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Abstract—A key challenge of the development and mainten-
ance of configurable systems is to predict the performance of
individual system variants based on the features selected. It is
usually infeasible to measure the performance of all possible vari-
ants, due to feature combinatorics. Previous approaches predict
performance based on small samples of measured variants, but
it is still open how to dynamically determine an ideal sample
that balances prediction accuracy and measurement effort. In
this paper, we adapt two widely-used sampling strategies for
performance prediction to the domain of configurable systems
and evaluate them in terms of sampling cost, which considers
prediction accuracy and measurement effort simultaneously. To
generate an initial sample, we introduce a new heuristic based on
feature frequencies and compare it to a traditional method based
on t-way feature coverage. We conduct experiments on six real-
world systems and provide guidelines for stakeholders to predict
performance by sampling.

I. INTRODUCTION

Selecting configuration options or features allows stake-
holders to customize a configurable system in various ways,
giving rise to a multitude of system variants or configura-
tions. Each feature can have an effect on the functional and
non-functional properties (e.g., performance and cost) of the
system.
Analyzing performance is a critical step in the evaluation
of software quality. It helps developers in judging how far
the software matches the performance requirements. However,
especially in the case of configurable systems, this task is not
trivial. Due to feature combinatorics, the number of variants
of a configurable system often increases exponentially with
the number of features the system provides. Take SQLite,
one of the most widely used database engine, for example:
only 39 features give rise to over 3 million variants [17].
Due to an often complex benchmarking process, measuring
even a single system variant may be costly. In the light of
these problems, recent approaches predict performance based
on a small sample of measured variants. Siegmund et al.
[17] proposed a measurement-based prediction approach that
detects performance-relevant feature interactions using specific
sampling heuristics that meet different feature-coverage cri-
teria. Guo et al. [5] used a statistical learning technique to
infer performance prediction rules based on random samples.
These approaches depend on certain sampling strategies (i.e.,
selecting a specific set of configurations to be measured) that
provide fixed termination criteria for the sampling process
to achieve an acceptable prediction accuracy (e.g., 90%).
However, these sampling strategies cannot dynamically adjust
the sampling process, including termination, in terms of the

specific characteristics of a given system, so they may measure
more variants than necessary. For example, as reported by Guo
et al. [5], for some systems an acceptable prediction accuracy
can be achieved using very small samples.

In this work, we aim at a smart sampling strategy that
dynamically determines a “good” sample for a given system.
A sample is good if it is small enough to decrease the
measurement effort and large enough to increase the prediction
accuracy at the same time. To quantify the goodness of a
sample, we introduce a composite model of sampling cost [18],
which considers the measurement effort and prediction accur-
acy simultaneously. We investigate two sampling strategies
widely used in data mining: a classical technique, called
progressive sampling [15], and a state-of-the-art technique,
called projective sampling [10]. We conduct experiments on six
real-world configurable systems and compare the two sampling
strategies in terms of sampling cost. Furthermore, we enhance
projective sampling by incorporating two heuristics for initial
sample generation: a heuristic based on t-way (e.g., 2-way and
3-way) feature coverage, as commonly used in combinatorial
testing [8], and a novel heuristic based on feature frequencies.
We empirically compare the performance of four projective
functions used in projective sampling on our six real-world
configurable systems.

In summary, we make the following contributions:

• We adapt progressive and projective sampling strategies to
performance prediction of configurable systems, and we
compare them in terms of the sampling cost, balancing
prediction accuracy and measurement effort.
• We propose a heuristic based on feature frequencies to

guide the initial sample generation of projective sampling.
We compare it to a common heuristic based on t-way
feature coverage.
• Empirical results on six configurable systems demonstrate

that projective sampling using the feature-frequency heur-
istic is cost-efficient. That is, it hits a sweet spot between
prediction accuracy and measurement effort. Moreover,
we empirically identify the best projective function for
projective sampling in our experimental setup.

The implementation and all experimental data are available at
https://github.com/atrisarkar/ces

II. A BIRD’S EYE VIEW OF PERFORMANCE PREDICTION
BY SAMPLING

Figure 1 illustrates the general process of performance
prediction by sampling. It starts with an initial sample of
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measured configurations, which are used to build the pre-
diction model. A good initial sample significantly reduces
the iterations of the entire prediction process. State-of-the-art
approaches fix the size of the initial sample to the number
of features or potential feature interactions of a system [5],
[17]. However, such a strategy might not be the optimal one,
as the number of features (and their interactions) can be high
and, at the same time, an acceptable prediction accuracy might
be achieved using a substantially smaller set of measured
configurations. In our approach, we use a combination of
random sampling and feature-coverage heuristics to dynam-
ically build the initial sample. In particular, we propose a
feature-frequency heuristic for the initial sample generation,
and we compare it to a traditional technique based on t-way
feature coverage, commonly used in combinatorial testing [8].
Then, we build prediction models using a statistical learning
technique, called Classification and Regression Tree (CART),
which has been demonstrated to be fast and accurate for
performance prediction of configurable systems [5].

In previous work, prediction accuracy was the main eval-
uation metric used to estimate the utility of the prediction
models [5], [17], [19]. In this paper, we put forward the idea
that, since there is a cost involved in measuring the sample of
configurations for building the prediction model, a metric must
consider both measurement effort and prediction accuracy to
comprehensively evaluate the prediction model. To this end, we
propose sampling cost as the evaluation metric that quantifies
the utility of a sampling strategy by taking not only prediction
accuracy into account, but also measurement effort. We will
present the cost model in Section IV.

Most prediction models, including the ones used in our
study are built in an iterative manner. The performance en-
gineer measures a few configurations of a system (i.e., the
sampling set), which are divided into a training set and a
testing set. The training set is used to build a prediction
model. This model is then evaluated using an evaluation metric
on the testing set. If the value of the metric for this model
falls within an acceptable range, the process stops, otherwise
more measurements are added to the sample for refining the
prediction model. This iterative process can be illustrated in
the form of a learning curve [15], as shown in Figure 2.

The learning curve of Figure 2 relates accuracy to the size
of the training set. The horizontal axis represents the size of
the training set used to build the prediction model; the vertical
axis shows the accuracy of the corresponding model calculated
using the testing set. An ideal learning curve has three distinct
regions. The first region has a steep incline, indicating rapid
increase in accuracy when adding sample points. The second
(optional) region has a gradual increase in prediction accuracy.
Finally, the third region saturates in a plateau, where adding
further sample points will not result in significant accuracy
improvements anymore. In traditional progressive sampling,
the smallest sample size for which the prediction model returns
acceptable values in terms of the evaluation metric is called
the optimal sample size.

Our goal is to design a smart sampling strategy that reaches
the optimal sample size as fast as possible in terms of sampling
cost. To this end, we define a stopping criterion based on
the sampling cost. Moreover, we investigate two sampling
strategies widely used in data mining: progressive sampling
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Figure 1: General process of performance prediction by sampling
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Figure 2: Regions of the learning curve in dependence of the sample
size: (1) Steep incline; (2) Gradual incline; (3) Plateau; n∗: marks
the optimal sample size

[15] and projective sampling [10], which will be explained in
Section V.

III. DEFINITIONS AND RUNNING EXAMPLE

We represent all features of a configurable software system
as a set X of binary decision variables. If a feature is selected
in a configuration, then the corresponding variable x is equal
to 1, and 0 otherwise. We denote the number of all features
of a system as N , that is, X = {x1, x2, ..., xN}. We represent
each configuration of a system as an N -tuple, assigning value
1 or 0 to each variable in X . We denote all valid configurations
of a configurable system as set X.

The learning curve represents a mapping between the
training-set size and the corresponding accuracy. The pair
λn = (n, ϵn) represents a point in the learning curve, where n
is the size of the training set and ϵn denotes the prediction error
of a model built with a training set of size n. Assuming Sn ⊆
X as the training set (of size n), since we reuse samples from
previous iterations, the sample set Sn has only one additional
new configuration as compared to set Sn−1.

For example, one of our subject systems of Section VII,
Apache, has a total of 9 features, and the total number of all
valid configurations is 192. We follow the strategy used by Guo
et. al. [5] to generate the valid configurations. Table I shows
the learning-curve points for Apache measured at an interval
of 10 configurations. At each step, 10 additional configurations
are measured and added to the training set. The accuracy of
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Table I: Learning curve points (λn) for Apache (n : sample set size,
ϵn : relative error %)

n ϵn n ϵn

10 19.26 60 7.52
20 11.12 70 7.44
30 8.62 80 7.25
40 8.23 90 7.17
50 7.76

the prediction model (CART in our case) is calculated at each
step based on a testing set of a size equal to the training set,
randomly sampled from the set of configurations not measured
so far.

IV. COST MODEL

Typically, performance prediction models are evaluated on
the basis of their prediction accuracy. It is also common
knowledge, and apparent from the learning curve (Figure 2),
that usually a larger training set results in higher prediction
accuracy. However, a large training set is often infeasible in
terms of measurement effort. Thus, any performance prediction
model built for this purpose should be evaluated not only in
terms of prediction accuracy, but also in terms of measurement
cost involved in building the training and testing sets. Weiss
and Tian [18] introduced the concept of utility-based sampling,
in which they combined the above two factors in the form of
a composite cost model. We have modified the original cost
model of Weiss and Tian [18] to include the cost incurred in
measuring the testing set along with the training set:

TotalCost = CostMeasurement(Training)

+ CostMeasurement(Testing)

+ CostModelBuilding

+ CostPredictionError (1)

We can simplify the above cost model by ignoring the cost
incurred in building a performance prediction model, as for
CART, which is used in our approach, this cost is computation-
ally insignificant, compared to the other cost factors. Moreover,
we use a 50:50 split between the training and testing sets in our
sampling strategy, (i.e., the size of training set is the same as
the size of testing set). Therefore, given a training and testing
set of size n each, we have the following cost function of n:

TotalCost(n) = 2n+ ϵn · |S| ·R (2)

where 2n is the number of sample configurations in the
training and testing sets, ϵn is the prediction error of this
performance prediction model built with the n configurations,
|S| is the score set (i.e., the number of configurations whose
performance value will be predicted by the model), and R is
a tuning parameter that controls the ratio of the cost incurred
due to the prediction error to the cost of acquiring training
samples. For example, R = 0.5 means that the cost to measure
a configuration for the training sample is twice the cost
arising from an incorrect prediction of the performance of a
configuration. The actual value of R is problem specific and
shall be set by domain experts. One way to do this is by basing
the measurement effort and prediction cost in the same unit.
For instance, companies often use man-hours as the unit of

choice to quantify investment efforts [2]. In such scenarios, the
value of R can be derived by calculating the ratio of investment
required in man-hours for the two factors.

An interesting characteristic of the cost function is that,
for a well-behaved, monotonically non-decreasing learning
curve, the cost function is convex (see Figure 3b) [10]. This
characteristic enables us to easily find the global minimum of
the cost with respect to the sample size (see Section V).

V. PROGRESSIVE AND PROJECTIVE SAMPLING

In this section, we discuss two sampling strategies for
building the training set independent of the prediction model.
We assume the learning curve of the prediction model to be
well behaved, that is, monotonically non-decreasing. We argue
that this is a reasonable assumption based on evidence from
previous work [13] [4] and on our experience studying the
data from our six subject systems. There are local variations,
though, where additional sample points sometimes result in a
reduced prediction accuracy, and we address them by using a
moving-average smoothing technique on the data points [6].
Still, for a wide range of sample sizes, we see the learning
curve to be monotonically non-decreasing in our experiments.

A. Progressive Sampling

Progressive sampling is a popular sampling strategy that
has been used for a variety of learning models [15] [11]. The
central idea is to use a sampling schedule n0, n1, n2, n3, ..., nk,
where each ni is an integer that specifies the size of the
sample set that is used to build a performance prediction
model at iteration i. Based on how the size of the sample set
in each iteration is calculated, progressive-sampling strategies
can be divided into two kinds [7]. The first one is arithmetic
progressive sampling, where in each iteration, we add a
constant number of additional sample points to the training
set according to the equation ni = n0+ i∗a. The second kind
is geometric progressive sampling, where the sample-set sizes
are built in geometric progression, according to the equation
ni = n0 ∗ ai. The parameter a is a constant that defines how
fast we increase the size of the sample set.

The primary difference between arithmetic and geometric
progressive sampling is the number of sample points we add
in each iteration, and using geometric progressive sampling,
we can hit the plateau region in the learning curve in fewer
iterations [15]. This is an advantage in cases where building
the model is an expensive process. For example, as listed in
Table I, if we set an acceptable prediction accuracy of the
system to 92%, we can observe that the optimal sample size for
that accuracy is 50. If we start with an initial training set size
of 10 and add 10 more configurations in each iteration reusing
samples from preceding iterations, the arithmetic sampling
scheme needs

10(iteraton0) + 10(iteraton1) + 10(iteraton2)

+10(iteraton3) + 10(iteraton4)

that is, 50 measurements with the model being built 5 times,
once in each iteration. For geometric progressive sampling,
if we start with the same 10 measurements and a minimum
common ratio of 2, the number of measurements needed is

viveknair
Highlight

viveknair
Highlight

viveknair
Highlight

viveknair
Highlight

viveknair
Highlight

viveknair
Highlight

viveknair
Highlight

viveknair
Highlight

viveknair
Highlight

viveknair
Highlight

viveknair
Highlight



Sample size

A
c

c
u

ra
c

y

0 100 200 300 400 500

(a) Gradient-based
,

Sample size

C
o

s
t

50 100 150

1
0
0

2
0
0

3
0
0

(b) Cost minimization

Figure 3: Two stopping criteria for progressive sampling

10(iteraton0) + 10(iteraton1) + 20(iteraton2)

+40(iteraton3)

80, which is 30 more than that of arithmetic progressive
sampling, although the model is built only 4 times. For
performance prediction of configurable systems, the cost of
acquiring training samples by measuring system configura-
tions usually overrides the cost of building the performance
prediction model (CART in our case), thus we consider only
arithmetic progressive sampling in what follows.

Stopping Criteria: For both arithmetic and geometric pro-
gressive sampling, we need to decide when to stop sampling
more configurations for measurement. This is a critical step
that needs to be performed in every iteration and to check
whether the built prediction model has converged to an ac-
ceptable prediction accuracy. Next, we discuss two common
stopping criteria.

1) Gradient-Based: Linear Regression with Local
Sampling (LRLS) uses the gradient of the learning curve
to detect convergence [12]. Using this method, we build
additional models in the local neighborhood of ni and
determine their accuracy. We use these additional sample
points to fit a linear regression line and calculate the gradient,
as illustrated in Figure 3a. If the gradient is less than a certain
threshold, we stop sampling and designate the sample size
used in that iteration to be the final sample size. However,
this naive approach does not take the factor cost into account.
Furthermore, it has the drawback of possibly getting stuck in
a local plateau of the learning curve.

Figure 4: Overview of projective sampling

2) Cost Minimization: As the measurement cost is of
primary importance in our case, LRLS-based convergence
detection is not well suited. A more pragmatic approach is to
use the cost function of Equation 2 to detect convergence of
the learning curve [18]. Using this method, for each iteration,
we calculate the total cost of using the model with ni sample
measurements. This problem now translates into an optimiza-
tion problem, where the objective is to find ni that minimizes
the cost function. Since the cost function is a convex function
for well-behaved learning curves (cf. Figure 3b), we can
calculate a sample size that minimizes the total cost when we
observe the first increase in total cost. Thus, if the first increase
in total cost is observed in iteration i, for a sample size of ni,
then the optimal sample size guaranteeing minimum cost is
ni−1. As our evaluation of prediction models is based on cost,
we use the cost-minimization stopping criterion for progressive
sampling, when comparing it to projective sampling, which we
describe next.

B. Projective Sampling

One of the weaknesses of progressive sampling is that the
prediction model can converge only after several iterations with
a large sample size, and there is no way to determine this
unless we have actually built the model. This defeats the entire
purpose of the prediction procedure, as there is a risk that, even
after spending resources in running benchmark tests for several
configurations, the cost and accuracy of the model at the point
of convergence might not be acceptable for the user. Projective
sampling addresses this problem by approximating the learning
curve using a minimal set of initial sample points [10], thus
providing stakeholders with an estimate of the cost projection
of the entire prediction process, thus helping them to decide
whether to adopt the prediction model for their system. We
define the cost incurred in generating this projected learning
curve as the decision cost.

In Figure 4, we provide an overview of the steps involved in
projective sampling. Projective sampling starts with an empty
training set, adding a constant number nδ of configurations
to the training set in each iteration. There is no minimum
constraint to the value of the constant nδ apart from being
greater than 0, and we have seen from our experiments that
even a value of 1 can give good results. In each iteration, we
build the model and calculate the accuracy, this way generating
a sample point for the learning curve. The size of these initial
sample points or the number of iterations the algorithm should
run, varies with the number of features of the system, and we
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Table II: Projective functions of learning curves

Name Equation Optimal Sample Size

Logarithmic err(n) = a + b.log(n) n∗ = −(R · |S| · b)/2
Weiss and Tian err(n) = a + bn/(n + 1) n∗ =

√
(−R · |S| · b)/2

Power Law err(n) = anb n∗ = ( −2
R·|S|·a·b )

1
b−1

Exponential err(n) = abn n∗ = logb

(
−2

R·|S|·a·ln b

)
use a novel feature-frequency heuristic for sample generation
(Section VI) to build this set.

This initial set of sample points represents a partial learning
curve. In the next step, we search for a best-fit function that
can extrapolate the remaining learning curve. Learning curves
for black-box performance prediction methods, such as CART,
exhibit usually good correlation with one of four different
types of projective functions [4] [10], as shown in Table II.
Parameters a and b are the co-efficients of the projective
functions, and |S| and R are the score set and the cost ratio as
defined in Equation 2. Using the information from the initial
sample points, we follow the approach proposed by Last [10] in
selecting the projective learning function that exhibits highest
correlation with the sample points. Once we have determined
the best-fit function that can approximate the learning curve
accurately, we can calculate the coefficients of the projected
function using the least-squares method [14].

The optimal sample size can be defined as the size of the
training sample that minimizes the cost function of Equation
2, ensuring the most optimal tradeoff between measurement
cost and prediction accuracy. In projective sampling, we have
knowledge about the projected learning curve, which gives
us an estimate of the prediction error as a function of the
sample size. If we substitute the value of err in the cost
equation, we can calculate the total cost of the prediction
process as a function of the sample size n. Figure 3b shows
an example of cost versus sample size for Apache. We
can see from the figure that the cost function is convex,
which holds for any monotonically non-decreasing learning
curve [10]. Since all the candidate projective learning curves
follow this property, the first derivative d(Cost(n))/dn = 0
of the cost function is a global minimum. The solution of
this equation gives us the sample size n∗ that guarantees
minimum cost. Table II shows the values of n∗ (cf. Fig. 2)
for the four different learning-curve equations in terms of
the cost-equation variables of Equation 2. In the following
sections, we use n∗ to represent the optimal sample size that
minimizes the cost function of Equation 2.

VI. INITIAL SAMPLE GENERATION

An important step in projective sampling is the generation
of the initial sample points that are used to project the learning
curve. Given a sample point λi of a learning curve, our
objective is to sample a set Λδ = {λ1, λ2, ..., λδ}, such that Λδ

can be used to generate the projected learning curve accurately.

There are two key aspects that need to be considered
when designing sampling strategies to build this set of sample
points. First, one of the advantages of projective sampling is

that it gives stakeholders an estimate of the optimal sample
size n∗ with minimal investment in terms of measurement
cost. However, to generate this projected curve, they need
to measure δ configurations and build the initial sample set.
As defined in the last section, the cost of measuring these
configurations is the decision cost. Thus, the size of the set
or the value of δ is critical. To make the sampling strategy
cost efficient, the value of δ should be less than n∗, otherwise
we would end up measuring more than the optimal number of
configurations. Second, the accuracy of the projected learning
curve matters. It is important that the initial sample set should
be able to produce a projected learning curve that approximates
the real learning curve accurately. Since the size of this initial
set Λδ needs to be kept small, there is a high probability
that a suboptimal strategy in generating these initial sample
points will result in a projective function that is not an accurate
reflection of the learning behavior of the model. This can have
a cascading effect throughout the entire sampling process and
result in a value of sample size (n∗) that is not optimal in
terms of cost.

To generate the initial sample set for projective sampling,
we propose a heuristic based on feature frequencies: For a
configurable system, users can select or deselect features, and
there is typically a relation between features and the overall
performance of the system in terms of throughput or execution
time [5]. As a consequence, the performance of the system
may vary substantially depending on whether a certain feature
is selected or not. For example, in a Web application, the
system might slow down if logging is enabled, because it
takes extra time to perform I/O operations involved in directing
messages to a log file. Thus, the first requirement of a good
representative sample is that the sample configurations in
our initial sample set Λδ should have each feature selected,
at least, once. Also, since feature deselection can have an
influence on the performance values too, it is important that
the sample configurations in Λδ should have each feature
deselected, at least, once. These constraints on feature selection
and deselection apply only to optional features; mandatory
features are active for all the configurations in the sample set.

In terms of our problem definition (Section III), the set
Sδ represents the set of δ distinct configurations in the initial
sample set Λδ . For a given feature i, the frequency of this
feature is defined by the following equation:

1 ≤
δ∑

j=1

xi(j) < δ (3)

where xi ∈ {1, 0} is a Boolean variable representing a feature
i being selected or deselected for a configuration j. Table III
provides an example set Sδ of sample configurations and their
corresponding feature selections.

The initial sample set Λδ should exhibit a good correlation
with the projected learning curve. This is because the projected
learning curve generated using the sample set is indicative of
the learning progress of the prediction model with respect to
the sample size. If the correlation is low, the projected curves
might not model the learning behavior of the system accurately.
Prior work has shown that random sampling can be used for
accurate performance prediction of configurable systems [5].
In our approach, we use a combination of incremental random
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Table III: Coverage of selected features (xi = 1) and deselected
feature (xi = 0)

Conf. Features

x1 x2 x3 .. xi .. .. xN

1 0 1 1 0 0 0 1 1
2 0 0 1 1 1 0 0 0
3 1 1 0 1 0 1 1 1
4 0 1 0 1 0 1 0 0
5 1 1 0 0 0 1 0 1
6 0 0 0 1 1 1 0 0
7 1 1 0 1 0 0 0 1
8 1 0 0 0 1 0 0 1

Table IV: Feature frequency table T. Row 1 : frequency of selected
features. Row 2: frequency of deselected features

Features

x1 x2 x3 .. xi .. .. xN

selected 4 5 2 .. 3 .. .. 5
deselected 4 3 6 .. 5 .. .. 3

sampling and a feature-frequency heuristic to build the initial
sample. To keep track of feature frequencies, our algorithm
uses a 2 × N feature-frequency table T (Table IV), where
the columns of the table represent N optional features of
the system. Each cell in the first row contains the number of
configurations in the training set, for which the corresponding
feature is selected; the second row contains the number of
configurations in the training set, for which the feature is
deselected. Table IV shows the feature frequencies for the
configurations in Table III. For example, feature x2 is selected
in 5 and deselected in 3 configurations.

Algorithm 1 Generate configurations for projective sampling

1: while (curr freq < thresh freq AND mean err >
err thresh) OR (curr ≤ 3) do

2: c← RAND() ◃ Randomly generate a configuration c
3: Scurr ← Scurr ∪ c
4: UPDATE(T ) ◃ Update the feature-freq table T
5: ϵcurr ← CART(Scurr) ; ε← ε ∪ ϵcurr
6: mean err = MEAN(ε)
7: λcurr = (curr, ϵcurr) ; Λδ ← Λδ ∪ λcurr ◃ Add the

current learning curve sample point (λcurr) to Λδ

8: curr freq ← min(t[1, j], t[2, j]); curr ← curr + 1
9: end while

Algorithm 1 defines the steps involved in the generation
of Λδ . The most important parameter in the algorithm is
thresh freq . This parameter sets a lower bound on the values
of the feature-frequency table, which means that the sample
configurations used to generate the sample points for the learn-
ing curve should have all the features selected and deselected
for, at least, thresh freq times. This threshold makes sample
generation robust and diminishes the effect of any outliers
in the sample configurations. The second parameter is the
error threshold, err thresh , which allows the algorithm to stop
sampling if the models built so far have an acceptable accuracy.

For some systems, the performance may be constant, irrespect-
ive of the variability among configurations, which means that
the features do not have a significant influence on performance.
In these systems, we can generate a prediction model with
high accuracy using a very small set of configurations. Keep-
ing a threshold value on the mean error avoids unnecessary
measurements, since the current performance prediction model
already yields a sufficient accuracy. The third parameter is the
number of sample points that we need to project for a non-
linear learning curve, which is 3, at least.

In the first step, the algorithm randomly samples a valid
configuration and adds it to the current sample set Scurr

(Lines 2 and 3). The feature-frequency table T is then updated
by calculating the number of features that are selected and
deselected in Scurr (Line 4). In the next step (Line 5), the
CART prediction model is built using the current configuration
set Scurr, and the prediction error ϵcurr is calculated. The
mean prediction error, which helps in evaluating the accuracy
of the CART models built till this point, is calculated in Line 6.
Using the set Scurr and ϵcurr, we obtain a sample point λcurr

for the learning curve. The algorithm then adds the sample
point λcurr generated in the current iteration to the set Λδ

(Line 7). Variable curr freq holds the current minimum value
of feature selection and deselection frequencies in T. In the
end, the set Λδ forms the final set of sample points we need
to project the learning curve.

The performance profile of a system may not depend solely
on individual features, but also interactions among features.
For example, in a Web application, the performance may
take a hit when caching is turned off and the application
performs blocking reads [20]. Effects of interacting features
have been studied extensively for fault localization in the field
of combinatorial testing, where it has been seen that covering
a 2-way and 3-way feature interactions can detect 93% and
98% of defects in a software [8]. Effects of feature interactions
on performance prediction have also been studied too [16]
[17]. Whereas a strategy based on (t-way) feature coverage
might be an effective method to generate training samples for a
prediction model, our objective is fundamentally different. Our
primary objective is to generate sample points that estimate the
learning behavior of the prediction model.

In Section VIII, we compare our method to a strategy
based on 2-way and 3-way feature coverage, and show that
feature-frequency-based sample generation is more effective
than one based on (t-way) feature coverage.

VII. SUBJECT SYSTEMS

To compare progressive and projective sampling, we
evaluate the two sampling strategies in terms of the sampling
cost on six real-world configurable software systems. The six
subject systems used in our evaluation include:

• Apache HTTP Server is the most popular Web server on
the Internet. In our experiments, we consider 9 features
resulting in 192 valid configurations.
• Berkeley DB (C) is an embedded key-value-based data-

base library that provides scalable high-performance data-
base management services to applications. Some of the
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Table V: Overview of the six subject systems. Lang: language; LOC:
lines of code; |X|: number of all valid configurations; N : number of
all features

System Domain Lang. LOC |X| N

1 Apache Web Server C 230,277 192 9
2 LLVM Compiler C++ 47,549 1,024 11
3 x264 Encoder C 45,743 1,152 16
4 Berkeley DB Database C 219,811 2,560 18
5 Berkeley DB Database JAVA 42,596 400 26
6 SQLite Database C 312,625 3,932,160 39

applications using Berkeley DB are Subversion, Bitcoin,
and Sendmail. In our experiments, we consider 18 fea-
tures resulting in 2560 valid configurations.
• Berkeley DB (Java) is a re-implementation of Berkeley

DB in Java with 26 features and 400 valid configurations.
• LLVM is a popular compiler and virtual-machine frame-

work used for a variety of languages. We consider 11
features and 1024 valid configurations.
• SQLite is the most popular lightweight relational database

management systems today. It is used by several browsers
and operating systems as an embedded database. We
consider 39 features that give rise to more than 3 million
valid configurations.
• x264 is a video-encoding library that encodes video

streams to H.264/MPEG-4 AVC format. It is used by
several video converters and media players, such as VLC.
x264 has 16 features and 1152 valid configurations.

More information on these systems can be found as a part of
SPL Conqueror project [17]; Table V provides an overview of
the subject systems.

VIII. EVALUATION

By conducting experiments on six real-world configurable
systems, we aim at answering the following research questions:

• RQ1: Between progressive and projective sampling,
which is cost efficient? (Section VIII-A)
• RQ2: Which is the best projective function that fits the

learning curve of a configurable system? (Section VIII-B)
• RQ3: Is a heuristic based on t-way feature coverage or

feature frequencies better for the initial sample generation
of projective sampling? (Section VIII-C)

A. RQ1: Progressive vs. Projective

Since cost efficiency is the primary determinant for judging
the effectiveness of a sampling strategy, we compared the total
cost of sampling and prediction according to Equation 2, for all
six subject systems, using progressive and projective sampling,
as shown in Table VI. For both progressive and projective
sampling, we calculated the cost and accuracy of building
prediction models with the optimal sample set size (n∗). The
value of n∗ is determined through the respective sampling
techniques. In the case of projective sampling, the accuracy
shown is the real accuracy calculated after the prediction model
is built with n∗ samples and not the accuracy derived through
the projected learning curve at n∗. To calculate the optimal
sample size, we have set the size of the score set (S) to

Table VI: Cost and accuracy of progressive and projective sampling

Cost Accuracy (%)

Progressive Projective Progressive Projective

Apache 616 602 92 92
Berkeley DB (C) 86679 11206 1 88
Berkeley DB (Java) 355 328 96 96
LLVM 1263 946 96 97
SQLite 2517 1828 98 99
x264 2807 2121 92 95

be proportional to the total number of configurations of the
system (X). Specifically, the size of S is set to |X|/3. The
tuning parameter R, which controls the cost ratio between
measurement effort and prediction accuracy, is set to 1. This
means that we equally weigh the cost incurred in measuring
samples and the cost due to prediction error. We can see
from Table VI that, for all the six subject systems, projective
sampling is more cost efficient than progressive sampling.

Although we prioritize cost efficiency over the absolute
accuracy, we also compared the two strategies based on
accuracy, to validate whether the accuracy of the model is
acceptable. The prediction accuracy was calculated based on a
testing set that was of the same size as the training set. Also,
we ran the experiment 30 times and the prediction accuracy
reported was the average of the runs. We see in Table VI
that projective sampling outperforms progressive sampling in
terms of cost and also in terms of accuracy. For Berkeley
DB (C), progressive sampling gets stuck in a local optimum
and produces a very low accuracy of 1%. Progressive and
projective sampling are comparable in terms of accuracy and
cost for Apache and Berkeley DB (Java), where the learning
curve behaves ideally with no jumps or temporal variations.
However, for all other learning curves, projective sampling is
considerably more cost efficient than progressive sampling.

Decision Cost. One of the key benefits of projective
sampling is its ability to give a prognosis of the learning
behavior of the prediction model. In other words, stakeholders
can use the projected learning curve to obtain an estimate of
the prediction accuracy. They can check whether this value
falls under an acceptable range and decide whether to use the
prediction model. The cost incurred in taking this decision is
the same as the cost incurred in building the initial configura-
tion set, which is in our case the size of the set Λδ . Table VII
shows this cost for each of the six systems. We can see that
Λδ is significantly smaller than the total cost incurred when
the final prediction model is built with an optimal training set
size.

B. RQ2: Comparison of Learning Curves

Figure 5 shows the learning curves for each of the six sub-
ject systems generated by progressive and projective sampling.
The black squares denote the initial learning curve sample
points (Λδ) generated using the feature-frequency heuristic.
Since the parameter err thresh controls the number of iter-
ations of the sampling algorithm, its value affects the size of
Λδ . We have set the value of err thresh to 5%. The only
exception is SQLite, where the value is set to 1%. The reason
is that, for SQLite, we observed a high prediction accuracy
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Figure 5: Learning curves for progressive and projective sampling

from the CART model with a very small sample size, and
thus we set a lower value for effective comparison of feature-
frequency sampling. We have empirically set the value of
the parameter thresh freq at 5 for all subject systems. For
projective sampling, we choose the projective function that has
the highest correlation with the initial set Λδ and for which the
optimal number of samples (n∗) generated by that curve is less
than the total number of configurations of the system (X). The
optimal sample size for a class of projective functions can be
calculated from the equations in Table II. The upper bound on
the optimal sample size helps us to eliminate unrealistic sample
sizes and thus to narrow down our set of candidate projective
functions. For comparison, apart from the chosen projective
function for each system, Figure 5 also shows all the functions
whose correlation value was greater than 0.9. The triangular
wedges show the optimal sample sizes (n∗) for each of the
curves. For both progressive and projective sampling, these
values are generated using the cost-minimization techniques
described in Section V.

We can see from Figure 5 that exponential functions are
the most robust among all the projective functions when used
to fit the learning curve. They exhibit correlations greater than
0.91 for all the six systems, and they have been selected as pro-

Table VII: Comparison of decision cost (size of Λδ) and total cost

Apache
Berkeley DB

(C)
Berkeley DB

(Java) LLVM SQLite x264

Decision Cost 15 32 23 16 65 23
Total Cost 602 11206 328 946 1828 2121

jective functions for 4 out of the 6 systems (Apache, Berkeley
C, Berkeley Java, SQLite). For the remaining two systems, a
logarithmic function (LLVM) and a power-law function (x264)
have been selected. The effectiveness of exponential functions
is corroborated by the fact that they had overestimated the
accuracy of the learning curve at the optimal sample size by
only 5%, with a standard deviation of 4%. For the generation of
a cost-effective optimal sample size n∗, progressive sampling
is sensitive to local variations in the learning curve and gets
stuck in a suboptimal region, for example, in Berkeley C. In
contrast, projective sampling generates realistic values of the
optimal sample set, which are high in accuracy as well as cost
efficient.
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Table IX: t-way vs. feature-frequencies; r: Pearson’s correlation coefficient.

r p value Total Cost

2-way 0.981 0.000017 764
3-way 0.977 0 610Apache
feature frequency 0.989 0 602

2-way 0.858 0.000001 69572
3-way 0.903 0 11212Berkeley DB (C)
feature frequency 0.92 0 11206

2-way 0.895 0.000468 818
3-way 0.943 0 6102Berkeley DB (Java)
feature frequency 0.971 0 328

2-way – – –
3-way 0.006 0.981767 2082LLVM
feature frequency 0.915 0.000001 946

2-way 0.888 0 2470
3-way 0.941 0 1697SQLite
feature frequency 0.943 0 1828

2-way 0.942 0.000005 2798
3-way 0.968 0 2803x264
feature frequency 0.97 0 2121

Table VIII: Size of Λδ (t-way vs. feature-frequency)

Apache
Berkeley DB

(C)
Berkeley DB

(Java) LLVM SQLite x264

2-way 8 20 10 10 25 12
3-way 18 56 27 17 77 29
Feature frequency 15 32 23 16 65 23

C. RQ3: T-Way vs. Feature Frequency

In this section, we compare the t-way heuristic to select the
initial sample set, which is the de-facto standard in combinator-
ial [9] and product-line testing [3], to our proposal of a feature-
frequency heuristic. We mentioned earlier that the objective of
the initial sample generation is to model the learning behavior
of the system and achieve a high correlation between the initial
dataset Λδ and the projective learning curve. Thus, the first
criterion we use to evaluate the t-way and feature-frequency
heuristics is the degree of correlation between the initial dataset
and the chosen projective function for each system. The second
criterion is based on the total cost of the prediction process.
Ideally, the correlation should be close to 1 and the total cost
(calculated at optimal sample size n∗) be minimal.

We use the tool JENNY to generate 2-way and 3-way
feature-coverage configurations used as the initial sample
points Λδ .1 Table IX shows the comparison between 2-way,
3-way, and feature-frequency sampling in terms of correlation
(Pearson correlation coefficient and p value) and the total cost.

We can see in Table VIII that 2-way feature coverage
scores worse than both 3-way and feature frequency in terms
of both correlation and cost. This is due to the number of
sample configurations or the size of Λδ . The size of Λδ is
generally smaller when a 2-way heuristic is used, compared
to a 3-way or feature-frequency heuristic. Feature-frequency

1Jenny : http://burtleburtle.net/bob/math/jenny.html

sampling induces comparable cost to 3-way sampling for two
systems (Apache and Berkeley C). However, the correlation
value for the feature-frequency heuristic in both systems is
higher. For the rest of the systems, we can see that the feature-
frequency heuristic is better in terms of both correlation and
cost. These results, along with the fact that the size of Λδ

is smaller using the feature-frequency heuristic as compared
to the 3-way heuristic for all the six systems, shows us that
the feature-frequency heuristic can generate more accurate
learning curves with a lower numbers of measurements.

IX. THREATS TO VALIDITY

To increase internal validity, we performed automated
random sampling, this way, avoiding misleading effects of
specifically selected samples for building prediction models.
We randomly selected samples of specific sizes (e.g., Λδ) from
the entire population of each subject system. We repeated
each random sampling 30 times for training and testing the
prediction models, and we reported only the mean of cumulat-
ive results for the evaluation metrics, such as sampling cost,
prediction accuracy, and correlation coefficients. In addition,
we used a widely-accepted tool for t-way feature-coverage
generation, to make sure that the generated sets are correct.

In our experiments, the value of the tuning parameter R,
which controls the cost ratio between measurement effort and
prediction accuracy, is set to 1. However, the value of this
parameter is domain-specific, and can be set by a domain
expert. Nevertheless, in cases where the precise value of this
ratio is unknown, giving equal weights to both the cost factors
seems to be a fair assumption. In addition, we repeated our
experiments with multiple values of the parameter R and
observed our results to be robust for these small ranges.
However, we leave a systematic sensitivity analysis to future
work.

We have defined our cost model based on prior research,
and we argue that the measurement cost of both training and



testing samples needs to be incorporated in the cost model.
Still, there might be alternative definitions of cost models,
which are different than ours and equally valid.

To increase external validity, we used a public dataset con-
sisting of six real-world systems, covering different domains,
with different sizes, different configuration mechanisms, and
different programming languages. All the subject systems
used in our case study are deployed and used in real-world
scenarios. However, we are aware that the results of our
experiments are not automatically transferable to all other
configurable systems, but we are confident that we controlled
this threat sufficiently.

X. RELATED WORK

A. Performance Prediction

Recent approaches have used a combination of measure-
ment and prediction techniques to evaluate the performance of
software systems. Among the performance prediction models,
it is important to distinguish between two categories of models
found in literature. The first type of models, which can be
referred to as white-box models, are built early in the life
cycle, by studying the underlying design and architecture of the
software system in question. The idea is to identify perform-
ance bottlenecks early, so that developers can take corrective
actions. Queueing networks, Petri Nets, and Stochastic Process
Algebras are commonly used for this task [1]. The second
type of models, called black-box models, do not make any
assumption on the design and architecture, effectively treating
the system as a black box. In this paper, we use black-box
predictive models.

Guo et al [5] used CART to predict the performance
of configurable systems. On the same dataset as ours, they
observed an average accuracy of 94%. We build on their
prediction model, and we study how to determine the minimum
sample size, rather than proposing a new learning technique.
Yi et al. [21] proposed an algorithm based on Fourier Learning
for the performance prediction of configurable systems. Their
method provides theoretical guarantee of prediction accuracy
and confidence level, but it follows typical random sampling
that is terminated only in terms of prediction accuracy.

Westermann et al. [19] analyzed various statistical infer-
ence techniques to predict the performance of configurable
systems. They also analyzed three different configuration
generation methods, including Random Breakdown, Adaptive
Equidistant Breakdown, and Adaptive Random Breakdown. In
their work, they do not take the measurement cost into account.
We use a composite cost function to guarantee an optimum
between accuracy and measurement cost. Our approach has
further the advantage of giving stakeholders an early prognosis
of the prediction model through a minimal decision cost.

Siegmund et al. [17] used a measurement-based technique
to predict performance by detecting feature interactions. In
follow-up work [16], they consider also numeric configuration
options by combining experimental designs with binary-option
sampling. The number of samples needed to be measured using
their approach is higher than other prediction models, such as
CART, due to their focus on explaining the performance of
a system (i.e., making the influences of all features and their
interactions explicit), which is a different goal.

B. Sampling Strategies

Provost et al. [15] introduced the idea of progressive
sampling and proved that geometric progressive sampling
is more efficient than arithmetic progressive sampling when
model-building cost is high. However, in the case of perform-
ance prediction of configurable systems, the cost of building
prediction models, such as CART, is comparatively low, but
the measurement cost is often high. In this case, arithmetic
progressive sampling is more efficient.

Weiss and Tian [18] combined measurement cost and
accuracy into a single composite cost function and used it to
evaluate the prediction process. We use their cost functions in
our approach. They evaluated only progressive sampling ap-
proaches and did not develop a sampling strategy to minimize
the cost.

Last [10] used the cost function proposed by Weiss and
Tian [18] and proposed projective sampling, which guarantees
a minimum cost and provides a numeric value for the optimal
sample size. We adapted their approach of projective sampling
for performance prediction models. However, they did not
provide guidelines on how to generate a good initial sample
for projecting the learning curve. We solve this problem using
a heuristic based on feature frequencies and compare it to a
typical heuristic based on t-way feature coverage.

XI. CONCLUSION

We adapted two sampling strategies, progressive sampling
and projective sampling, for the performance prediction of con-
figurable systems. To evaluate and compare the two sampling
strategies, we use the sampling cost, which considers the pre-
diction accuracy and the measurement effort simultaneously. In
addition, we used two heuristics based on feature frequencies
and t-way feature coverage to generate the initial sample in
projective sampling. We conducted empirical studies on six
real-world configurable systems to determine an ideal sampling
strategy for performance prediction of configurable systems.

Our key findings are as follows. First, projective sampling
is better than the progressive sampling in terms of both
sampling cost and prediction accuracy, but it suffers from a
dependency on a proper initial sample and projective function.
To obtain a good initial sample for projective sampling, our
heuristic based on feature frequencies is more effective than
the standard approaches based on 2-way and 3-way feature
coverage. Among four common projective functions, the ex-
ponential function is the best to fit the learning curves of our
subject systems accurately and robustly. Furthermore, we re-
commend arithmetic progressive sampling instead of geometric
progressive sampling, because measuring the performance of
configurations is often more costly than learning a prediction
model based on the training set.

Our empirical findings are meant to help stakeholders in
designing sampling strategies for performance prediction. In
the future, we will perform a systematic sensitivity analysis
of the cost ratio between measurement effort and prediction
accuracy in our cost model.
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