\nLongest pulse time was $maxtime seconds.\n"
 exit 2
}

function monitor_gpio ()
{
 ok=0
 exp=0
 val1=$(/bin/cat $IO/gpio${GPI}/value)
 while [[$ok = 0]]; do
 val2=$(/bin/cat $IO/gpio${GPI}/value)
 if [[$val1 != $val2]]; then
 val1=$val2
 ok=1
 exp=0
 fi
 if [$init == 0]; then
 ctime=`/bin/date +%s`
 etime=`/usr/bin/expr $ctime - $stime`
 if [$etime -gt $timeout]; then
 ok=1
 exp=1
 fi
 fi
 sleep 0.2
 done
}

function check_print_status ()
{
 # query OctoPrint for the main tool setpoint
 done=0
 setpoint=`/usr/bin/curl -s -H "X-Api-Key: "$apikey"" http://localhost/api/printer | /bin/grep -A3
tool0 | /bin/grep target | /usr/bin/cut -f2 -d:`
 # if 0.0, assume the print is done
 if [$setpoint = 0.0]; then
 done=1
 fi
}

trap "trap_ctrlc" 2
init=1
maxtime=0

while :
do

 if [$init == 1]; then
 # wait for the first change before starting the timer
 /bin/echo "Monitoring BCM ${GPI} for initial filament movement..."
 monitor_gpio
 /bin/echo "Initial pulse detected."
 /bin/echo "Monitoring with timeout of $timeout s..."
 init=0
 fi

 # once things are moving, detect if things stop moving for longer than the timeout
 stime=`/bin/date +%s`
 monitor_gpio

 if [$exp == 1]; then

 /bin/echo "Filament has stopped moving."

 check_print_status

 if [$done == 0]; then
 # pause the print via OctoPrint API (assumes localhost)
 /bin/echo '{"command": "pause" , "action": "pause"}' | /usr/bin/curl -s -X POST -d @- -H "X-Api-
Key: "$apikey"" -H "Content-Type: application/json" http://localhost/api/job > /dev/null

 # notify via IFTTT
 if [[$ifttt_key]]; then
 /bin/echo '{"value1": "Printer paused by filament motion sensor." , "value2": "Longest pulse
delay '$maxtime' s."}' | /usr/bin/curl -s -X POST -d @- -H "Content-Type: application/json"
https://maker.ifttt.com/trigger/$ifttt_event/with/key/$ifttt_key > /dev/null
 fi

 # wait for the timeout period, then start over
 /bin/echo "Pausing $timeout s for reset..."
 /bin/sleep $timeout
 init=1
 else
 # assume the print is finished, and exit
 echo "Print appears to be finished."
 trap_ctrlc
 fi
 else
 # maintain record of longest pulse time
 ftime=`/bin/date +%s`
 ttime=`/usr/bin/expr $ftime - $stime`
 /usr/bin/printf "."
 if [$ttime -gt $maxtime]; then
 maxtime=$ttime
 fi

 fi

done  

Wrapper Script (for starting via Enclosure Plugin)

#!/bin/bash

startFM - wrapper script for FilamentMonitor.sh

kill any running FilamentMonitor processes
while :
do
pid=`ps ax|grep -v grep|grep FilamentMonitor|cut -c1-5`
if [[$pid]]; then
 sudo kill $pid
else
 break
fi
done
set timeout from command line
timeout=$1
if [[! $timeout]]; then
 timeout=30
fi
cd /home/pi
to monitor progress, ssh to the OctoPi and "tail -f fm.log"
nohup ./FilamentMonitor.sh $timeout > fm.log &
echo "FilamentMonitor started (PID $!) with ${timeout}s timeout.”

Sample Enclosure Plugin Output Configuration

