
Transferring Performance Prediction Models Across
Different Hardware Platforms

Pavel Valov
University of Waterloo

200 University Avenue West
Waterloo, ON, Canada

pvalov@uwaterloo.ca

Jean-Christophe
Petkovich

University of Waterloo
200 University Avenue West

Waterloo, ON, Canada
j2petkovich@uwaterloo.ca

Jianmei Guo∗

East China University of
Science and Technology

130 Meilong Road
Shanghai, China

gjm@ecust.edu.cn
Sebastian Fischmeister

University of Waterloo
200 University Avenue West

Waterloo, ON, Canada
sfischme@uwaterloo.ca

Krzysztof Czarnecki∗
University of Waterloo

200 University Avenue West
Waterloo, ON, Canada

kczarnec@gsd.uwaterloo.ca

ABSTRACT
Many software systems provide configuration options rel-
evant to users, which are often called features. Features
influence functional properties of software systems as well
as non-functional ones, such as performance and memory
consumption. Researchers have successfully demonstrated
the correlation between feature selection and performance.
However, the generality of these performance models across
different hardware platforms has not yet been evaluated.

We propose a technique for enhancing generality of perfor-
mance models across different hardware environments using
linear transformation. Empirical studies on three real-world
software systems show that our approach is computationally
efficient and can achieve high accuracy (less than 10% mean
relative error) when predicting system performance across
23 different hardware platforms. Moreover, we investigate
why the approach works by comparing performance distribu-
tions of systems and structure of performance models across
different platforms.

CCS Concepts
•Software and its engineering → Software perfor-
mance;

Keywords
Performance Modelling, Regression Trees, Model Transfer,
Linear Transformation

∗Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22-26, 2017, L’Aquila, Italy
© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030216

1. INTRODUCTION
Many software systems provide configuration options. These

configuration options usually have a direct influence on the
functional behaviour of target software systems. Some con-
figuration options may impact systems’ non-functional prop-
erties, such as response time, memory consumption and
throughput. Configuration options that are relevant to users
are usually called features [5], and a particular selection of
features defines a system configuration.

Performance prediction of configurable software systems
is a highly-researched topic [5, 6, 7, 8, 17, 18, 20, 21]. For
example, Guo et al. [5] predicted a system configuration’s
performance by using regression trees based on small ran-
dom samples of measured configurations. However, none
of the previous work studied whether or not it is possible
to transfer performance prediction models for configurable
software systems across different hardware platforms.

The need for transferring performance prediction models
occurs in many application scenarios. For example, a user of
a software system performs a thorough performance bench-
marking of the system and builds a performance prediction
model for it. However, the prediction model is built only
for the particular benchmarked machine. The performance
prediction process on a different machine may not be able to
directly reuse previous benchmarking results and prediction
models. Modern Software as a Service (SaaS), Platform as a
Service (PaaS) and other cloud-based industries face similar
challenges. Based on a historical performance data collected
for their software on one cluster, users want to know how
to tune the performance of their software systems for a new
cluster with a different hardware, or how to select the best
hardware platform with which to build their cluster.

We investigate the problem of performance prediction model
transfer. We make the following contributions:

• We propose an approach for transferring performance
models of configurable software systems across plat-
forms with different hardware settings. This approach
(1) builds a performance prediction model based on
a small random sample of configurations measured on
one hardware platform and (2) transfers this model us-
ing linear transformation to other hardware platforms.

• We implement the proposed approach and demonstrate
its generality using three real-world configurable soft-
ware systems. Our empirical results show that for ma-
jority of model transfers our approach achieves a high
prediction accuracy (less than 10% mean relative er-
ror). We also observe a decreasing trend of mean rela-
tive error with the increase of the training data for the
performance prediction model or for the linear trans-
formation model.
• We carry out a thorough exploratory analysis to un-

derstand why our approach works. We compare per-
formance distributions and structure of performance
prediction models across different hardware platforms
and show that the more similar distributions and pre-
diction models across different platforms, the better
transfer results are. Moreover, we carry out a compar-
ative analysis of our methodology for different config-
urable systems and assess time costs of our method.

Source code and data to reproduce our experiments are
available online at https://bitbucket.org/valovp/icpe2017.

2. EXAMPLE AND NOTATION
Our objective is to enable the transfer of performance pre-

diction results from one hardware platform to another. Con-
sider purchasing a new hardware platform to encode large
amounts of video using x264, which is a configurable applica-
tion for encoding video streams in the H.264/MPEG-4 AVC
compression format. Media encoding programs such as x264
usually have a large number of configurable features; tuning
them has a significant impact on the quality of the video
output and on the time necessary to encode it. In our ex-
ample, we have measurements for 11 different configuration
features, each with 2 individual settings. Obtaining these
performance measurements with a video that takes a modest
15 minutes to encode requires 1536 hours of execution time.
Rather than exhaustively measuring same configurations on
a new unstudied platform, it would be better to reuse per-
formance data from previous tuning experiments to predict
the performance of configurations on this new platform.

To formalize the problem of performance prediction, we
represent features of a configurable software system as a
set of binary decision variables F =

{
f1, f2, . . . fNf

}
, where

fi represents a particular variable and Nf represents a to-
tal number of features of the configurable software system.
Each configuration c of the system is a set of value assign-
ments to Nf variables fi. We denote the set of all valid con-
figurations of the system by C. Table 1 represents a sample
of 10 configurations along with their measured performance
values. Each row of the Table 1 represents a particular con-
figuration of x264, while each column represents a particular
feature of the system.

We define performance of a system as a total time re-
quired to execute a particular system benchmark. Perfor-
mance of each configuration is expected to differ in a het-
erogeneous collection of machines that we denote by M =
{m1,m2, . . . ,mNm}, where mi represents a particular ma-
chine or hardware platform and Nm represents the total
number of machines in the collection. Each valid configu-
ration, c, of the software system has an actual performance
value, ac,mi , on a machine mi, a set of configurations, C,
has a set of actual performance values, AC,mi , on machine
mi. We define training machine, mtrn, as a machine that is

used to build performance prediction models for a given con-
figurable software system (e.g., x264). In a practical setting,
training machine is one on which a particular software sys-
tem is already well-studied and historical performance data
for the system is acquired. We define target machine, mtgt,
as a machine to which performance prediction models must
be transferred.

For example, we acquire a small random sample of config-
urations, CS ⊂ C, along with their actual performance val-
ues, AS,mtrn ⊂ AC,mtrn , together forming sample, Smtrn ,
on our training machine mtrn. Our goal is to predict the
performance of all other configurations, C\CS , on machine
mtrn based on this small random sample Smtrn , and subse-
quently to predict the performance of the whole set of valid
configurations C on all other machines in the collection M .

Table 1: Sample of 11 randomly-selected configura-
tions of x264 system, along with their actual perfor-
mance measurements on Machine №75

Conf. Features Perf. (s)

ci f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 aci,m75

c1 0 0 1 1 1 0 1 0 0 0 1 52.01
c2 0 1 0 1 1 1 0 0 1 0 0 24.09
c3 1 0 0 0 1 1 0 0 0 0 1 58.13
c4 1 1 0 1 1 0 0 1 0 1 0 37.49
c5 0 0 1 0 1 1 0 0 0 0 1 75.89
c6 1 1 0 1 0 0 0 1 0 0 1 51.05
c7 1 1 1 0 0 1 0 0 0 0 1 82.15
c8 1 0 0 1 1 1 0 0 0 0 1 41.40
c9 1 0 0 1 0 0 0 1 1 0 0 23.16
c10 0 0 0 0 1 0 1 0 1 0 0 23.20
c11 0 0 1 0 1 0 1 0 1 0 0 28.95

3. TRANSFERRING PERFORMANCE PRE-
DICTION MODELS

The overall process of transferring performance prediction
models across different hardware platforms is sequential and
can be separated into the following main steps: (1) training
performance prediction model, (2) training linear transfer
model, and (3) transferring prediction results.

3.1 Training The Performance Prediction Model
We used regression trees for building models of the per-

formance effects of software features. We selected regression
trees as our method of model construction as they have been
extensively used for performance prediction of configurable
software systems and demonstrated good results [5, 17, 18,
20]. The resulting prediction models can be graphically rep-
resented and readily understood by end users. Regression
trees proved effective for a thorough exploratory analysis
for our model transferring problem (see Section 4.5 for more
detail).

We need to choose a method for sampling training data
to build regression trees. Previous studies of feature perfor-
mance modelling, Guo et al. [5] and Valov et al. [18], used
small random samples of measured configurations to build
prediction models. The use of random sampling in those
works was motivated by the idea that in practice, available
measured configurations of a system might not follow any
particular feature-coverage criteria and would be essentially
random. In our study we also use small random samples for
prediction model building.

For the purpose of experiment reproducibility we provide
datasets of measured configurations for each studied soft-
ware system (for more details see Section 4.1.1). However,
measuring the entire configuration space C of each software
system under test was prohibitively expensive and couldn’t
be done in the time budget available (for more details see
Section 4.1.2). Therefore, for each system we measured only
a subset of valid configurations Cexp ⊂ C.

To choose which configurations should be included in Cexp

we used experimental design techniques. Experimental de-
sign is an efficient procedure for obtaining experimental data
that can be analysed to produce valid results [1]. Experi-
mental design techniques can maximize information obtained
by a practitioner for a given experimentation budget. Selec-
tion of a concrete design for a particular experiment depends
on the goal of the experiment and the number of variables
involved.

In our study we use“screening”experimental designs, where
the goal is to “screen out” or select the main effects that
influence the response variable (in our case system perfor-
mance), such as full factorial and fractional factorial ex-
perimental designs. This is achieved by selecting the most
“informative” configurations for a given system.

Full factorial design generates all possible combinations
of all input variables, i.e., in our case this design generates
all possible configurations of a given software system. This
design is suitable only for systems with a small number of
features, since it generates 2Nf configurations for Nf binary
features.

Fractional factorial design is more suitable for systems
with a large number of features Nf . This design selects
only a fraction of configurations generated by a full factorial
design, thus saving experimentation effort. However, when
using this design some information is inevitably lost, which
causes confounding or inability to capture some higher-order
feature interactions. Resolution of a fractional factorial de-
sign defines the level to which main effects or lower-order
interactions are confounded with higher-order interactions,
i.e., how well we can assess or model main effects and lower-
order interactions. For example, fractional factorial design
of resolution VI provides enough information to estimate
main effects and two-factor feature interactions unconfounded
by four-factor (or less) and three-factor (or less) interactions
respectively, what is a very precise assessment.

Another question is how many configurations should we
sample to build a precise performance prediction models?
Valov et al. [18] used samples of sizes T × Nf to evaluate
different performance prediction models, where T is a train-
ing coefficient which can take values in {1, . . . , 5}, and Nf is
the number of features available in the configurable software
system under test. It was demonstrated [18] that measur-
ing 3 × Nf random configurations permitted construction
of models with high performance prediction accuracy using
regression trees for majority of studied systems. We use
the same heuristic T × Nf , where T = {3, 4, 5}. We found
that this provides sufficient coverage of the feature space for
construction of accurate performance prediction models.

We denote a regression tree model by a functionRT trained
using a small random sample of configurations CS of size
T ×Nf and their actual performance values AS,mtrn , mea-
sured on a training machine mtrn, which predicts the per-
formance value pc,mtrn on the machine mtrn for a specified
configuration c:

RT (CS , AS,mtrn , c) = pc,mtrn (1)

Next, we must select a metric for assessing the prediction
accuracy of the trained prediction model RT , and a valida-
tion method to prevent overfitting. We use mean relative
error (MRE) as a metric for evaluating prediction accuracy.
Relative error (RE) is the relative difference between an ac-
tual performance value ac and a predicted performance value
pc for a particular configuration c:

RE(c) =
ac − pc
ac

× 100% (2)

Mean relative error is the average of the relative errors
calculated for each individual configuration ci of a particular
sample of configurations CS ,

MRE(CS) =

∑Nc
i=1RE(ci)

Nc
(3)

where Nc is a total number of configurations in the sample
CS .

Finally, we must select a validation method. As mentioned
previously, we use random samples of configurations CS of
a fixed size T ×Nf . These configurations are sampled from
the set of measured configurations Cexp. Since the size of
the training sample CS is fixed, a natural model validation
strategy is holdout validation. This method separates all
available data, Cexp, into a training set, CS , and a testing
set, Cexp\CS . We train a performance prediction model RT
using the training set CS , and assess prediction accuracy of
the model using MRE over the testing set: MRE(Cexp \
CS).

It is worth mentioning that in an industrial setting a dif-
ferent validation method might be required, i.e., when the
cost of performance measuring is extremely high and it is
not desirable to measure all T×Nf configurations upfront or
simply to have an extra set of measured configurations avail-
able. Practitioner could start with a very small training sam-
ple CS and progressively train their models until they are
satisfied with its accuracy. An effective validation method
for these low sample sizes is leave-one-out cross-validation
(LOOCV). LOOCV separates all available data CS into
two sets: a testing set, consisting of only one configuration
ci, and a training set, consisting of all other configurations
CS \ci. A prediction model RT is then trained using CS \ci

and assessed using relative error over rei = RE(ci). This
process is repeated for all possible combinations of training
sets and testing sets. The overall accuracy of the prediction
model RT for the sample CS can be assessed by averaging
all individual relative errors:

∑Nc
i=1 rei/Nc.

3.2 Training The Transfer Model
To reuse the previously generated performance prediction

model built for mtrn for performance prediction on a target
machine mtgt a practitioner must train a transfer model. We
use linear regression models as our transfer models since we
found that they provide good approximations of the transfer
function (see Section 4.5.3 for more details).

The samples we use for linear models training should con-
tain configurations that are measured on both the mtrn and
mtgt hardware platforms. From the steps described in Sec-
tion 3.1, we have a training sample, CS , of configurations

measured on machine mtrn of size T ×Nf . Instead of mea-
suring a completely new sample of configurations on both
mtrn and mtgt machines for training the linear model, we
can measure the same configurations from CS on the target
machine mtgt. In this way, we acquire a training sample CS

of size T ×Nf measured on both mtrn and mtgt.
However, measuring all T ×Nf configurations on the tar-

get machine mtgt may be prohibitively expensive. Instead,
we measure only a subset of CS on both machines Cboth ⊂
CS . We populate Cboth by selecting at least five configura-
tions from CS using Sobol sampling [14] (see Section 4.6 for
more details).

Using the sample Cboth we can build a model to transfer
performance prediction results from mtrn to mtgt. We use
simple linear regression model as a transfer model since it
provides good approximation of transfer functions between
different machines in our case study (see Section 4.5.3 for
more details). This linear model L, given a performance
value pc,mtrn for a configuration c on the machine mtrn,
can predict performance value pc,mtgt of c on the machine
mtgt:

L(pc,mtrn) = α+ β × pc,mtrn = pc,mtgt (4)

3.3 Transferring Prediction Results
In the previous steps we selected training and target ma-

chines (mtrn andmtgt), built a performance prediction model
RT based on a small sample CS of configurations measured
on mtrn, and built a linear transfer model L based on a
small subsample Cboth ⊂ CS of configurations measured on
both mtrn and mtgt machines. To transfer the prediction
model RT to mtgt we just need to transform the predictions
of RT using the linear transfer model L. For example, we
have a configuration c that is not measured neither on mtrn

nor on mtgt machines. To compute pc,mtgt we can use the
following equations:

pc,mtrn = RT (CS , AS,mtrn , c) (5)

Then we can use L to assess performance of c on mtgt:

pc,mtgt = L(pc,mtrn) (6)

4. EVALUATION
In order to evaluate our approach, we address the follow-

ing research questions through a set of experiments:

RQ1 How accurate are the transferred performance mod-
els created using the process described in Section 3?
(Section 4.2)

RQ2 How does model accuracy vary between different con-
figurable software systems? (Section 4.3)

RQ3 How fast is the process of transferring performance
prediction models? (Section 4.4)

RQ4 Why does the proposed approach work or are the re-
sults accidental? (Section 4.5)

RQ5 What is an optimal way of building the linear transfer
model? (Section 4.6)

Table 2: Summary of hardware platforms on which
configurable software systems were measured; MID
– Machine ID in DataMill cluster; NC – Number of
CPUs; IS – Instruction set; CCR – CPU clock rate
(MHz); RAM – RAM memory size (MB)

Systems Machines

XZ x264 SQLite MID NC IS CCR RAM

X 73 2 i686 1733 1771
X X X 75 2 i686 3200 977
X 77 2 i686 2992 2024
X 78 1 i686 1495 755
X 79 4 x86 64 3291 7961
X 80 8 x86 64 3401 7907
X X 81 16 x86 64 2411 32193

X 87 1 i686 1595 249
X 88 1 i686 1700 978

X 90 2 i686 3200 977
X 91 1 i686 2400 1009
X X 97 2 i686 2992 873
X X 98 2 i686 2992 873

X 99 2 i686 2793 880
X 103 2 i686 3200 881
X 104 1 i686 1800 502
X X 105 2 i686 3200 881
X 106 2 i686 3192 494

X 125 4 x86 64 3301 7960
X 128 2 i686 2993 2024

X 130 2 i686 3198 880
X 146 2 i686 2998 872
X 157 36 x86 64 2301 15954

Table 3: Summary of measured systems; Nf – Num-
ber of features; NM – Number of machines on which
systems were measured; NMC – Number of mea-
sured configurations

System Nf NM NMC
XZ 7 7 154
x264 7 11 165
SQLite 5 10 32

4.1 Experimental Setup

4.1.1 Subject Systems
We measure the performance impact of several different

features of 3 different software systems, XZ[16], x264[19],
and SQLite[15]. These systems represent several common
tasks performed by applications: compression of data, trans-
formation of media, and interaction with a database. XZ is
a compression utility for UNIX-like operating systems which
uses LZMA2 compression. x264 is a library and utility for
encoding video streams into the H.264/MPEG-4 AVC com-
pression format. SQLite is a library and application that
implements a file-oriented SQL database and is a popular
choice for application file formats due to its flexibility.

Each feature that we varied was chosen either based on
previous experiments in feature performance regression [5],
or system documentation and preliminary experiments. For
XZ, we measure performance effects from features such as
varying the “extreme” parameter, varying the “sparse out-

put file” option and applying constraints on memory us-
age. For x264, we measure performance effects from turn-
ing on and off different assembly optimizations, varying the
“frame-lookahead”, and varying partition search types. For
SQLite, we measure performance effects from varying the
“synchronous” option, varying the journalling strategy, and
varying the amount of space available to mmap.

4.1.2 Subject Hardware Platforms
We carried out our system performance measurements on

DataMill[11], a distributed heterogeneous performance eval-
uation platform. Each machine of DataMill was setup with
identical software and executes Gentoo Linux (Kernel ver-
sion 3.8.13). Only the DataMill worker software, a kernel,
boot manager, and logging daemon were installed on each
machine on top of the base set of Gentoo packages, result-
ing in a minimal set of software. Table 2 summarizes hard-
ware configurations of DataMill machines used for our ex-
periments.

Although we did have an exclusive access to DataMill
machines, we only had a limited time to use DataMill it-
self since it is used by many research groups. Therefore
we weren’t able to measure each configurable system on the
whole DataMill cluster, but only on a subset of machines.
Table 2 shows which machines were used for measuring per-
formance of different software systems.

Due to constraints on experiment bandwidth on DataMill,
and differing support for features on certain platforms, some
feature-configuration/hardware-platform combinations were
not measured. Moreover, not all experiment trials termi-
nated correctly; thus only a subset of desired configurations
were measured across all machines. Table 3 provides a sum-
mary of available machines and measured configurations for
each configurable system. The scripts used to perform the
experiment trials are available on the DataMill website for
the purposes of experiment reproduction.

4.1.3 Measurements and Sampling
For each software system, we analyse the effect of choos-

ing training and target machine pairs and the effect of vary-
ing the size of the performance training sample CS and the
transfer training sample Cboth on model accuracy. The sam-
ple CS varies in {3×Nf , 4×Nf , 5×Nf}, and the sample
Cboth varies in {5, 10, 15}.

As mentioned in Section 4.1.2, we measured each studied
configurable system on multiple platforms as shown in Ta-
ble 2 and Table 3. However, due to space constraints for
each system we present results only for a subset of four dif-
ferent training and target machines. The data we obtained
from these machines is summarized in Tables 4, 8, and 6.

We examine each combination of the training machine
mtrn, target machine mtgt, and sampling sizes for both |CS |
and |Cboth|, in a full-factorial experiment design [2, 10]. For
each configurable system we have 4 training machines, 4
target machines, 3 sizes of CS , and 3 sizes of Cboth, which
produces a total of 4×4×3×3 = 144 different test cases. To
acquire mean prediction relative error for each test case, we
follow the model transferring process described in Section 3
for 100 different randomly sampled CS and Cboth.

4.2 Experiment on Prediction Accuracy
To answer RQ1, we present the results of our transferred

performance prediction models across different hardware plat-

Table 4: Mean Relative Error (%) of transferred
performance models of XZ system, built using differ-
ent sampling sizes on training and target machines

Machines
Target

Sizes
Sampling

Training Machines

Machine №75 Machine №78 Machine №80 Machine №81

Sampling Sizes Sampling Sizes Sampling Sizes Sampling Sizes
3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf

75 5 5.8 2.0 1.4 9.5 5.4 5.0 8.0 5.2 4.5 6.8 4.1 3.4
75 10 5.2 2.1 1.1 7.2 4.6 3.8 8.1 5.0 4.7 6.9 3.8 3.7
75 15 5.7 2.3 1.7 6.8 4.3 3.3 8.8 5.4 4.4 7.3 4.0 3.1
78 5 8.5 5.7 4.9 6.6 3.0 1.6 9.9 7.3 6.7 8.7 6.9 6.1
78 10 6.6 5.0 3.8 6.5 3.0 1.5 8.1 5.4 4.6 7.7 4.5 3.6
78 15 7.3 3.6 3.6 8.4 3.3 1.8 7.9 5.4 4.6 7.2 4.2 3.9
80 5 10.2 6.9 5.8 11.9 9.6 9.4 9.5 4.8 1.6 10.6 3.8 3.4
80 10 8.2 6.3 5.5 10.6 6.8 5.6 8.2 2.0 1.9 7.1 3.4 2.7
80 15 10.4 6.5 5.1 11.0 6.4 5.6 8.5 4.3 2.3 7.2 3.8 2.6
81 5 9.0 5.9 4.3 11.5 8.2 7.1 9.7 3.6 3.1 7.9 4.1 1.6
81 10 8.9 5.1 4.2 8.7 5.2 4.5 8.8 3.4 2.8 6.5 4.2 1.9
81 15 8.6 5.0 4.0 10.1 5.1 4.5 9.6 3.2 2.6 10.0 2.9 1.5

Table 5: Mean Relative Error (%) of XZ system
added by the transferring process

Machines
Target

Sizes
Sampling

Training Machines

Machine №75 Machine №78 Machine №80 Machine №81

Sampling Sizes Sampling Sizes Sampling Sizes Sampling Sizes
3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf

75 5 0.1 0.0 0.0 5.0 4.5 4.3 5.1 4.0 4.1 4.1 3.0 2.9
75 10 0.1 0.0 0.0 4.3 3.5 3.4 4.5 4.2 4.1 3.5 3.0 3.0
75 15 0.1 0.0 0.0 3.8 3.0 2.9 4.7 3.9 3.7 3.8 3.2 2.7
78 5 5.0 4.3 4.1 0.1 0.0 0.0 6.6 6.1 6.2 5.7 5.4 5.3
78 10 4.1 3.3 2.9 0.0 0.0 0.0 4.4 4.2 3.8 3.7 3.2 2.9
78 15 3.7 2.7 2.6 0.1 0.0 0.0 4.5 3.9 3.8 3.7 3.0 2.9
80 5 5.6 4.6 4.7 8.4 8.1 8.0 0.0 0.0 0.0 3.0 2.6 2.3
80 10 5.2 4.8 4.6 7.2 4.6 4.5 0.1 0.0 0.0 2.8 2.2 2.0
80 15 4.9 4.4 4.4 5.6 4.5 4.6 0.1 0.0 0.0 3.9 2.0 1.9
81 5 5.1 3.6 3.6 7.2 7.5 7.0 3.6 2.7 2.6 0.1 0.0 0.0
81 10 5.1 4.3 3.8 4.6 3.8 3.8 3.3 2.3 2.2 0.1 0.0 0.0
81 15 4.6 3.3 3.4 4.4 3.9 3.8 3.1 2.4 2.1 0.1 0.0 0.0

Table 6: Mean Relative Error (%) of transferred
performance models of SQLite system, built using
different sampling sizes on training and target ma-
chines

Machines
Target

Sizes
Sampling

Training Machines

Machine №75 Machine №99 Machine №125 Machine №157

Sampling Sizes Sampling Sizes Sampling Sizes Sampling Sizes
3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf

75 5 0.7 0.5 0.4 0.7 0.6 0.6 1.4 1.3 1.3 2.8 2.6 2.6
75 10 0.8 0.5 0.4 0.7 0.6 0.6 1.3 1.2 1.2 2.6 2.6 2.4
75 15 0.7 0.5 0.4 0.7 0.6 0.6 1.3 1.2 1.1 2.6 2.5 2.4
99 5 0.8 0.7 0.6 0.8 0.6 0.6 1.6 1.4 1.3 2.6 2.6 2.6
99 10 0.8 0.6 0.6 0.9 0.6 0.6 1.5 1.3 1.2 2.6 2.4 2.4
99 15 0.7 0.6 0.6 0.8 0.6 0.6 1.4 1.3 1.2 2.6 2.4 2.4
125 5 1.5 1.4 1.3 1.6 1.5 1.4 1.9 1.5 1.1 2.6 2.4 2.3
125 10 1.4 1.3 1.3 1.5 1.4 1.3 1.9 1.5 1.1 2.7 2.3 2.2
125 15 1.4 1.3 1.2 1.5 1.4 1.3 1.8 1.5 1.1 2.4 2.3 2.1
157 5 3.7 3.5 3.5 3.5 3.4 3.3 3.2 2.9 2.7 4.4 4.1 3.6
157 10 3.4 3.2 3.2 3.2 3.1 3.0 3.0 2.7 2.5 4.2 4.0 3.7
157 15 3.3 3.2 3.2 3.1 3.0 2.9 3.0 2.7 2.5 4.3 3.9 3.5

Table 7: Mean Relative Error (%) of SQLite system
added by the transferring process

Machines
Target

Sizes
Sampling

Training Machines

Machine №75 Machine №99 Machine №125 Machine №157

Sampling Sizes Sampling Sizes Sampling Sizes Sampling Sizes
3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf

75 5 0.0 0.0 0.0 0.6 0.5 0.4 1.1 1.1 1.0 2.6 2.5 2.5
75 10 0.0 0.0 0.0 0.5 0.4 0.4 1.2 1.1 1.0 2.4 2.4 2.4
75 15 0.0 0.0 0.0 0.5 0.5 0.4 1.1 1.0 1.0 2.4 2.3 2.3
99 5 0.6 0.6 0.5 0.0 0.0 0.0 1.3 1.2 1.1 2.6 2.5 2.4
99 10 0.6 0.5 0.5 0.1 0.0 0.0 1.1 1.1 1.0 2.4 2.3 2.2
99 15 0.6 0.5 0.5 0.0 0.0 0.0 1.2 1.0 0.9 2.2 2.1 2.1
125 5 1.3 1.1 1.1 1.4 1.4 1.3 0.0 0.0 0.0 2.3 2.1 2.0
125 10 1.2 1.2 1.1 1.3 1.3 1.3 0.0 0.0 0.0 2.1 2.0 1.9
125 15 1.3 1.2 1.1 1.4 1.2 1.2 0.0 0.0 0.0 2.2 2.1 2.0
157 5 2.9 2.7 2.7 2.8 3.0 2.8 2.7 2.7 2.4 0.0 0.0 0.0
157 10 2.8 2.6 2.5 2.8 2.6 2.6 2.4 2.4 2.3 0.0 0.0 0.0
157 15 2.8 2.7 2.5 2.8 2.6 2.5 2.6 2.3 2.2 0.0 0.0 0.0

Table 8: Mean ± Standard Deviation [Mean Confidence Interval] of the relative error (%) of transferred
performance models of x264 system, built using different sampling sizes on training and target machines

Machines
Target

Sizes
Sampling

Training Machines

Machine №75 Machine №81 Machine №88 Machine №103

Sampling Sizes Sampling Sizes Sampling Sizes Sampling Sizes
3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf

75 5
[5.2, 5.5]
5.3±9.3

[3.1, 3.4]
3.2±7.0

[1.9, 2.1]
2.0±5.1

[13.3, 13.6]
13.5±10.2

[12.9, 13.2]
13.1±9.7

[12.8, 13.1]
13.0±9.3

[5.3, 5.5]
5.4±9.4

[3.4, 3.6]
3.5±6.3

[2.3, 2.4]
2.4±4.6

[5.1, 5.4]
5.2±8.4

[3.4, 3.6]
3.5±6.3

[2.3, 2.5]
2.4±4.1

75 10
[5.3, 5.6]
5.5±9.8

[3.1, 3.3]
3.2±7.1

[1.7, 1.8]
1.7±4.6

[12.6, 12.9]
12.8± 9.3

[12.2, 12.5]
12.3±8.8

[12.0, 12.3]
12.1±8.8

[4.9, 5.1]
5.0±8.5

[3.1, 3.3]
3.2±6.0

[2.2, 2.4]
2.3±4.8

[4.6, 4.9]
4.7±8.2

[3.0, 3.2]
3.1±5.8

[2.1, 2.2]
2.1±4.0

75 15
[5.2, 5.6]
5.4±9.5

[3.2, 3.5]
3.4±7.2

[1.9, 2.1]
2.0±5.2

[12.4, 12.7]
12.5± 9.1

[12.0, 12.2]
12.1±8.5

[11.8, 12.1]
12.0±8.4

[5.0, 5.3]
5.2±8.8

[3.2, 3.4]
3.3±6.4

[2.3, 2.4]
2.3±4.6

[4.7, 5.0]
4.8±8.3

[3.0, 3.1]
3.0±5.7

[2.0, 2.1]
2.1±4.0

81 5
[14.1, 14.5]
14.3±12.9

[13.0, 13.4]
13.2±10.6

[12.7, 13.0]
12.8±9.8

[5.9, 6.1]
6.0±7.5

[4.6, 4.8]
4.7±6.0

[3.6, 3.8]
3.7±5.3

[13.5, 13.8]
13.7±11.7

[12.7, 13.0]
12.9±10.1

[12.6, 12.9]
12.7±10.0

[13.4, 13.8]
13.6±11.2

[12.6, 12.9]
12.7±9.9

[12.2, 12.5]
12.3±9.2

81 10
[12.2, 12.5]
12.3±10.1

[11.3, 11.5]
11.4± 8.8

[10.9, 11.2]
11.0±8.4

[5.7, 5.9]
5.8±7.1

[4.6, 4.8]
4.7±6.2

[3.8, 4.0]
3.9±5.4

[11.9, 12.2]
12.1± 9.6

[11.2, 11.5]
11.4± 8.7

[10.9, 11.2]
11.0± 8.3

[11.7, 12.0]
11.9± 9.8

[11.0, 11.3]
11.2±8.8

[10.6, 10.9]
10.7±8.2

81 15
[11.6, 11.9]
11.7± 9.2

[10.9, 11.1]
11.0± 8.9

[10.5, 10.7]
10.6±8.1

[6.1, 6.4]
6.3±7.7

[4.6, 4.8]
4.7±6.1

[3.8, 4.0]
3.9±5.5

[12.0, 12.3]
12.2±10.1

[10.9, 11.2]
11.1± 8.5

[10.6, 10.9]
10.8± 7.9

[11.5, 11.7]
11.6± 9.1

[10.6, 10.9]
10.8±8.0

[10.4, 10.7]
10.6±8.0

88 5
[4.6, 4.8]
4.7±7.9

[3.2, 3.4]
3.3±5.8

[2.2, 2.4]
2.3±4.2

[13.6, 13.9]
13.7±10.1

[12.6, 12.9]
12.8±9.8

[12.2, 12.5]
12.4±8.9

[5.1, 5.4]
5.3± 9.2

[3.6, 3.9]
3.8±8.6

[2.1, 2.3]
2.2±5.6

[5.6, 5.9]
5.8±8.2

[3.8, 4.0]
3.9±5.8

[2.9, 3.1]
3.0±3.9

88 10
[4.9, 5.2]
5.0±9.0

[2.9, 3.1]
3.0±5.7

[2.1, 2.2]
2.2±4.2

[12.2, 12.5]
12.3± 9.0

[11.9, 12.2]
12.1±9.1

[11.7, 12.0]
11.8±8.6

[5.6, 6.0]
5.8±10.1

[3.4, 3.7]
3.5±7.3

[1.9, 2.1]
2.0±5.2

[5.0, 5.3]
5.2±8.1

[3.6, 3.7]
3.7±5.8

[2.7, 2.9]
2.8±4.2

88 15
[4.8, 5.1]
5.0±8.6

[3.2, 3.4]
3.3±6.3

[2.1, 2.3]
2.2±4.4

[12.1, 12.4]
12.2± 8.9

[11.6, 11.9]
11.7±8.6

[11.6, 11.8]
11.7±8.4

[5.3, 5.6]
5.4± 9.9

[3.3, 3.6]
3.5±7.2

[2.0, 2.2]
2.1±5.3

[5.0, 5.2]
5.1±8.1

[3.3, 3.5]
3.4±5.3

[2.7, 2.8]
2.7±4.0

103 5
[5.5, 5.7]
5.6±9.2

[3.5, 3.7]
3.6±6.2

[2.5, 2.7]
2.6±4.4

[14.3, 14.6]
14.4±11.0

[13.3, 13.6]
13.4±9.8

[13.1, 13.4]
13.2±9.4

[5.9, 6.2]
6.0±8.5

[4.4, 4.6]
4.5±6.8

[3.1, 3.2]
3.1±4.1

[5.7, 6.1]
5.9±10.1

[3.6, 3.8]
3.7±7.4

[2.1, 2.2]
2.1±5.0

103 10
[5.1, 5.4]
5.3±9.1

[3.2, 3.4]
3.3±6.3

[2.2, 2.3]
2.2±4.1

[13.1, 13.4]
13.2± 9.6

[12.5, 12.8]
12.6±9.0

[12.7, 13.0]
12.8±9.2

[5.8, 6.1]
5.9±9.2

[3.7, 3.9]
3.8±5.9

[3.0, 3.1]
3.1±4.5

[6.0, 6.4]
6.2±10.6

[3.1, 3.3]
3.2±6.6

[2.0, 2.1]
2.1±4.9

103 15
[5.1, 5.4]
5.3±8.9

[3.2, 3.4]
3.3±6.0

[2.3, 2.4]
2.3±4.3

[13.2, 13.5]
13.4±11.3

[12.6, 12.9]
12.8±9.2

[12.3, 12.6]
12.4±8.8

[5.5, 5.8]
5.6±9.0

[3.9, 4.1]
4.0±6.5

[2.9, 3.0]
2.9±4.8

[5.6, 6.0]
5.8± 9.6

[3.1, 3.4]
3.2±6.9

[2.3, 2.5]
2.4±5.7

Table 9: Mean ± Standard Deviation of the time cost (ms) of building performance prediction and transferring
models of x264 system, using different sampling sizes on training and target machines

Machines
Target

Sizes
Sampling

Training Machines

Machine №75 Machine №81 Machine №88 Machine №103

Sampling Sizes Sampling Sizes Sampling Sizes Sampling Sizes
3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf

75 5 5.7±0.9 5.4±0.7 5.9±0.7 5.5±0.5 6.1±0.5 6.3±0.8 5.6±0.5 5.7±0.6 6.1±0.5 6.5±0.5 6.4±1.1 6.7±0.6
75 10 6.0±0.6 6.0±0.6 6.0±0.4 5.3±0.9 5.7±0.5 6.2±0.4 5.5±0.5 5.8±0.4 5.9±0.7 5.8±0.6 6.4±0.8 6.3±0.8
75 15 5.3±0.5 5.5±0.5 6.1±0.7 5.7±0.6 5.8±0.6 6.3±0.6 5.5±0.7 5.8±0.6 5.5±0.5 5.8±0.9 6.5±1.1 6.2±0.6
81 5 5.8±0.9 5.6±0.5 6.0±0.4 5.5±0.5 5.9±0.8 6.0±0.6 5.5±0.7 6.1±0.3 5.9±0.7 5.7±0.6 6.0±1.0 6.2±0.9
81 10 5.5±1.0 5.5±0.5 5.9±0.7 5.3±0.6 5.7±0.5 6.1±0.7 5.9±0.7 6.0±0.8 5.8±0.4 5.9±0.5 7.0±0.8 6.1±0.5
81 15 6.2±0.7 6.1±0.8 6.1±0.7 5.4±0.7 5.8±0.4 6.0±0.9 5.6±0.5 5.9±0.3 5.9±0.5 5.2±0.9 6.3±0.6 6.2±0.7
88 5 6.6±0.5 5.8±0.6 5.8±0.6 5.9±0.5 5.8±0.6 5.8±0.4 5.5±0.8 5.7±0.8 6.4±0.9 5.3±0.5 6.0±0.4 6.2±0.6
88 10 5.9±0.8 6.2±0.7 6.2±0.4 5.4±0.7 5.5±0.5 6.0±0.4 5.5±0.5 6.0±0.6 6.1±0.9 5.1±0.7 6.2±0.9 6.4±0.5
88 15 6.0±0.4 5.9±0.5 6.2±1.0 5.4±0.8 5.9±0.3 6.2±0.6 5.7±1.0 5.8±0.6 5.8±0.6 5.2±0.7 5.9±0.7 6.7±1.4
103 5 5.7±0.6 5.9±0.7 6.0±0.6 5.5±0.5 6.0±0.4 5.5±0.7 5.8±0.4 5.7±0.5 6.0±0.4 5.4±0.5 5.5±0.7 6.3±0.8
103 10 5.7±0.8 5.6±0.7 6.3±0.6 5.7±0.8 6.0±0.0 6.2±1.0 5.5±0.5 5.8±0.6 6.3±0.8 5.2±0.9 5.8±0.7 6.5±0.9
103 15 5.6±0.7 5.9±0.5 6.2±0.6 5.8±0.7 5.7±0.5 6.4±0.9 5.7±0.8 6.0±0.6 6.4±0.9 5.6±0.8 6.0±0.8 6.2±0.7

Table 10: Mean Relative Error (%) of x264 system
added by the transferring process

Machines
Target

Sizes
Sampling

Training Machines

Machine №75 Machine №81 Machine №88 Machine №103

Sampling Sizes Sampling Sizes Sampling Sizes Sampling Sizes
3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf 3Nf 4Nf 5Nf

75 5 0.3 0.2 0.1 12.4 11.9 12.0 2.3 2.0 1.6 2.5 2.1 1.6
75 10 0.2 0.2 0.1 11.7 11.5 11.6 1.9 1.9 1.6 2.6 1.9 1.5
75 15 0.1 0.2 0.1 11.8 11.4 11.7 2.3 1.8 1.6 2.9 1.8 1.5
81 5 11.8 11.0 11.0 0.2 0.1 0.1 11.5 11.0 11.1 11.5 10.8 10.7
81 10 10.1 9.4 9.7 0.2 0.1 0.1 10.1 9.5 9.5 10.2 9.3 9.2
81 15 9.9 9.3 9.3 0.2 0.2 0.1 9.5 9.6 9.3 9.9 9.4 9.1
88 5 2.3 2.1 1.6 12.3 12.0 11.7 0.2 0.1 0.1 3.8 2.8 2.5
88 10 2.6 1.9 1.8 11.5 11.4 11.5 0.4 0.1 0.1 3.0 2.5 2.2
88 15 2.1 1.7 1.5 11.1 11.4 11.3 0.3 0.2 0.1 3.3 2.7 2.2
103 5 2.6 1.9 1.8 12.9 12.3 12.3 3.8 2.9 2.3 0.3 0.1 0.1
103 10 2.6 1.8 1.4 12.1 11.7 11.8 3.3 2.5 2.2 0.2 0.2 0.1
103 15 2.6 1.7 1.4 11.8 11.8 11.9 3.1 2.3 2.1 0.1 0.2 0.1

forms (Table 4, Table 6, Table 8). As we can see from the
results, the majority of training and target machine pairs
have strong monotonically decreasing trends in their mean
relative error with the increase in training sample size from
3×Nf to 5×Nf . This follows the intuition that more train-
ing data results in more accurate performance prediction
models.

We can also observe sharp decrease in the mean relative
error when the sampling size increases from 5 to 15 configu-
rations. This is expected, as again, more training data gen-
erally leads to better model accuracy. However, this trend

is not always monotonic and in some special cases doesn’t
hold at all. These observations agree with our analysis of
learning curves of linear transformation models performed in
Section 4.6. From Figure 4 and Figure 5 we can see that even
samples as small as 5 configurations can provide very good
approximations of the linear transfer model due to the sim-
plicity of linear models. However, when training with small
sample sizes (in our experience, on the interval [5, 20]) the
linear transfer model may get stuck in a local cost-minimum
where the generated model may be biased. This is the rea-
son for the non-monotonically decreasing error we observe
in Tables 4, 6, and 8.

Table 8 shows not only mean values of the relative errors
from our models, but also standard deviations and confi-
dence intervals at the 95% confidence level. From Table 8 we
can see that although our mean relative error is often small,
the standard deviations we measure are relatively large and
can exceed the mean in absolute value. However, confidence
intervals for the mean value, calculated using bootstrap-
ping [2, 10], are narrow and are almost always less than
or equal to 0.5% of the mean relative error.

The data obtained from our experiments Cexp, described
in Section 3.1, is sufficient to capture feature interactions
up to order three. However, we built prediction models RT
using only small samples CS ⊂ Cexp. Therefore, although

sample CS may permit making a good approximation of
its corresponding performance distribution, its possible that
our performance models, RT1, RT2, . . . , RTn, simply cannot
capture all feature interactions that are captured by Cexp.
This creates a situation where RT produces precise perfor-
mance predictions for the majority of tested configurations
Cexp\CS (less that 1% relative error), but for some configu-
rations, which contain uncaptured feature interactions, RT
can produce very inaccurate predictions (with more than
50% relative error). This is why we see low mean relative
errors, high standard deviations (because of the small set
of very large outliers), and very narrow confidence intervals
(since it is hard for bootstrapping to capture these outliers).

We can assess accuracy of transferred performance models
from a slightly different perspective. We can evaluate how
much worse are transferred models compared to “native”
models, generated specifically for a target hardware plat-
form. To achieve that, for each performance model trained
on mtrn and transferred to mtgt, we generate a “native” per-
formance model using the same set of configurations which
were measured on mtgt. Then we calculate mean relative
error of the native model and subtract it from the mean
relative error of the transferred model, thus assessing how
much we lose in accuracy when transferring a model from a
different platform. Results of this assessment are presented
in Table 5, Table 7 and Table 10. One can notice that added
mean relative error, when transferring prediction models to
the same machine, has a non-zero value. This is caused by
the fact that implementation of CART that we use in our
study is not exactly deterministic and in some special cases
it might generate slightly different prediction models from
the same training data. This causes different predictions by
these models and thus non-zero difference of mean relative
prediction error.

In summary, prediction accuracy generally improves with
increasing sampling sizes on training and target machines.
However, the proposed approach relies on good sampling
strategies for generating the training data CS such that
it captures necessary feature interactions. This may cause
problems in a practical setting where the training sample CS

might not follow any feature-coverage criteria. We suggest
using experimental design for generating samples of config-
urations for measurement on target machines as they will
maximize the amount of information available in the train-
ing sample CS .

4.3 Experiment on System Comparison
To answer RQ2 we compare Tables 6 and 8. As we can see

from these tables the mean relative errors for x264 are much
higher than those of SQLite. The same process of perfor-
mance model transfer produces different prediction accuracy
for different configurable systems. This is not unexpected as
we can generally expect that different systems will have vary-
ing levels of predictability in the performance effects of their
features, and in the performance effects of the interactions
between features. In the case of x264, many features, such
as the size of the window used for a filter, or the number
of passes used for encoding, have compounding effects with
other features. Configurable features of x264 have many
complex interactions that can geometrically increase or de-
crease its encoding performance. Furthermore, for special
cases like video encoders, many chipsets include on-board
hardware decoding support, further complicating accurate

Figure 1: Performance distributions of x264 de-
ployed on different machines

prediction of feature performance across different hardware
platforms. On the other hand, simpler software systems like
SQLite have far fewer features and many that do not interact
significantly, it is much simpler to predict as a result.

4.4 Experiment on Time Cost
Toward answering RQ3, Table 9 shows the execution time

of building both performance prediction models RT and
performance transfer models L for different training sam-
ple sizes |CS | and |Cboth|. We can see from this table that
the amount of training time necessary for building both pre-
diction and transfer models is a small fraction of the time
necessary to benchmark individual configurations, let alone
exhaustively exploring all feature setting combinations in
C on even a modest sized benchmark of a given software
system. For comparison, Table 1 shows examples of the
amount of time necessary for benchmarking individual con-
figurations of x264.

4.5 Exploratory Analysis
Toward answering RQ4, we conduct a thorough analysis

of our methodology. We investigate the performance distri-
butions of configurable systems deployed on multiple hard-
ware platforms, compare the structure of performance mod-
els trained on different hardware platforms, and show that
linear models are effective approximations for performance
transfer models. Therefore we show that the accuracy of our
results is not accidental or a result of over-fit, and provide
explanations of why our approach works.

4.5.1 Analysis of Performance Distributions
To assess the feasibility of transferring performance mod-

els of systems between different hardware platforms, we ana-
lyzed the similarity of their performance distributions. Stud-
ied systems have many features, thus their feature spaces are
highly multidimensional and difficult to represent in a man-

Figure 2: Feature distributions of regression trees
trained for performance prediction of x264 on dif-
ferent machines

ner readily interpretable by the human eye. To visualise the
performance distributions of our systems, we take a sample
of the configurations that we measure and sort them by the
performance of one of the benchmarked hardware platforms.

Figure 1 presents performance distributions of x264 de-
ployed on different hardware platforms. We can see that
almost all distributions have very similar shapes, although
different in absolute values. Though it is only a cursory
analysis of the similarity of the performance distributions of
our systems across machines, it does give us confidence that
even simple polynomial transformations between these dis-
tributions could give us good predictions between hardware
platforms. There is a clear pattern indicating that configu-
rations retain their relative performance profile across differ-
ent hardware platforms, i.e., configuration with low relative
performance on one platform, will have low relative perfor-
mance on another platform.

4.5.2 Comparison Analysis of Regression Trees
Regression trees are built by recursively partitioning train-

ing dataset into subsets using dataset features. Therefore,
features used for dataset partitioning play a major part in
defining the structure of a regression tree. Listing all fea-
tures used in the nodes of a regression tree can be used as a
metric for comparing the structure of two different regression
trees. Thus by using this metric we can assess the similar-
ity of two regression trees built for the same configurable
system, but deployed on different hardware platforms.

Following this logic, we built a feature distribution of re-
gression trees trained for performance prediction of a system
deployed on different platforms. From Figure 2, we can see
that the distributions of features used by trees on different
hardware platforms are very similar to each other. From
this we can conclude that the structure of the trees them-
selves are similar across the different hardware platforms we

Figure 3: Transformation between performance dis-
tributions of x264 system deployed on Machine №75
and Machine №88

use in our experiments. Therefore it should be possible for
us to train a regression tree for performance prediction of
a configurable system on one platform and reuse this tree,
with small modifications, on another platform.

4.5.3 Analysis of Distributions Transformations
To select a method for transferring prediction models across

different platforms we investigated transfer models between
training and target machine distributions. We used visu-
alizations of the relationships between training and target
machine performance distributions to guide the selection of
the models used for transfer. An example of the visualiza-
tions we used is shown in Figure 3. The x-axis corresponds
to a configuration’s performance on the training platform,
while the y-axis corresponds to that same configuration’s
performance on the target platform.

By exploring several possible transfer models for all sys-
tems in our case study, we found that a polynomial regres-
sion model provides a good approximations of the transfer
function between machines. To evaluate our hypothesis, we
fitted three polynomial models to the transformation data:
1st, 2nd and 3rd degree polynomials. For all those software
systems and hardware platforms that we tested, we found
that a 1st degree polynomial provides an excellent fit of our
transformation data, while 2nd and 3rd degree polynomials
appear to cause overfitting and unnecessary complications
of the transfer model.

4.5.4 Summary
We believe that our proposed process of performance model

transfer achieved high prediction accuracy as a result of sev-
eral main factors. Firstly, the studied configurable systems
have very similar performance distributions when deployed
on different hardware platforms. Secondly, the transfer func-
tion between these distributions is simple and can be easily

approximated using a linear model. Finally, the prediction
models trained on the studied software systems have very
similar structure when built independently on different plat-
forms. All of these factors together allowed us to use simple
and robust methods for performance prediction and model
transfer, which resulted in high accuracy achieved by our
proposed approach.

4.6 Building Linear Transfer Models
To answer RQ5 we performed a thorough analysis of trans-

fer model building process and tried to answer several impor-
tant questions. (1) Is it possible to measure only a subset
of CS on both machines Cboth ⊂ CS and build a reliable
linear transfer model? (2) Which sampling method to use
for Cboth to achieve acceptable results faster? (3) Is it pos-
sible to figure out a minimum amount of configurations to
measure on both mtrn and mtgt machines? (4) What is the
amount of measured configurations after which additional
measurements are not necessary? Toward answering these
questions, we decided to analyse the learning curves of the
linear transfer models.

We evaluated three different methods of sampling Cboth:
Walker’s alias sampling [13], stratified sampling [12] and
Sobol sampling [14]. Walker’s alias sampling [13] is a ran-
dom sampling method which is the default sampling strat-
egy in the R programming language. Walker’s alias sam-
pling is an example of a classical pseudo-random sampling
method that generates new samples according to a specified
probability distribution. Stratified sampling [12] is a ran-
dom sampling method that exhaustively divides a sampled
population into mutually exclusive subsets of observations
before performing actual sampling. This allows to cover
the sampled population more evenly, which in some cases
significantly improves representation of the whole popula-
tion by a sample. Sobol sampling [14] is an example of a
quasi-random sampling method. Sobol sampling is similar
to pseudo-random sampling, as it generates new samples
with respect to a given probability distribution, however
quasi-random methods are specifically designed to cover a
sampled population more uniformly than pseudo random
strategies.

To generate a linear transfer model between the perfor-
mance distributions of machines mtrn and mtgt, we build
a training dataset using all available configurations Cexp.
An example of this training data and the resulting linear
transfer model is shown in Figure 3.

The algorithm we used for building learning curves for
linear transfer models is as follows:

1. Initialize Cboth by randomly sampling a configuration
from Cexp.

2. Randomly sample another configuration from the set
Cexp \Cboth and add it to the training sample Cboth.

3. Build a linear model L based on the sample Cboth.

4. Assess how well L approximates transformation by us-
ing mean squared error (MSE) over the full set of con-
figurations Cexp.

5. If the set Cexp \Cboth is non-empty go to the Step 2.
Otherwise, build the learning curve of L by combining
mean squared errors for different sizes of Cboth.

Figure 4: Learning curves of a linear transformation
between performance distributions of x264 system
on Machine №75 and Machine №88

Figure 5: Average learning curve of a linear trans-
formation between performance distributions of
x264 system

Figure 4 represents the learning curve of a linear model ap-
proximating the transfer function between the performance
distributions of Machine №75 and Machine №88 when run-
ning the x264 software system. Figure 5 shows the average
learning curve of a linear transformation between perfor-
mance distributions of individual machines running the x264

software system.
We gained several key insights through analysis of our av-

eraged learning curves for all studied configurable software
systems and learning curves for all combinations of train-
ing and target machines. Firstly, it is possible to measure
only a small sample of configurations Cboth ⊂ CS to build
a reliable linear transformation between two performance
distributions. Secondly, we noticed that for all systems,
the biggest improvement in the performance of our linear
transfer models occurs when size(Cboth) ∈ [2, 10]. However,
when size(Cboth) > 20 practically no performance improve-
ment from additional samples is observed. As a result, we
recommend that the size interval for training linear transfer
models be set to size(Cboth) ∈ [10, 20].

4.7 Threats to validity
To enhance internal validity, we implemented automated

random sampling of configurations CS on training machines
and Cboth on target machines. As was mentioned in Sec-
tion 4.1.3, CS varies in {3×Nf , 4×Nf , 5×Nf}, and Cboth

varies in {5, 10, 15}. For each combination of these sam-
pling sizes, CS and Cboth were independently and randomly
sampled ten times. Thus resulting mean relative errors pre-
sented in Tables 4, 8, 6 are averaged over ten independent
transferring experiments. This allowed us to avoid bias
caused by selecting training data for prediction and transfer
models.

An obvious threat to external validity is that the results
are derived from experiments on a limited number of soft-
ware systems and a limited range of hardware. To reduce
the threat we benchmarked three configurable systems with
different sizes, number of features and covering different
application domains. All of the studied systems are used
in real-world settings. When benchmarking subject config-
urable systems we measured each configuration three times.
Thus actual performance values in our study are averages
over three independent measurements. This allowed us to
address possible measurement error in our experiment.

To further enhance external validity, we measured each
system on multiple hardware platforms with different num-
ber of CPUs, instruction sets, clock rates and memory sizes
(see Table 2 for more details). We performed transferring
experiments for all possible pairs of machines with differ-
ing hardware configurations and presented a subset of these
experiments in Tables 4, 8, 6, 9.

However, we acknowledge that our experiments investi-
gated a very limited set of software systems and hardware
platforms and current results might not extrapolate very
well to other hardware and software. We suspect that our
approach might not work when transferring performance
prediction model of a software system that is specifically de-
signed for a particular hardware configuration. For example,
some software systems might use hardware acceleration, like
GPUs, for it’s tasks. If such a system is deployed on a hard-
ware that doesn’t have a dedicated GPU, it’s performance
distribution might appear completely distorted. Thus linear
transformation might not provide a good approximation of
a transfer model. This hypothesis should be investigated in
future work.

5. RELATED WORK
Performance prediction of configurable software

systems is a highly researched topic. Researches investigate

which models are best suited for predicting system perfor-
mance, which strategies can be used for tuning these models,
and how to minimize the amount of measured configurations
necessary for model training.

Guo et al. [5] proposed a variability-aware approach for
performance prediction of configurable software systems based
on small random samples of measured configurations. To
reveal a correlation between a selection of configuration op-
tions and system performance, the authors use CART. They
perform a case study of the proposed approach using six
configurable software systems with different application do-
mains, implementation languages, configuration spaces and
sizes. This study shows that the proposed approach on av-
erage achieves prediction accuracy of 94%, when using small
samples for CART prediction model training. Finally, the
authors show that the approach achieves the best results
when a training sample has a similar performance distribu-
tion as the whole population of configurations.

Valov et al. [18] extended the work of Guo et al. [5], by
carrying out an empirical comparison of regression meth-
ods for the problem of variability-aware performance pre-
diction. They compare prediction accuracy of four meth-
ods: CART, Bagging, Random Forest and SVM. For each
method the authors generate multiple parameter settings, by
using Sobol sampling, and select parameters that provided
the best, the average and the worst prediction accuracy for
each method. By analysing prediction accuracy of methods
for combinations of different parameter settings, target con-
figurable software systems and training sampling sizes, they
assess which methods provide the best prediction most of
the time, i.e. which method is the most robust one. Re-
sults showed Bagging to be the most robust technique for
performance prediction, even when allowing an interval for
selecting the best performance accuracy.

Westermann et al. [20] proposed an approach for auto-
matic, measurement-based method for inferring performance
prediction functions. To minimize the amount of measure-
ments, they developed three algorithms that iteratively se-
lect new data points if necessary. To build actual perfor-
mance prediction functions, the authors use four different
regression and interpolation methods: MARS, CART, GP,
and Kriging. To validate built prediction functions, they
use three different strategies. They provide a framework
for evaluation of function building methods for performance
prediction and for evaluation of different combinations of
function building methods and parameter tuning strategies.
Finally, they evaluated the methodology for performance
prediction in two industrial case studies.

Hutter et al. [7, 8] performed a comprehensive study of
methods for configurable algorithms runtime prediction. Au-
thors propose new methods for performance prediction based
on random forests and approximate Gaussian processes. More-
over, authors show how methods of survival analysis can be
used for improving random forest technique to better handle
incomplete performance measurements. With respect to the
actual domain of algorithms which performance is predicted,
authors investigated satisfiability (SAT), travelling salesper-
son (TSP) and mixed integer programming (MIP) problems
and inferred new probing and timing features for them. Fi-
nally, authors present a comprehensive evaluation of dif-
ferent performance prediction methods including ridge re-
gression and it’s variants, neural networks, regression trees,
Gaussian processes and random forests.

Our work is similar to the aforementioned ones [5, 7, 8, 18,
20], since we also use CART for building performance pre-
diction models. However, we do not perform a comparison
of different regression methods, parameter tuning techniques
or sampling strategies. Instead, we concentrate on transfer-
ring generated performance prediction models to different
hardware environments.

System performance prediction across different hard-
ware platforms is a highly researched topic as well. Re-
searches investigate different methodologies for cross-platform
performance prediction and ways for collecting necessary
performance data.

Thereska et al. [17] proposed an approach for performance
modelling of complex popular applications such as Microsoft’s
Office suite and Visual Studio. All explored applications
were specifically instrumented to export their current state
as well as all necessary performance relevant metrics. More-
over, all explored applications were deployed on multiple
machines, thus allowing them to monitor how each par-
ticular application with different configurations behaves in
various hardware platforms. To predict performance of a
system on a particular hardware platform, the authors (1)
select configuration options (both software and hardware)
that influences a chosen performance metric the most, (2)
use similarity search to select hardware platforms with sim-
ilar hardware configuration, (3) return distribution of pos-
sible performance metric values from a number of similar
configurations as the result.

Hoste et al. [6] proposed an approach for performance pre-
diction of a given software application on a set of hardware
platforms, to find out which platform provides the best per-
formance for the given application. Authors propose a set
of special applications, called a benchmark suite, that have
their microarchitecture-independent characteristics and per-
formance values measured. Using this measured benchmark
suite, authors build a data transformation matrix that is
used to transform applications performance characteristics
and values into points in so-called benchmark space. Bench-
mark space is populated by applications from the benchmark
suite and by the target application which performance needs
to be predicted. Finally, performance prediction of the tar-
get application is carried out by taking weighted average
of performance values of neighbouring applications in the
benchmark space.

Although Thereska et al. [17] and Hoste et al. [6] pro-
pose methodologies for performance prediction of config-
urable software systems across different hardware platforms,
they are completely different from ours. In the current work
we build a prediction model for one hardware platform and
transfer it to another using a linear model. On the contrary,
Thereska uses similarity search on the collected performance
data and Hoste uses transformation to a specially designed
benchmark space and neighbourhood search to predict sys-
tem performance on the target platform.

6. CONCLUSION AND FUTURE WORK
We proposed an approach for transferring performance

prediction models of configurable software systems across
different hardware platforms. We performed a rigorous ex-
ploratory analysis of the proposed methodology, including:
performance distributions comparison, regression models struc-
ture comparison, linear transformation analysis, and com-
parison of different sampling strategies. We observed a high

correlation between performance distributions similarity and
high prediction accuracy of our method. We showed that
similarity of performance distributions is correlated with
structure of performance prediction models. We demon-
strated that linear model provides a good approximation of
transformation between performance distributions of a sys-
tem deployed in different hardware environments and showed
that it is possible to build a reliable linear transfer model us-
ing a small sample of measured configurations Cboth, where
size(Cboth) ∈ [5, 10].

We performed a thorough quantitative analysis of our
methodology. We showed that our approach achieves high
accuracy (less than 10% mean relative error) for majority
of prediction model transfers. Moreover, we observe a de-
creasing tendency of prediction error with increase of the
training data for prediction or linear transfer models. Fi-
nally, we demonstrated that time required for building both
performance prediction and linear transfer models is negli-
gible (less than 10 ms) compared to time budget required
for acquiring configuration measurements.

In future work we plan to test our approach on more con-
figurable systems. All systems, that we’ve explored so far,
demonstrate very similar performance distributions across a
wide range of heterogeneous hardware environments. How-
ever, if a software system is specifically developed or tuned
for a particular hardware configuration or architecture, it
might exhibit a dramatically different performance distri-
bution when deployed on a completely different hardware
platform. We intend to find and analyse these systems in
order to improve generality of our methodology. This might
require using a different performance prediction model or
using a more complex transformation between performance
distributions.

We plan to extend our approach by varying not only con-
figuration options of studied systems, but also systems’ work-
load during benchmarking. We suspect that variations in
system workload might influence transferability of system’s
performance prediction model by distorting system’s perfor-
mance distribution across different hardware environments.

Another direction of future work might be enhancing our
approach using queuing networks. A large body of work
has been aggregated on theory and application of queue-
ing networks to performance modelling and prediction of
configurable software and hardware systems. Balsamo et
al. [3] and Cortellessa et al. [4] propose approaches for auto-
matic derivation of performance models, based on different
types of queueing networks, from UML-based designs of soft-
ware systems. Kowal et al. [9] propose a queueing-networks-
based approach for performance modelling and prediction
of families of systems (e.g. software product lines or com-
plex configurable software systems) by approximating per-
formance models using ordinary differential equations and
symbolically analysing them. All this work can be used to
completely or partially abstract studied systems as queue-
ing networks thus improving performance prediction across
different hardware environments.

7. ACKNOWLEDGEMENTS
We thank anonymous reviewers for their comments, cor-

rections and ideas provided. This work was partially sup-
ported by Natural Sciences and Engineering Research Coun-
cil of Canada, Pratt & Whitney Canada, and Shanghai Mu-
nicipal Natural Science Foundation (No. 17ZR1406900).

8. REFERENCES
[1] NIST/SEMATECH e-Handbook of Statistical

Methods. http://www.itl.nist.gov/div898/handbook/.

[2] J. Antony. Design of Experiments for Engineers and
Scientists. Butterworth-Heinemann, 2003.

[3] S. Balsamo and M. Marzolla. Performance Evaluation
of UML Software Architectures with Multiclass
Queueing Network Models. In Proceedings of the 5th
International Workshop on Software and
Performance. ACM, 2005.

[4] V. Cortellessa and R. Mirandola. PRIMA-UML: a
performance validation incremental methodology on
early UML diagrams. Science of Computer
Programming, July 2002.

[5] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and
A. Wasowski. Variability-aware performance
prediction: A statistical learning approach. In Proc.
ASE. IEEE, 2013.

[6] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges,
L. K. John, and K. De Bosschere. Performance
prediction based on inherent program similarity. In
Proceedings of the 15th International Conference on
Parallel Architectures and Compilation Techniques,
PACT ’06, pages 114–122, New York, NY, USA, 2006.
ACM.

[7] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown.
Algorithm runtime prediction: Methods & evaluation.
Artificial Intelligence, 206(0):79–111, Jan. 2014.

[8] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown.
Algorithm runtime prediction: Methods & evaluation
(extended abstract). In Proceedings of the 24th
International Joint Conference on Artificial
Intelligence (IJCAI), July 2015.

[9] M. Kowal, M. Tschaikowski, M. Tribastone, and
I. Schaefer. Scaling Size and Parameter Spaces in
Variability-Aware Software Performance Models (T).
In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2015.

[10] D. Montgomery. Design and Analysis of Experiments.
John Wiley & Sons, 2008.

[11] J. C. Petkovich, A. Oliveira, Y. Zhang,
T. Reidemeister, and S. Fischmeister. DataMill: A

Distributed Heterogeneous Infrastructure For Robust
Experimentation. Software: Practice and Experience,
pages n/a–n/a, 2015.

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C (2nd Ed.):
The Art of Scientific Computing. Cambridge Univ.
Press, 1992.

[13] B. D. Ripley. Stochastic simulation, volume 316. John
Wiley & Sons, 2009.

[14] I. Sobol and Y. Levitan. A pseudo-random number
generator for personal computers. Computers and
Mathematics with Applications, 37(4–5):33–40, 1999.

[15] SQLite. SQLite. https://www.sqlite.org/. Accessed
April. 15th, 2016.

[16] The Tukaani Project. XZ Utils.
http://tukaani.org/xz/. Accessed April. 17th, 2016.

[17] E. Thereska, B. Doebel, A. X. Zheng, and P. Nobel.
Practical performance models for complex, popular
applications. SIGMETRICS Perform. Eval. Rev.,
38(1):1–12, June 2010.

[18] P. Valov, J. Guo, and K. Czarnecki. Empirical
comparison of regression methods for variability-aware
performance prediction. In Proceedings of the 19th
International Conference on Software Product Line,
SPLC ’15, pages 186–190, New York, NY, USA, 2015.
ACM.

[19] VideoLAN Organization. x264, the best H.264/AVC
encoder.
http://www.videolan.org/developers/x264.html.
Accessed April. 15th, 2016.

[20] D. Westermann, J. Happe, R. Krebs, and
R. Farahbod. Automated inference of goal-oriented
performance prediction functions. In Proceedings of
the 27th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2012, pages
190–199, New York, NY, USA, 2012. ACM.

[21] Y. Zhang, J. Guo, E. Blais, and K. Czarnecki.
Performance prediction of configurable software
systems by fourier learning. In Proceedings of the
International Conference on Automated Software
Engineering (ASE), 2015.

