
Hey, You Have Given Me Too Many Knobs!

Understanding and Dealing with Over-Designed Configuration in System Software

Tianyin Xu*, Long Jin*, Xuepeng Fan*‡, Yuanyuan Zhou*,
Shankar Pasupathy†, and Rukma Talwadker†

*University of California San Diego, USA ‡Huazhong Univ. of Science & Technology, China †NetApp, USA
{tixu, longjin, xuf001, yyzhou}@cs.ucsd.edu

{Shankar.Pasupathy, Rukma.Talwadker}@netapp.com

ABSTRACT

Configuration problems are not only prevalent, but also severely
impair the reliability of today’s system software. One fundamental
reason is the ever-increasing complexity of configuration, reflected

by the large number of configuration parameters (“knobs”). With
hundreds of knobs, configuring system software to ensure high re-
liability and performance becomes a daunting, error-prone task.

This paper makes a first step in understanding a fundamental
question of configuration design: “do users really need so many

knobs?” To provide the quantitatively answer, we study the con-

figuration settings of real-world users, including thousands of cus-
tomers of a commercial storage system (Storage-A), and hundreds
of users of two widely-used open-source system software projects.
Our study reveals a series of interesting findings to motivate soft-
ware architects and developers to be more cautious and disciplined
in configuration design. Motivated by these findings, we provide

a few concrete, practical guidelines which can significantly reduce
the configuration space. Take Storage-A as an example, the guide-
lines can remove 51.9% of its parameters and simplify 19.7% of
the remaining ones with little impact on existing users. Also, we
study the existing configuration navigation methods in the context
of “too many knobs” to understand their effectiveness in dealing

with the over-designed configuration, and to provide practices for
building navigation support in system software.

Categories and Subject Descriptors: D.2.10 [Software Engineer-
ing]: Methodologies

General Terms: Design, Human Factors, Reliability

Keywords: Configuration, Complexity, Simplification, Navigation,
Parameter, Difficulty, Error

1. INTRODUCTION

1.1 Motivation
In recent years, configuration problems have drawn tremendous

attention for their increasing prevalence and severity. For example,
Yin et al. reported that configuration issues accounted for 27% of

7/2006 7/2008 7/2010 7/2012 7/2014
0

100

200

300

400

500

600

700

Storage-A

N
u

m
b

er
 o

f
p

ar
am

et
er

s

Release time

1/1999 1/2003 1/2007 1/2011
0

100

200

300

400

500

5.6.2

5.5.0

5.0.16

5.1.3

4.1.0

4.0.12
3.23.0

1/2014

MySQL

N
u

m
b

er
 o

f
p

ar
am

et
er

s

Release time

1/1998 1/2002 1/2006 1/2010 1/2014
0

100

200

300

400

500

600

1.3.14

2.2.14

2.3.4

2.0.35

1.3.24

N
u

m
b

er
 o

f
p

ar
am

et
er

s

Release time

Apache

1/2006 1/2008 1/2010 1/2012 1/2014
0

40

80

120

160

200

2.0.0

1.0.0

0.19.0

0.1.0

Hadoop

N
u
m

b
er

 o
f

p
ar

am
et

er
s

Release time

 MapReduce

 HDFS

Figure 1: The increasing number of configuration parameters with
software evolution. Storage-A is a commercial storage system from a
major storage company in the U.S.

all the customer-support cases in a major storage company in the
U.S., and were the most significant contributor (31%) among all
the high-severity cases [75]. Rabkin and Katz reported that config-
uration issues were the dominant source of support cost in Hadoop
clusters (based on data from Cloudera Inc.), in terms of both the
number of support cases and the amount of supporting time [46].

Moreover, configuration errors, the after-effects of configuration
difficulties, have become one of the major causes of system fail-
ures. Barroso and Hölzle reported that configuration errors were the
second major cause of service-level disruptions at one of Google’s
main services [16]. Recently, a number of outages of Internet and

cloud services, including Google, LinkedIn, Microsoft Azure, and
Amazon EC2, were caused by configuration errors [35, 59, 63, 68].

One fundamental reason for today’s prevalent configuration is-
sues is the ever-increasing complexity of configuration, especially
in system software. This is reflected by the large and still increasing
number of configuration parameters (“knobs”), as well as various

configuration constraints and consistency requirements [32, 39, 45,
72] (known as complexity of interaction and tightness of coupling
in human error studies [41,48]). For example, MySQL 5.6 database
server has 461 configuration parameters; 216 of them are not with
simple data types (e.g., Boolean or enumerative) but rather more
complex ones. These parameters control different buffer sizes, time-

outs, resource limits, etc. Setting them correctly requires domain-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786852

307

Configuration Parameter: dfs.namenode.tolerate.heartbeat.multiplier

Developers' Discussion:

�Since we are not sure what is a good choice, how about making it

 configurable?�

�We should add a configuration option for it. Even if it's unlikely to

 change, if someone does want to change it they'll thank us that they

 don't have to change the code/recompile to do so.�

Real-World Usage:
- No usage found by searching the entire mailing lists and Google.
- No usage reported in a survey of 15 Hadoop users in UCSD.

Figure 2: A real-world example of less useful configuration parame-
ters from HDFS. This parameter is specific to internal system imple-
mentation and seldom set by any user. Such parameters should not be
exposed to users (at least not to the common users).

specific knowledge and experience. Similarly, Apache HTTP server

2.4 has more than 550 parameters across all the modules. Moreover,
many of these parameters have dependencies and correlations [47,
79], which further worsens the situation. Such high complexity
level makes system configuration a daunting, error-prone task (we
discuss the cost of such complexity in § 3.3).

Fig. 1 depicts how the number of configuration parameters in-

creases with software evolution of one commercial storage sys-
tem and three popular open-source server software projects. Take
Hadoop MapReduce as an example, its first release in Apr. 2006
had only 17 parameters, but the release in Oct. 2013 already had
173, an increase of more than nine times. In accordance with this

trend, the configuration space will continue to increase. The sit-
uation is further worsened by the growing number of machines
that replicate multiple software instances in data centers, and the
increasing cost of human resources for managing them.

Typically, a configuration parameter is introduced when the de-
velopers want to provide flexibility for users. As one type of system

interfaces, configuration needs to be balanced between flexibility
and simplicity. This raises the question if it is worth satisfying a
few advanced users or even imaginary users, while confusing the
majority of ordinary users. Often, we (software developers) seem
to be biased towards “advanced” users instead of focusing on the
ease of use. Fig. 2 shows a real-world example where the Hadoop

developers exposed a parameter in case some advanced users want
it. However, since the parameter is specific to the internal system
implementation, few user has set it.

It is worth noting that many configuration parameters are added
with new software versions released, but are removed at a much
slower rate. The slow rate is probably due to backward compatibil-

ity concerns, or developers’ lack of sufficient knowledge or confi-
dence in removing parameters introduced by someone else. Table 1
shows the number of parameter changes during software evolution.
The parameter removal rate is almost 7x slower than the rate of ad-
dition (Storage-A has a faster rate than the open-source software

because its release cycles are longer). Following such trends, we
will be presented with more configuration parameters in the future
releases, unless we take serious actions to simplify them.

Many desktop and mobile applications adopt GUI-based meth-
ods such as preference menus [28] to reduce user-perceived com-
plexity caused by large preference space (e.g., colors, fonts, and

layouts). Unfortunately, due to the scalability and accessibility is-
sues [64], the primary and de facto configuration interfaces of sys-
tem software are text files (e.g., in xml and .ini formats). GUIs are
not widely used for system software configuration [15, 21, 29, 64],
making GUI-based methods hard to apply.

In fact, some software developers have already sensed that to-

day’s configuration is overly complex and should be simplified to

Table 1: The average number of added, renamed, and removed con-
figuration parameters per version release. The numbers are obtained
from the official user manuals.

Software Addition Renaming Removal

Storage-A 13.65 0.26 1.87

Apache 5.19 0.23 0.61

MySQL 2.54 0.06 0.53

Hadoop 4.14 1.60 0.39

some degree. For example, Rob Pike, the developer of Unix and
the Go programming language recently commented,

“There is too much configuration. There are too many op-

tions. There are too many dot files. Stuff should just work.”

1.2 Our Contribution
Before jumping onto the simplification track of configuration,

we need to answer a fundamental question: “Do users really need

so many knobs? (after all, configuration knobs are introduced for
the purpose of providing flexibility for users)?” However, provid-
ing an authoritative answer to this question would require lengthy,
expensive, and prohibitively difficult user studies. This paper makes

a first step in providing quantitative answers by studying the con-
figuration settings of many thousands of real users of a commercial

system from a major storage company in the U.S., and also the set-
tings of hundreds of users of two widely-used open-source server
software projects. In addition, we study 620 user-reported configu-
ration issues (from both the commercial and open-source software),

in order to understand the users’ configuration problems (caused by
the complexity of current configuration design) in the real world.

Contribution 1: Understanding Users’ Configuration Settings

in the Field

Specially, this paper studies and answers the following questions

about configuration in system software.

(1) Do users really need so many knobs? Our study shows that
only a small percentage (6.1%∼16.7%) of configuration parame-

ters are set by the majority (50+%) of users in the studied systems,
while a significant percentage (up to 54.1%) of parameters are sel-
dom set. These results provide quantitative evidence that we (soft-
ware developers) are providing more knobs than what the majority
of users need or know how to set. Many knobs are neither neces-
sary nor worthwhile: they make configuration more complex for

common users, but produce little benefit as user-desired flexibility.

(2) Should we offer more choices in setting a knob? Software
developers often use more “flexible” data types such as numeric

types (instead of simple Boolean or enumerative ones) for param-
eters, in order to give users more flexibility. However, our study
shows that users do not take full advantage of such flexibility. A
significant percentage (up to 47.4%) of numeric parameters have
no more than five distinct settings among all users’ settings. Using

simpler, enumerative data types would be sufficient. Similarly, for
enumerative-typed parameters with many options, only two to three
options are actually used. Simplifying these settings can make con-
figuration easier without sacrificing much flexibility.

(3) What is the “cost” of too many knobs? One may argue that
most parameters have default values; also, users can learn about pa-
rameters by referring to user manuals. Thus, there is no real harm
in introducing a large number of configuration parameters or pro-
viding many options for parameters. However, too many knobs do

come with a cost. Our study shows that 17.3%∼48.5% of users’

308

configuration issues (calls to the technical support center and ques-

tions posted on forums) are about their difficulties in finding or set-
ting the correct parameters to achieve the desired system behavior.

“Too many knobs” also prevents users from understanding ev-
ery parameter thoroughly and examining its settings carefully. It is
indirectly reflected by many users’ incorrectly keeping the default
values for parameters that need to be set based on the runtime envi-

ronments. Our study on 620 real-world configuration errors reveals
that a significant percentage (17.5%∼53.3%) of them occurred be-
cause the settings were kept as default values incorrectly, which
failed to meet the constraints of runtime environments. Note: these
parameters are not the rarely-used ones reported in Finding (1).

(4) What kinds of knobs are most utilized? Parameters with ex-
plicit external impact are set by more users, compared with those
specific to internal system implementation. The reason is intuitive.
Software developers, especially open-source developers, often as-

sume too much from users [72]. However, even though the code is
open-sourced, it does not mean that users have time or the capabil-
ity to read and understand the code.

Contribution 2: Dealing with Over-Designed Configuration Com-

plexity: Simplification and Navigation

To deal with the over-designed configuration complexity, we fur-
ther study the effectiveness of two approaches —simplifying con-
figuration design and navigating configuration space.

(5) How many configurations can we simplify? Motivated by our
study, we provide a set of concrete, practical guidelines for config-
uration simplification, including reducing unnecessary parameters
and simplifying parameter settings. We demonstrate that the con-
figurations of the studied systems can be significantly simplified
with little impact on existing users, using these guidelines. Take

Storage-A as an example, we can remove 51.9% of its configura-
tion parameters, and further simplify 19.7% of the remaining ones.

(6) How effective is configuration navigation? Many software

systems rely on the navigation features (e.g., built-in utilities tied in
the manuals, searching boxes linked to external search engines) to
help users find the configuration parameters and settings. We study
the effectiveness of the existing navigation methods, including key-
word search, Google search, and NLP-based navigation [4,28]. The
study provides useful practices and design guidances for building

navigation support for configurations of system software.

2. METHODOLOGY

2.1 Software
We study four system software projects, including the software

of one commercial storage system and three open-source system
software, as shown in Table 2. The commercial system, Storage-

A, is from a major storage company in the U.S. It runs distributed
storage software to manage network-attached storage devices. The
open-source software includes Apache HTTP server, MySQL data-
base server, and Hadoop (including MapReduce and HDFS). All
these software projects are mature (with 9∼21 years of develop-
ment history) and widely used, representing different types of sys-

tem software (storage, Web, database, and data processing).
Note that all the studied software projects fall into the category

of system software, which is used to provide services for client-side
application software (e.g., Web browser, file manager). The users
of system software are mostly system administrators and operators
who usually have higher level of technical background and skills

than ordinary end users. This is particularly true for the commercial

Table 2: The system software studied in this paper.

Software Proprietary Lang. Dev. his. # knobs

Storage-A Commercial — 22 years 412

Apache Open source C 21 years 587

MySQL Open source C++ 21 years 461

Hadoop Open source Java 9 years 312

Table 3: Configuration setting datasets used in this paper. Note: The
numbers of parameters for Apache and MySQL are different from
those in Table 2, as we only study the common parameters of the se-
lected versions and exclude parameters of specific OS/modules (§ 2.2).

Software Version # parameters System instances

Storage-A a.b.c 412 many thousands

Apache 2.2.x 90 168

MySQL 5.x 221 260

storage systems which are mainly purchased and used by enterprise
customers (instead of individuals).

2.2 Configuration Settings of Real Users
We collect and study the configuration settings of real users of

Storage-A, Apache, and MySQL. The Hadoop dataset we collected
is not large enough to be statistically significant. Thus, we exclude
Hadoop from the first part of our study on configuration settings.
Table 3 summarizes the configuration setting datasets.

The dataset of Storage-A includes the configuration settings of
all the customers using the same version of Storage-A (anonymized
as “a.b.c”). It contains many thousands of customers’ settings span-
ning one and a half years (from 6/1/2012 to 12/31/2013). The data
was collected by a support system which recorded the customers’

configuration settings on a weekly basis. In our study, we use each
customer’s most recent configuration settings. Note that this dataset
provides the exhaustive ground truth of the users’ configuration set-
tings of Storage-A, version-a.b.c in the field, and is used as the pri-
mary data source in our study.

As the complimentary data references to verify the findings dis-

covered from the Storage-A dataset, real users’ configuration set-
tings for Apache and MySQL are also collected from the Internet.
We crawl configuration files attached by users from well-known
online forums (including ServerFault [9], StackOverflow [10], Pro
Webmasters [8], and Database Administrators [5]), and the entire
archives of the official mailing lists of the two software projects.

We only collect complete configuration files attached by users, and
exclude any partial configuration snippets included in postings, be-
cause partial snippets does not reflect all the settings made by the
user (we cannot know the settings of the parameters not appearing
in the snippets); including them would cause biases. Moreover, we
only collect one configuration file per user (identified by user IDs

or emails) to ensure the representativeness of our datasets.
In this study, we use the configuration settings of the same major

version for each software project so that we do not need to deal
with the configuration difference across versions. To make sure
the studied parameters were presented to all the users, we exclude
parameters designed for specific plugins or OS (e.g., OS/2, BeOS)

that are not the default OS and software modules of the studied
software and are not needed for the majority of the users.

2.3 Real-world Configuration Issues
We collect 620 real-world cases of user-reported configuration

issues related to the studied system software. Table 4 shows the
numbers of collected cases of each software project. The cases of
Storage-A are collected from the commercial company’s customer-

issue database which records the issues reported by the customers.

309

Table 4: Real-world configuration-related issues studied.

Software Studied cases

Storage-A 329

Apache 97

MySQL 96

Hadoop 98

We randomly sampled 1,000 cases labeled as “configuration re-
lated” by technical support engineers, and only selected those that
have been resolved and confirmed by the original users. For the
open-source software, we collect user-reported configuration issues
from two sources: the software’s official mailing lists and the well-
known online forums (the same as in § 2.2). This study focuses on

issues related to parameter configuration, as they account for the
majority of users’ configuration problems [75].

2.4 Threats to Validity
As with all characteristic studies, there is an inherent risk that our

findings may be specific to the studied software and may not apply
to other software. While we cannot establish representativeness
categorically, we have taken care to select diverse software with

different proprietary licenses, functionalities, and languages of im-
plementation (c.f., Table 2). As all the studied software projects
are mature and widely used, we believe that their configuration
accurately represents the configuration design practices of today’s
system software. However, our study only focuses on system soft-
ware; we do not intend to draw any conclusion about other types of

software, such as desktop software and mobile applications.
Another potential source of bias is in the collection of users’

configuration settings of the open-source software. The configu-
ration files of Apache and MySQL are collected from online fo-
rums and mailing lists. Many of them are associated with users’

configuration problems; some of these files may have a few erro-
neous settings. Although these settings (including the erroneous
ones) are configured and applied by real users, we acknowledge
that the datasets may be biased to users who encountered config-
uration problems. To avoid the impact of the potential biases, we
only use the datasets as complimentary references to the Storage-

A dataset (which does not have such bias). We do not draw any
conclusion directly from the open-source datasets. All the reported
findings are discovered in Storage-A and then verified in the open-
source datasets. As described in § 2.2, the Storage-A dataset con-

tains all the settings of Storage-A customers using the same version,

which is exhaustive without bias to any special type of users.

Another concern is the representativeness of configuration issues.
We collect only user-reported issues. It is possible that users do not
report easy-to-solve problems. Also, novice users are more likely
to report problems, compared with experts. Unfortunately, it is hard
to objectively judge whether a user is a novice or an expert. In fact,
with new or major revisions of software being deployed in the field,

there are always novice users. Therefore, our findings are still valid.
Note: Our study mainly focuses on users’ configuration difficulties
and mistakes caused by existing configuration design, instead of
general characteristics of configuration errors.

Finally, we still remind readers to interpret our findings and re-
sults in the context of our studied software and datasets.

3. UNDERSTANDING USERS’ CONFIGU-

RATION SETTINGS IN THE FIELD
In this section, we first study how the configuration parameters

are set by real users. Then, we examine how users handle the in-

creasing configuration complexity.

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of parameters (%)

P
er

ce
n
ta

g
e

o
f

u
se

rs
(%

)

Apache

MySQL

Storage-A

Figure 3: How many parameters are used in the field by the users?
Each data point (x, y) on a curve indicates that “x% of the parameters
were set by fewer than y% of the users.” Table 5 and 6 further zoom
into the parameters set by 0%/1-% of users and 50+%/90+% of users.

Table 5: The percentage (number) of parameters that were set by 0%
and by fewer than 1% of the users, respectively.

Software
% (#) of parameters Total

% of users = 0% % of users < 1% (#)

Storage-A 23.3% (96) 54.1% (223) 412
Apache 23.3% (21) 31.1% (28) 90
MySQL 33.0% (73) 49.8% (110) 221

Table 6: The percentage (number) of parameters that were set by more
than 50% and 90% of the users, respectively.

Software
% (#) of parameters Total

% of users > 50% % of users > 90% (#)

Storage-A 6.1% (25) 2.4% (10) 412
Apache 16.7% (15) 7.8% (7) 90
MySQL 10.0% (22) 1.8% (4) 221

Note that we only study the configuration parameters exposed

to users intentionally, instead of those to developers or technical-

support engineers. All the studied parameters are documented in
the official user manuals, we exclude hidden parameters that are not
visible to the common users. Therefore, all the reported findings
in this section are only applicable to configuration design as the
users’ interface; they may not be applicable to developing, testing

or debugging environments (which are discussed in § 6).

3.1 Do Users Really Need So Many Configu-
ration Knobs?

Finding 1(a): Only a small percentage (6.1%∼16.7%) of config-

uration parameters are set by the majority of users; a significant

percentage (up to 54.1%) of parameters are rarely set by any user.

It seems that many parameters (at least those rarely-set ones) are
not necessary to most of the users. They enlarge the configuration
space (adding more complexity) without producing much benefit

(in terms of user-desired flexibility) to the common users. We dis-
cuss the problems of “too many knobs” in § 3.3. The rarely-set
parameters should be separated from the commonly used ones.

Figure 3 plots the real-world usages of configuration parameters,

measured by the percentage of users whose settings are different
from the defaults in the studied systems. Table 5 shows the per-
centage of the parameters that are seldom set (by fewer than 1% of
users); Table 6 gives the percentage of the parameters set by the
majority (more than 50%) of users.

These results give quantitative evidence that we (software devel-

opers) seem to have provided more configuration knobs than what

310

the majority of users need or know how to use. The configuration

parameters, rarely set by users, should be either hidden (informing
users by requests) or completely removed from common users, to
avoid blowing up the user-perceived configuration space.

One may argue that users do not set these parameters only be-
cause the default settings are good. First, this may not always be
true. As we will show in § 3.3, many times users do not change

the default settings because they do not understand the meaning or
impact of the parameters and thereby do not know how to set them
appropriately. Second, even the above statement is true, if almost
all the users never need to set the parameters to be different from
the defaults, what is the need to expose these knobs to users? We
can keep them hidden or completely remove them so that users can

focus on the parameters that need to be changed.

Finding 1(b): A small percentage (1.8%∼7.8%) of parameters are

configured by more than 90% of the users. Many of these parame-

ters provide necessary information of the system runtime which is
hard to have default values in advance.

These parameters should be exposed or recommended to the users
as the “first-class” knobs. Software developers should provide sim-

ple tutorials, guidebooks, and templates, to explain in more details
about these parameters. This can help users to focus and have an
easier, quicker start, instead of skimming through a thick manual
(e.g., MySQL’s reference manual has a length of 3,989 pages [7]).

3.2 Should We Offer More Choices in Setting
Configuration Knobs?

Finding 2(a): Software developers often choose more “flexible”

data types for configuration parameters to give users more flexi-

bility of settings (e.g., using numeric types instead of the simple

Boolean or enumerative ones). However, users seem not to take

full advantage of such flexibility. A significant percentage (up to

47.4%) of numeric parameters have no more than five distinct set-

tings among all the users’ settings.

Once again, this implies that the developers’ goodwill in provid-
ing user flexibility is not fully appreciated by users. Reducing the
value space of these parameters can simplify their settings, without
sacrificing much flexibility. Developers can convert the complex

types into Boolean or enumerative types which are more expressive
and easier for users to configure.

Table 7 shows the similarity of users’ settings for numeric param-
eters in the studied systems. For each numeric parameter, we select
the five most popular values, and measure their coverage among all
the users’ settings. We exclude users who stayed with the default

values (i.e., they did not set these parameters), in order to avoid
the dominating coverage of the default values (including the de-
fault values would make the percentages even higher, because most
users go with the defaults for many numeric parameters).

Note that the majority numeric parameters have a large range.

Many parameters do not have specified min/max values, so their
ranges depend on their data types. For example, the data range of
parameters represented by unsigned int is [0, UINT_MAX]. We
do not normalize the results in Table 7 by the numeric ranges (as
denominators), because large ranges (e.g., [0, INT_MAX] and [0,
LONG_MAX]) seldom have meanings to users and thus may not im-

pact users’ settings (making normalization nonsensical).
One reason of the small number of settings is the distribution

of templates among the user communities. For example, the user
communities of the configuration management tools (e.g., Puppet
and Chef) have the tradition of sharing recipes for a variety of com-
mon software. The results indicate that the majority of users do

not need large value space for configuration parameters. Provid-

Table 7: The percentage of numeric parameters with no more than
five distinct settings used by 90% or 100% of the users. We exclude
users who did not set the parameters.

Software
% of parameters with five distinct values

Covering 90% users Covering 100% users

Storage-A 65.8% 47.4%
Apache 60.0% 10.0%
MySQL 26.7% 12.2%

2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

N
o

 p
ar

am
et

er

N
o

rm
al

iz
ed

 o
p

ti
o

n
 u

sa
g

e

options in enumerative parameters

 Storage-A Apache MySQL

N
o

 p
ar

am
et

er

Figure 4: Usages of enumerative parameters with different number of
options (percentages of used options among all the provided options)

ing users with a few representative options covering typical usage
scenarios is simpler and more efficient.

Finding 2(b): Similarly, for enumerative parameters with many op-

tions, typically only two to three of the options are actually used by

the users, indicating once again the over-designed flexibility. Fig-
ure 4 shows the number of used options among all the options.

Compared with numeric ones, enumerative parameters have less
options with more representative values. However, if there are too
many options with ambiguous semantics, users tend to stay on a few
safe options. For example, Apache’s LogLevel parameter has 16

options, corresponding to 16 different logging verbosity levels [2].
Though the user manual explains each level using log examples,
only six options appear in our datasets. The log levels for specific
debugging purposes (e.g., trace1–8) should not be exposed to the
common users. In fact, even the developers themselves are often
confused by the verbosity levels, not to mention the users [76].

3.3 What Is The “Cost” of Too Many Knobs?
Some software developers may argue that most of the parameters

have default values; also, users can learn about these parameters by
referring to user manuals. Thus, there is no real harm in introduc-
ing a large number of configuration parameters or providing many
options for them. However, this argument is somewhat refuted by
our study of real-world configuration issues reported by users.

Finding 3: Too many knobs do come with a cost: users encounter

tremendous difficulties in knowing which parameters should be set

among the large configuration space. This is reflected by the fol-

lowing two facts: (1) a significant percentage (up to 48.5%) of

configuration issues are about users’ difficulties in finding or set-

ting the parameters to obtain the intended system behavior; (2) a

significant percentage (up to 53.3%) of configuration errors are in-

troduced due to users’ staying with default values incorrectly.

To understand users’ configuration problems in the real world,
we categorize the user-reported issues into “difficulties,” “errors,”
and “others.” The difficulties refer to cases where users do not know
what or how to configure to obtain their intended system function-

alities or performance goals. The errors refer to erroneous settings
that caused system misbehavior, such as crashes, hangs, or perfor-
mance degradation. The users failed to reason out the misconfig-
urations as the root causes, and thus called support engineers or
posted the problems on online forums and mailing lists. There are
other configuration-related issues such as inquiries about general

practices and internal usages, categorized as “others.”

311

Table 8: The distribution of the user-reported configuration issues
across the categories.

Software Difficulties Errors Others Total

Storage-A 17.3% (57) 70.5% (232) 12.2% (40) 329
Apache 48.5% (47) 44.3% (43) 7.2% (7) 97
MySQL 34.4% (33) 47.9% (46) 17.7% (17) 96
Hadoop 35.7% (35) 42.9% (42) 21.4% (21) 98

Two major data losses on a dozen machines. /*Hadoop*/Problem:

Stayed with the default values of the data-path parameters

(e.g., dfs.name.dir, dfs.data.dir) which point to locations in /tmp.

Thus, after the machines reboot, data losses occur.

Cause:

One of the common problems from users. (from Cloudera)

Figure 5: A real-world example of configuration errors caused by
users’ incorrectly staying with default values.

Table 9: The number of error cases caused by the users’ incorrectly
staying with default parameter values, and their percentages among all
the error cases. Most of these parameters were set by more than 5% of
users. We exclude the cases which do not report users’ settings.

Software Total (#)
Incorrect Set by
defaults <5% users

Storage-A 207 45.4% (94) 3.2%
Apache 40 17.5% (7) 0.0%
MySQL 45 53.3% (24) 0.0%
Hadoop 40 30.0% (12) N/A

Table 8 shows the distribution of the collected configuration is-
sues across the categories. Remarkably, a significant percentage
(17.3%∼48.5%) of issues fit into the “difficulties” category. This
indicates users’ tremendous difficulties to find the right knobs from

the large configuration space. It is totally understandable, given
the large quantity of parameters as well as the inefficiency of com-
mon navigation practices (discussed in § 5). Compared with open-
source software, Storage-A has a lower percentage of “difficulties”
issues (probably because Storage-A users are mostly professional
administrators with better configuration experience). However, 17.3%

still means a large financial cost, considering the human cost of
configuration-related support calls [61, 75].

Similarly, “too many knobs” may prevent users from understand-
ing the parameters thoroughly and tuning them carefully. Users
tend to keep the settings (e.g., the default values) that work for the
first run, instead of carefully, thoroughly examining the setting of

every parameter. As a result, they may incorrectly miss parameters
that need to be set according to the runtime environments, thus vi-
olating constraints of workloads, resources, cross-component cor-
relations, etc. The consequence could be severe, such as failures
and data losses. Fig. 5 gives an example where the user’s incorrect

staying with default values led to major data losses.
In fact, such cases (as the one in Fig. 5) are not rare. As shown

in Table 9, a significant percentage (17.5%∼53.3%) of the config-
uration errors were caused by users’ incorrectly staying with the
default values, rather than setting wrong values.1 We manually ex-
amined the users’ settings reported in the issues (the cases without

enough information about users’ settings are excluded). Note that
very few of these parameters are those rarely-set ones.

We cannot draw conclusions that smaller configuration space
will definitely reduce the error-proneness of configuration activi-
ties, as the current datasets do not allow us to study the correla-
tion between the size of the configuration space and the number (or

1We acknowledge the possibility of users’ intentionally setting the default
values wrongly, but we believe that it is not the common case.

Controls the heuristics applied during query optimization to prune

less-promising partial plans from the optimizer search space.

/*MySQL*/optimizer_prune_level (Boolean)Parameter:

Desc.:

0 or 1Values:

Usage: No user set the parameter in our dataset.

(a) Empirical, heuristic usages

The size in bytes of blocks in the key cache.

/*MySQL*/key_cache_block_size (Numeric)Parameter:

Desc.:

[512, 16384]Values:

Usage: All the users stay with the default value 1024 in our dataset.
(b) Control internal data structures

Figure 6: Two examples of configuration parameters that are seldom
set by any user in the MySQL dataset.

0 20 40 60 80 100
0

20

40

60

80

100

Storage-A

Percentage of parameters (%)
P

er
ce

n
ta

g
e

o
f

u
se

rs
(%

) Explicit

Implicit

0 20 40 60 80 100
0

20
40
60
80

100

MySQL

% of parameters

%
o
f

u
se

rs Explicit

Implicit

0 20 40 60 80 100
0

20
40
60
80

100

Apache

% of parameters

%
o
f

u
se

rs
(%

)

Explicit

Implicit

Figure 7: Real-world usages of configuration parameters with explicit,
visible external impact (“explicit”) versus parameters specific to inter-
nal implementation (“internal”).

rate) of configuration errors. However, as reducing the configura-
tion space surely simplifies the configuration process, we believe it
to have positive effect on the error-proneness of configuration.

3.4 What Kinds of Knobs Are Most Utilized?
Finding 4: Configuration parameters with explicit semantics, vis-

ible external impact are set by more users, in comparison to pa-

rameters that are specific to internal system implementation. Thus,
software developers should avoid exposing parameters specific to

internal implementation. After all, users cannot, or may not have
time to read the source code.

The distinct usages of different parameters drive us to think about
the rationale behind how users set configuration parameters. We

comparatively examine the parameters set by the majority of users
and those seldom set. There is a remarkable difference between
these two sets. Most of the frequently-set parameters have explicit
semantics or visible external impact, e.g., enabling functionalities,
switching between policies, enabling backup services. Thus, it is

easy for users to understand and observe the effect of their settings.
On the contrary, many seldom-set parameters are specific to in-

ternal system implementation or protocol details (e.g., controlling
data structures or library/system calls) and empirical/heuristic us-
ages. Fig. 6 gives two examples of such knobs from MySQL.

Since most users have limited knowledge about system internals

(even for the open-source ones), it is difficult for them to understand
the semantics and potential impact of those internal parameters. As
a result, most users do not have the confidence to touch these param-
eters, especially for system software running in production systems
whose availability and performance are critical.

To validate our hypothesis, we manually annotate every studied

parameter as “internal” or “explicit,” based on whether or not it con-

312

Table 10: Guidelines for simplifying configuration design.

Guideline Support Ref.

1. Hide or remove configuration parameters that are seldom set by any user. This requires to build
user-feedback loops for configuration settings.

Finding 1(a) § 3.1

2. Promote parameters set by most users to be the “first-class” ones. Include them in tutorials and
guidebooks to let users focus on these parameters first.

Finding 1(b) § 3.1

3. If possible, convert numeric parameters into enumerative or Boolean types with expressive,
representative values to make the settings simple for users.

Finding 2(a) § 3.2

4. Avoid enumerative parameters with too many options. Five options should be sufficient in terms
of user flexibility.

Finding 2(b) § 3.2

5. Only expose the configuration parameters with explicit semantics and/or visible external system
impact.

Finding 4 § 3.4

Original 0% 1% 5%
0

50

100

150

200

250

300

350

400

450
Storage-A

N
u

m
b

er
 o

f
p

ar
am

et
er

s

 Boolean

 Enumerative

 Numeric

 String

Original 0% 1% 5%
0

20

40

60

80

100

120
Apache

N
u

m
b

er
 o

f
p

ar
am

et
er

s

 Boolean

 Enumerative

 Numeric

 String

Original 0% 1% 5%
0

50

100

150

200

250

N
u

m
b

er
 o

f
p

ar
am

et
er

s

 Boolean

 Enumerative

 Numeric

 String

MySQL

Figure 8: How much can we simplify configuration? The number of configuration parameters and their data types before and after we apply the
guidelines 1, 3, and 4 in Table 10, with fewer than 0%, 1%, and 5% of the existing users being impacted, respectively.

trols internal implementation specific to the software. To minimize
the subjectiveness during annotation, two inspectors separately la-

beled the parameters and compared the results with each other be-
fore consensus was reached. For some tough cases, we consulted
with the developers to make decisions on the labeling. Fig. 7 shows
the usages of “explicit” and “internal” parameters in the studied
software. It confirms that the configuration parameters specific to
internal implementation are seldom set by users.

Note that the usages of parameters are not strongly correlated
with their data types. For example, Boolean parameters are usually
more simple to set, compared with numeric parameters. However,
if they are specific to internal implementation, they are still seldom
set by users, as exemplified in Figure 6a.

4. CONFIGURATION SIMPLIFICATION
In this section, we study the opportunity and effectiveness of sim-

plifying configuration by reducing the parameter and value space,
as the fundamental approach to dealing with “too many knobs.” We

discuss other aspects of configuration simplification in § 6.

4.1 Simplification Guidelines
The findings in § 3 lead to a set of concrete, practical guidelines

for simplifying configurations. Table 10 summarizes these guide-
lines, which mainly include the following two aspects:

• Vertical: Hiding or removing unnecessary configuration parame-
ters and promoting the important ones (which are usually a small
set), so that users can efficiently, correctly find the knobs.

• Horizontal: Reducing the value space of the parameters and pro-
viding meaningful, expressive options to help users set the pa-

rameters correctly and efficiently.

Note: These guidelines are only applicable to configuration design
for the users (e.g., administrators) of the software, not for develop-

ers or support engineers. For example, hiding parameters should

not prevent test engineers from finding or setting them. We discuss
the implications of simplification to testing and debugging in § 6.

The proposed guidelines in Table 10 are general and do not con-
sider system- or domain-specific information (which may provide
opportunities to further simplify configuration). In this paper, we
judge the necessity of a parameter based on its setting statistics. It is
possible that even parameters set by many users can be eliminated,
e.g., by automatically inferring or generating values from runtime

environments (e.g., [18, 12, 17, 82]), formal models/specifications
(e.g., [37, 51, 52, 60, 66]), historical settings (e.g., [36, 83]), etc.

Software vendors may raise the concern that simplifying config-
uration would hurt the advanced users who do need more flexibility
compared with ordinary users; specially, some parameters are still
under use even though by few users (e.g., 1%). In fact, this problem

can be gracefully addressed by decoupling the advanced configura-
tion from the basic ones. For example, the advanced parameters
can be hidden from the common users and only be informed by re-
quests; arbitrary parameter values are still allowed to be set if the
user insists. Nevertheless, such advanced configuration should be
introduced to users in separate manuals, templates, and files.

Please note that we do not mean to prevent users from fine-tuning

the configuration. Instead, this paper advocates better design to
facilitate users’ configuration tuning by making it simple and less
prone to errors. As we have demonstrated, the current design of
configuration clearly does not consider users in the design process

but assume that they need and can handle the level of complexity.

4.2 Effectiveness of Simplification

Finding 5: The configuration of the studied software can be sig-

nificantly simplified by reducing the configuration space both ver-

tically and horizontally. For Storage-A, 51.9% of the original pa-

rameters can be hidden or removed, and 19.7% of the remaining

ones can be further converted into simpler types, with the impact

on fewer than 1% of the users. The similar reduction rates are also

observed in the other two open-source software.

313

We apply Guideline 1, 3, and 4 to the configuration of the stud-

ied software, allowing an impact on fewer than 0%, 1%, and 5%
of the existing users, respectively. For Guideline 3, we convert a
numeric parameter into an enumerative one if the parameter can be
represented by no more than five options. Similarly, we convert an
enumerative parameter into a Boolean if two options are sufficient
to cover users’ settings. We call the users being “impacted” by the

simplification if their current settings would be changed to slightly
different settings. Note: It does not necessarily mean that the new
settings would result in failures or performance degradation.

Fig. 8 quantifies the effectiveness of the proposed configuration
simplification methods. It shows the number of parameters and
their data types after we apply the guidelines. As a first step in

the direction of simplifying configuration, the results are promising,
which also reflects the degree of the over-designed configuration.

5. CONFIGURATION NAVIGATION
To deal with too many knobs, many software projects rely on the

navigation feature to help users find the right parameters and set-
tings. In this section, we conduct measurement study to understand
the effectiveness of the navigation methods using real-world cases.

As discussed in § 3.3, many users encounter difficulties in find-
ing or setting configuration parameters. As shown Table 11, the

majority of these “difficulties” cases are about finding the knobs
rather than setting values. When a user knows which knob to set, it
is relatively easy to find the information from the manual or using
the Unix man command, and to learn how to set it.

5.1 Methodology

Navigation Methods. We study three navigation methods, key-
word search, Google search, and NLP-based navigation.

• Search by keywords: Search by keywords on top of manuals is

a pervasive navigation practice. Many software projects provide
build-in search utilities tied into documentation (e.g., the search
box in MySQL online docs [6]). Even without specific support,
users can always rely on the search features offered by file read-
ers/browsers to search keywords in PDF/HTML manuals.

• Search on Internet: Google search (or using other search engines

such as Microsoft Bing) is another common practice to find the
configuration knobs [15, 29]. Many software projects also pro-
vide search boxes that redirect users’ queries to Google in their
online manuals (e.g., Apache’s online documentation [1]).

• NLP-based navigation: Recently, to help users find the right pa-
rameters, NLP-based navigation methods have been proposed [27,
4]. The idea is to build indexes for parameters based on their de-

scriptions; users queries are matched to indexed contents and the
best matched parameters are recommended to the users.

Datasets and Queries. We select out the “finding knobs” cases

from the real-world cases studied in § 3.3. We exclude cases of
Storage-A because the case reports were written by the company’s
support engineers, and thus do not contain users’ original ques-
tions/queries. In most of the “finding knobs” cases, the users did
find the target parameter(s) with the help of support engineers, or
peer users from the online forums. We focus on these “closed”

cases in our study and exclude the cases in which the target knobs
do not exist. The number of the closed cases for Apache, MySQL,
and Hadoop is 39, 25, and 26, respectively.

For each case, we use the original user-posted question as the
original query. Every query is then filtered by common stop words
which help remove meaningless words, such as interrogative words,

personal pronouns, articles, etc. Then, we convert each word in a

Table 11: User-reported “difficulties” cases in finding configuration
knobs versus setting the values. The closed “finding knobs” cases (e.g.,
the target knobs exist) are used for studying navigation methods in § 5.

Software Finding knobs Setting knobs Total

Storage-A 82.5% (47) 17.5% (10) 57

Apache 89.4% (42) 10.6% (5) 47

MySQL 84.8% (28) 15.2% (5) 33

Hadoop 82.9% (29) 17.1% (6) 35

Table 12: The percentage (number) of queries for which the keyword
search returns pages containing the target parameter(s).

Software
% (#) of navigation cases Total

∩{returned pages} ∪{returned pages} Cases

Apache 25.6% (10) 79.5% (31) 39

MySQL 24.0% (6) 88.0% (22) 25

Hadoop 15.4% (4) 69.2% (18) 26

Table 13: The average number of returned pages per relevant page by
keyword searching.

Software
Avg. number of returned pages

∩{returned pages} ∪{returned pages}

Apache 2 32

MySQL 15 102

Hadoop 9 139

query string to the root forms of the word based on WordNets [38].
The final query strings are used for studying all the three methods.
For example, the original question, “How do I configure the proxy

to forward all requests” ends in the query, “proxy forward request.”

5.2 Effectiveness of Navigation

5.2.1 Search by Keywords

Finding 6(a): Searching user manuals by keywords is not efficient

to help users identify the target parameter(s).

As a user’s query often contains multiple keywords (such as
“proxy forward request”), the user can first search for “proxy” and
obtain all the pages containing it, and then search for “forward” and
“request.” Each keyword may be associated with multiple manual
pages. We assume that a user can find the target configuration pa-

rameter(s) as long as she reads the page that contains the parameter
(referred to as a relevant page).

We study two keyword-search strategies: (1) union (∪): return-
ing all the pages contains at least one keyword, or (2) intersection

(∩): only returning the pages that contain all the keywords.
As shown in Table 12, the intersection approach is not effective.

It returns relevant pages for only 15.4%∼25.6% of the queries. The
main reason is that the strategy is too strict. It strictly requires every
keyword to appear on the manual pages of the parameters.

On the contrary, the union approach returns relevant pages for
the majority of cases; however, it also returns many irrelevant pages.
As shown in Table 13, the average number of returned pages per rel-

evant page can be as large as one hundred (in these cases, the user’s
query contains certain “common” keywords). It is impractical to
read through these many pages to find the target parameter(s).

Some commercial tools adopt the intersection method to provide
navigation support on top of user manuals, e.g., Cloudera Man-
ager [3] (a commercial tool for Hadoop administration). As dis-

cussed above, they are too strict and thus limited in finding knobs.

5.2.2 Google Search

We study Google search by sending the queries via Google search

APIs. Then, we download the Web pages whose URLs are returned

314

Table 14: Effectiveness of Google search. The percentage (number) of
queries for which Google returns useful Web pages in top-five search
results. “At the time” excludes pages posted after the original cases to
emulate the situation when users encountered navigation issues.

Software
% (#) of queries w/ useful Web pages

Total
At the time Postmortem

Apache 35.9% (14) 74.4% (29) 39

MySQL 40.0% (10) 80.0% (20) 25

Hadoop 26.9% (7) 46.1% (12) 26

Table 15: Breakdowns of the sources that host the useful Web pages.

Source Example Percentage

Q&A forums ServerFault.com 37.4%

Blogs & articles Articles on Blogger.com 22.8%

Official docs MySQL online docs 22.8%

Third-party docs Hortonwork’s Hadoop docs 8.1%

Docs of other SW PHP’s docs on MySQL conn. 5.7%

Others Wiki, Bugzilla 3.2%

Mailing lists Hadoop’s mailing-list archive 0.0%

by Google. To make the searches explicit, we include the software
name as a part of the query keywords. We analyze the top-5 Web
pages returned by Google and examine if they are useful (existing

studies show that the top-5 results attract most clicks [53, 54]). A
useful Web page must meet the following two criteria: (1) contain-
ing the target parameter(s) (the recall metric); and (2) containing
no more than five other parameters (the precision metric).

Finding 6(b): Google search can provide useful information for

46.1%∼80.0% of the historical configuration navigation issues. How-

ever, it is less efficient in navigation parameters of less popular soft-

ware or new issues. The majority of resources on the Web that host

useful information for navigation are the contents contributed by

users, such as Q&A forums and blog articles.

Table 14 shows the effectiveness of Google search for configu-

ration navigation. Google returns useful pages in the top-5 results
for 46.1%∼80.0% of the queries. In other words, if these historical

navigation issues are encountered by new users, 46.1%∼80.0% of
them could be resolved by Google search. Hadoop has a remark-
ably low number (more than half of the historical cases cannot re-
solved by Google), mainly for two reasons. First, Hadoop has a

much smaller user base with less online resources, compared with
Apache and MySQL. Second, the primary Q&A sites of Hadoop
is its official user mailing list. However, mailing list archives have
very low page ranks, making them less “visible” by Google search.

Also, we emulate the situation when the user encountered a nav-

igation issue and searched Google, by excluding Web pages posted
after the original user question. As shown in Table 14, no more
than 40% of these issues can be resolved by Google. Many of the
returned Web pages “at the time” are online manuals and tutorials
that include too many configuration information, which has similar
efficiency as searching keywords on top of manuals (c.f., § 5.2.1).

To understand what types of Web pages are useful for config-
uration navigation, we classify the useful Web pages returned by
Google based on their types, as shown in Table 15. Remarkably,
user-generated pages contribute to more than 50% of these useful

pages, such as Q&A posts, blogs articles. These Web pages usu-
ally record the users’ experience and solutions to specific configura-
tion problems, and only contains a small set of relevant parameters,
which is more useful for navigation (compared with online manual
pages that list parameters one by one). Therefore, methods to lever-
age user-generated contents, especially those with low page ranks

(e.g., mailing-list archives) is desired for configuration navigation.

0

10

20

30

40

50

60

70

%
 c

as
es

 t
h

at
 c

an
 b

e
re

so
lv

ed Apache

 MySQL

 Hadoop

 +manual
 +stats +stats
 name

name name

Figure 9: The performance of NLP-based navigation using different
information sources. We consider a case can be resolved if the target
parameter can be returned in the top-5 navigation results.

5.2.3 NLP-based Navigation

To help users get the right configuration knob (preference), NLP-
based navigation methods have been proposed (e.g., PrefFinder [28]
and Cox [4]). These NLP-based navigation methods take a user’s
query in natural languages as the input, and return the configura-
tion parameters relevant to the query. This is achieved by parsing,

analyzing, and indexing the information of every parameter (e.g.,
from its manual entries) using NLP techniques, such as stemming,
stop-word filtering, text normalization, synonym expansion, etc. To
return the relevant parameters, the navigation engine ranks the pa-
rameters by scoring how well they match the query.

We study the efficacy of NLP-based navigation based on Cox

(PrefFinder is not open sourced). Cox is a configuration navigation
library on top of Lucene [11]. It provides utilities to extract the texts
for every configuration parameter by breaking manual pages, and
allows us to change the parsing, analyzing, and scoring methods.

In addition to indexing and matching, we also take users’ config-
uration statistics into account. The original match score is boosted

by the popularity of the parameter, defined as the percentage of
users who set the parameter among all the users (same as in § 3.1).
The idea is to boost popular parameters with higher ranks if they
match users’ queries. Also, we assign a lower scale 0.4 to contents
from manual entries while parameter names have scale 1.0.

Finding 6(c): Well-engineered NLP-based navigation can return

the target configuration parameter for more than 60% of the his-

torical navigation issues. Boosting the results with the statistics of

users’ configuration settings in the field can significantly improve

the performance of NLP-based navigation.

Figure 9 shows the results of the NLP-based navigation using dif-
ferent combination of information sources (parameter names, statis-
tics of users’ settings, and manual pages). We observe that the

navigation only based on parameter names has poor performance
(worse than the dataset in [28,26]). The reason is that in our dataset
of system software, many of the queries do not contains any key-
word appearing in the parameter name, which is different from
queries to desktop software configuration [26]. In desktop software,

users are usually able to specify useful keywords like “color,” “tab,”
“cache” (which are parts of the target parameter’s name), while the
queries here are higher level intentions such as “speedup insert per-

formance” (target parameter: max_heap_table_size and there are
more than 80 size-related parameters in all). In this case, apply-
ing users’ configuration statistics brings significant performance

improvement, because a parameter that is used by many users are

likely to be needed by the current user. In addition, the results show
that leveraging contents from manual entries are useful: manual
entries bring additional information about the parameter.

Overall, our NLP-based navigation implementation resolves more
than 60% of the real-world cases. We manually examine the unre-

solved queries and find most of them indeed miss the keywords in

315

the contents of the target parameter. First, some queries are vague

or misleading (even for human experts). For example, alias-related
parameters are returned for the query, “alias url without use host,”
but the target one is related to virtual hosts. Second, some queries
require domain-specific knowledge beyond the information base.
For example, it fails to associate SSL with “encrypt,” and fails to
return SSL-related parameters for “encrypt network channel.” This

limitation can potentially be addressed by using word-cluster based
techniques to capture “concepts” instead of “keywords.”

6. DISCUSSION AND FUTURE WORK

6.1 Implications and Incentives
Reducing configuration space and simplifying configuration not

only help users’ configuration difficulties and problems, but also
would bring tremendous benefits for software vendors by relieving
their burden of testing, error detection and troubleshooting.

Testing software with large configuration space is extremely chal-

lenging. The number of possible configuration settings is an expo-
nential function of the number of parameters and their value space,
which makes it infeasible to test exhaustively. This is known as
configuration space explosion [74]. To address this problem, a se-
ries of pioneer works have been proposed, including pruning the
configuration space [33, 49, 55, 56], selecting typical configuration

values [43, 19, 22, 24, 74], prioritizing certain important configura-
tions [23, 58, 43], and reducing the number of test cases [42].

As shown in our study, many configuration parameters are not
in real use, i.e., a large portion of the existing configuration space
is not touched by users. Removing the unused configuration can

significantly relieve the burden of software testing in the context
of configuration space explosion, as complementary to the existing
testing methods. Prioritization becomes natural, considering users’
configuration statistics —the parameters/values set by more users
should have higher popularity than the ones set by fewer users.

Smaller configuration space also benefits users and support en-

gineers for misconfiguration detection and troubleshooting. Small
configuration space comes with small error space, which not only
makes it easy for users to examine and find the errors, but also
make the automatic detection and troubleshooting procedures more
efficient. Also, with smaller error space, the detection and trou-
bleshooting tools can be more focused and targeted. Most impor-

tantly, with simplified configuration, users are likely to have less
configuration difficulties and problems, which in turn results in
lower support cost for software vendors.

With these incentives, we advocate software vendors to take ac-
tions in simplifying existing configuration and providing new con-
figurations more cautiously with user-centric design philosophy.

6.2 Further Simplification
In this paper, we have mainly investigated the feasibility and op-

portunity of simplifying configuration in the aspect of reducing the
configuration space (including both the parameter space and the
value space). However, it is important to note that the configura-
tion space is not equivalent to the entire configuration complexity.
In other word, the efforts to simplifying configuration should not
be limited to reducing the configuration space (which is only our

first step towards addressing this problem).
Besides the large configuration space, other known root causes

of configuration complexity include ambiguity and inconsistency
of configuration semantics [20], dependencies among multiple pa-
rameters and multiple software components [47, 34, 70, 79], and
poor system guidance/feedback [25, 72]. It remains as our future

work to understand and address these aspects of configuration com-

plexity perceived by users, with the goal of making configuration

simple, efficient, and less prone to errors. Similar as the study in
this paper, we believe the key towards addressing these problems
is to follow the user-centric philosophy —to understand users’ dif-
ficulties and problems in the field and to design configuration from
the users’ perspectives. After all, configuration is one type of user
interface that are supposed to be operated by users.

7. RELATED WORK
Since the previous studies [16, 31, 40, 46, 75] revealed the preva-

lence and severity of configuration issues in different types of soft-
ware systems, many recent research efforts have been made to at-
tack configuration problems. As discussed in § 6.1, many efforts
have been made to detect and troubleshoot configuration errors in

users’ configuration files [13,14,28,44,65,67,69,70,71,77,78,79,
80,81]. To harden systems against misconfiguration, previous stud-
ies have looked into configuration testing, including techniques to
reduce the testing space [19, 23, 22, 24, 33, 42, 43, 50, 58, 74, 49, 55,
56], as well as tool support to generate constraint-guided test cases
to expose system vulnerabilities to misconfiguration [30, 72]. Xu

and Zhou [73] provide board overviews of these approaches.
While the aforementioned studies significantly help the situation

of today’s configuration problems in terms of testing, detection, and
diagnosis, a probably more fundamental direction is rethinking and
redesigning configuration to avoid users’ configuration difficulties
and errors in the first place. This paper is motivated exactly along

this line by focusing on understanding the key questions of config-
uration design from the users’ perspectives.

Previous work has studied the characteristics of configuration er-
rors [75]. We also examine 620 real-world configuration issues for
the purpose of understanding the consequence of too many knobs;
however, the main focus of this paper is not to study the errors but

to understand how users configure their systems: Do they need so
many parameters? What kind of parameters do they use? What are
their difficulties in configuring their systems?

Our work is fundamentally different from previous studies on
end-user desktop or mobile software [57, 62]. The configuration

of system software, as the focus of this paper, has high availability
and reliability requirements, and is mainly on top of file/command
interfaces, while end-user software configuration is inclined to pref-
erence and personalization based on GUIs. Also, the users of sys-
tem software are usually technical inclined, which is different from
ordinary end users [15, 64]. For example, configuration navigation

for system software has different characteristics and may need ad-
ditional practices, compared with end-user software (c.f., § 5.2.3).

8. CONCLUSION
The configuration of system software has become increasingly

complex. To advocate cautious and disciplined thinking in configu-
ration design, this paper has provided, perhaps for the first time,

quantitative evidence for the over-delivered (or under-exploited)
flexibility represented by configuration parameters. By studying
the large-scale configuration settings of real users, we have revealed
a number of findings, leading to a few guidelines for simplifying
configuration. We also studied configuration navigation as an inter-
mediate solution, if the simplification process takes time.

We hope that our work can inspire developers to design system
configuration with the user-centric design philosophy, and carefully
balance simplicity (usability) and flexibility (configurability). Sim-
ilar to UI/UX design, it is important for developers to collect users’
feedback and think from the users’ perspective, before introducing
yet another knob. Feedback loops should be initiated and followed

to help developers improve the usability of their software systems.

316

9. REPLICATION PACKAGE
The datasets of the open-source software projects (including both

the configuration files and the configuration issues), as well as the

navigation implementation based on Cox have been successfully
evaluated by the Replication Packages Evaluation Committee and
found to meet expectations. They are publicly available at:
https://github.com/tianyin/configuration_datasets

https://github.com/tianyin/cox

10. REFERENCES
[1] Apache HTTP Server Version 2.4 Documentation. http://
httpd.apache.org/docs/2.4/.

[2] Apache HTTP Server Version 2.4 Documentation (LogLevel

Directive). http://httpd.apache.org/docs/2.4/mod/
core.html#loglevel.

[3] Cloudera Manager. http://www.cloudera.com/
content/cloudera/en/products-and-services/

cloudera-enterprise/cloudera-manager.html.

[4] Cox: A configuration navigation tool and library for a
thousand of knobs. https://github.com/tianyin/cox.

[5] Database Administrators. http://dba.stackexchange.
com/.

[6] MySQL 5.6 Reference Manual (Online Version). http://
dev.mysql.com/doc/refman/5.6/en/index.html.

[7] MySQL 5.6 Reference Manual (PDF Version). http://
downloads.mysql.com/docs/refman-5.6-en.pdf.

[8] Pro Webmasters. http://webmasters.stackexchange.
com/.

[9] ServerFault. http://serverfault.com/.

[10] StackOverflow. http://stackoverflow.com/.

[11] The Apache Lucene Project. https://lucene.apache.
org/.

[12] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch. Hippodrome: Running Circles Around
Storage Administration. In Proceedings of the 1st USENIX

Conference on File and Storage Technologies (FAST’02),

Berkeley, CA, USA, January 2002.

[13] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating
Root-Cause Diagnosis of Performance Anomalies in
Production Software. In Proceedings of the 10th USENIX

Conference on Operating Systems Design and

Implementation (OSDI’12), Hollywood, CA, USA, October
2012.

[14] M. Attariyan and J. Flinn. Automating Configuration

Troubleshooting with Dynamic Information Flow Analysis.
In Proceedings of the 9th USENIX Conference on Operating

Systems Design and Implementation (OSDI’10), Vancouver,
BC, Canada, October 2010.

[15] R. Barrett, E. Kandogan, P. P. Maglio, E. Haber, L. A.
Takayama, and M. Prabaker. Field Studies of Computer
System Administrators: Analysis of System Management
Tools and Practices. In Proceedings of the 2004 ACM

Conference on Computer Supported Cooperative Work

(CSCW’04), Chicago, Illinois, USA, November 2004.

[16] L. A. Barroso and U. Hölzle. The Datacenter as a Computer:

An Introduction to the Design of Warehouse-scale Machines.
Morgan and Claypool Publishers, 2009.

[17] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and
R. P. Doyle. Managing Energy and Server Resources in
Hosting Centers. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP’01),

Chateau Lake Louise, Banff, Canada, October 2001.

[18] S. Duan, V. Thummala, and S. Babu. Tuning Database
Configuration Parameters with iTuned. In Proceedings of the

35th International Conference on Very Large Data Bases

(VLDB’09), Lyon, France, August 2009.

[19] E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter. Feedback
driven adaptive combinatorial testing. In Proceedings of the

International Symposium on Software Testing and Analysis

(ISSTA’11), Toronto, ON, Canada, July 2011.

[20] H. S. Gunawi, M. Hao, T. Leesatapornwongsa,
T. Patana-anake, T. Do, J. Adityatama, K. J. Eliazar,
A. Laksono, J. F. Lukman, V. Martin, and A. D. Satria. What
bugs live in the cloud? a study of 3000+ issues in cloud
systems. In Proceedings of the 5th ACM Symposium on

Cloud Computing (SoCC’14), Seattle, WA, USA, November
2014.

[21] E. M. Haber and J. Bailey. Design Guidelines for System
Administration Tools Developed through Ethnographic Field

Study. In Proceedings of the 2007 ACM Conference on

Human Interfaces to the Management of Information

Technology (CHIMIT’07), Cambridge, MA, USA, March
2007.

[22] C. Henard, M. Papadakis, M. Harman, and Y. L. Traon.
Combining Multi-Objective Search and Constraint Solving
for Configuring Large Software Product Lines. In
Proceedings of the 37th International Conference on

Software Engineering (ICSE’15), Firenze, Italy, May 2015.

[23] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans,
and Y. L. Traon. Bypassing the Combinatorial Explosion:
Using Similarity to Generate and Prioritize T-Wise Test
Configurations for Software Product Lines. IEEE

Transactions on Software Engineering (TSE), 40(7):650–670,
July 2014.

[24] A. Hervieu, B. Baudry, and A. Gotlieb. PACOGEN :
Automatic Generation of Pairwise Test Configurations from

Feature Models. In Proceedings of the 22nd IEEE

International Symposium on Software Reliability

Engineering (ISSRE’11), Hiroshima, Japan, November 2011.

[25] A. Hubaux, Y. Xiong, and K. Czarnecki. A User Survey of

Configuration Challenges in Linux and eCos. In Proceedings

of 6th International Workshop on Variability Modelling of

Software-intensive Systems (VaMoS’12), Leipzig, Germany,
January 2012.

[26] D. Jin, M. B. Cohen, X. Qu, and B. Robinson. PrefFinder:
Getting the Right Preference in Configurable Software
Systems (Supplementary Data). http://cse.unl.edu/
~myra/artifacts/PrefFinder_2014/.

[27] D. Jin, M. B. Cohen, X. Qu, and B. Robinson. PrefFinder:

Getting the Right Preference in Configurable Software
Systems. In Proceedings of the 29th IEEE/ACM

International Conference on Automated Software

Engineering (ASE’14), Västerås, Sweden, September 2014.

[28] D. Jin, X. Qu, M. B. Cohen, and B. Robinson.
Configurations Everywhere: Implications for Testing and
Debugging in Practice. In Proceedings of the 36th

International Conference on Software Engineering

(ICSE’14), Hyderabad, India, June 2014.

[29] E. Kandogan and E. M. Haber. Security Administration
Tools and Practices. Security and Usability, O’Reilly Media,

Inc., August 2005.

[30] L. Keller, P. Upadhyaya, and G. Candea. ConfErr: A Tool for
Assessing Resilience to Human Configuration Errors. In

317

https://github.com/tianyin/configuration_datasets
https://github.com/tianyin/cox
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/mod/core.html#loglevel
http://httpd.apache.org/docs/2.4/mod/core.html#loglevel
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise/cloudera-manager.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise/cloudera-manager.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise/cloudera-manager.html
https://github.com/tianyin/cox
http://dba.stackexchange.com/
http://dba.stackexchange.com/
http://dev.mysql.com/doc/refman/5.6/en/index.html
http://dev.mysql.com/doc/refman/5.6/en/index.html
http://downloads.mysql.com/docs/refman-5.6-en.pdf
http://downloads.mysql.com/docs/refman-5.6-en.pdf
http://webmasters.stackexchange.com/
http://webmasters.stackexchange.com/
http://serverfault.com/
http://stackoverflow.com/
https://lucene.apache.org/
https://lucene.apache.org/
http://cse.unl.edu/~myra/artifacts/PrefFinder_2014/
http://cse.unl.edu/~myra/artifacts/PrefFinder_2014/

Proceedings of the 38th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN’08),
Anchorage, Alaska, USA, June 2008.

[31] S. Kendrick. What Takes Us Down? USENIX ;login:,
37(5):37–45, October 2012.

[32] E. Kiciman and Y.-M. Wang. Discovering Correctness
Constraints for Self-Management of System Configuration.
In Proceedings of the 1st International Conference on

Autonomic Computing (ICAC’04), New York, NY, USA,

May 2004.

[33] C. H. P. Kim, D. Marinov, S. Khurshid, and D. Batory.
SPLat: Lightweight Dynamic Analysis for Reducing
Combinatorics in Testing Configurable Systems. In
Proceedings of the 9th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering

(ESEC/FSE’13), Saint Petersburg, Russia, August 2013.

[34] M. Larsson and I. Crnkovic. Configuration Management for

Component-based Systems. In Proceedings of the 23rd

International Conference on Software Engineering

(ICSE’01), Toronto, Ontario, Canada, May 2001.

[35] L. Y. Liang. Linkedin.com inaccessible on Thursday because

of server misconfiguration. 2013. http://www.
straitstimes.com/breaking-news/singapore/

story/linkedincom-inaccessible-thursday-

because-server-misconfiguration-2013.

[36] S. Lohar, S. Amornborvornwong, A. Zisman, and
J. Cleland-Huang. Improving Trace Accuracy through
Data-Driven Configuration and Composition of Tracing
Features. In Proceedings of the 9th Joint Meeting of the

European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE’13), Saint Petersburg, Russia,
August 2013.

[37] R. Michel, A. Hubaux, V. Ganesh, and P. Heymans. An

SMT-based Approach to Automated Configuration. In
Proceedings of the 10th International Workshop on

Satisfiability Modulo Theories (SMT’12), Manchester, UK,
June 2012.

[38] G. A. Miller. WordNet: A Lexical Database for English.
Communications of the ACM, 38(11):39–41, November
1995.

[39] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki. Mining

Configuration Constraints: Static Analyses and Empirical
Results. In Proceedings of the 36th International Conference

on Software Engineering (ICSE’14), Hyderabad, India, June
2014.

[40] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why

Do Internet Services Fail, and What Can Be Done About It?
In Proceedings of the 4th USENIX Symposium on Internet

Technologies and Systems (USITS’03), Seattle, WA, USA,
March 2003.

[41] C. Perrow. Normal Accidents: Living with High-Risk

Technologies. Basic Books, 1984.

[42] X. Qu, M. Acharya, and B. Robinson. Impact Analysis of
Configuration Changes for Test Case Selection. In

Proceedings of the 22nd IEEE International Symposium on

Software Reliability Engineering (ISSRE’11), Hiroshima,
Japan, November 2011.

[43] X. Qu, M. B. Cohen, and G. Rothermel.

Configuration-Aware Regression Testing: An Empirical
Study of Sampling and Prioritization. In Proceedings of the

International Symposium on Software Testing and Analysis

(ISSTA’08), Seattle, WA, USA, July 2008.

[44] A. Rabkin and R. Katz. Precomputing Possible
Configuration Error Diagnosis. In Proceedings of the 26th

IEEE/ACM International Conference on Automated Software

Engineering (ASE’11), Lawrence, KS, USA, November
2011.

[45] A. Rabkin and R. Katz. Static Extraction of Program
Configuration Options. In Proceedings of the 33th

International Conference on Software Engineering

(ICSE’11), Honolulu, Hawaii, USA, May 2011.

[46] A. Rabkin and R. Katz. How Hadoop Clusters Break. IEEE

Software Magazine, 30(4):88–94, July 2013.

[47] V. Ramachandran, M. Gupta, M. Sethi, and S. R. Chowdhury.
Determining Configuration Parameter Dependencies via
Analysis of Configuration Data from Multi-tiered Enterprise
Applications. In Proceedings of the 6th International

Conference on Autonomic Computing and Communications

(ICAC’09), Barcelona, Spain, June 2009.

[48] J. Reason. Human Error. Cambridge University Press,
October 1990.

[49] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter.
Using Symbolic Evaluation to Understand Behavior in
Configurable Software Systems. In Proceedings of the 32th

International Conference on Software Engineering

(ICSE’10), Cape Town, South Africa, May 2010.

[50] B. Robinson and L. White. Testing of User-Configurable
Software Systems Using Firewalls. In Proceedings of the

19th IEEE International Symposium on Software Reliability

Engineering (ISSRE’08), Seattle/Redmond, WA, USA,

November 2008.

[51] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar.
Scalable Product Line Configuration: A Straw to Break the
Camel’s Back. In Proceedings of the 28th IEEE/ACM

International Conference on Automated Software

Engineering (ASE’13), November 2013.

[52] A. S. Sayyad, T. Menzies, and H. Ammar. On the Value of
User Preferences in Search-Based Software Engineering: A

Case Study in Software Product Lines. In Proceedings of the

35th International Conference on Software Engineering

(ICSE’13), San Francisco, CA, USA, May 2013.

[53] Search Engine Watch. How Much is a Google Top Spot

Worth? 2010. http://searchenginewatch.com/
article/2050861/How-Much-is-a-Google-Top-Spot-

Worth.

[54] Search Engine Watch. 53% of Organic Search Clicks Go to

First Link. 2012. http://searchenginewatch.com/
article/2050861/How-Much-is-a-Google-Top-Spot-

Worth.

[55] C. Song, A. Porter, and J. S. Foster. iTree: Efficiently

Discovering High-Coverage Configuration Using Interaction
Trees. In Proceedings of the 34th International Conference

on Software Engineering (ICSE’12), Zurich, Switzerland,
June 2012.

[56] C. Song, A. Porter, and J. S. Foster. iTree: Efficiently
Discovering High-Coverage Configuration Using Interaction
Trees. IEEE Transactions on Software Engineering (TSE),
40(3):251–265, March 2014.

[57] J. Spool. Do users change their settings? 2011. http://www.
uie.com/brainsparks/2011/09/14/do-users-

change-their-settings/.

[58] H. Srikanth, M. B. Cohen, and X. Qu. Reducing Field

318

http://www.straitstimes.com/breaking-news/singapore/story/linkedincom-inaccessible-thursday-because-server-misconfiguration-2013
http://www.straitstimes.com/breaking-news/singapore/story/linkedincom-inaccessible-thursday-because-server-misconfiguration-2013
http://www.straitstimes.com/breaking-news/singapore/story/linkedincom-inaccessible-thursday-because-server-misconfiguration-2013
http://www.straitstimes.com/breaking-news/singapore/story/linkedincom-inaccessible-thursday-because-server-misconfiguration-2013
http://searchenginewatch.com/article/2050861/How-Much-is-a-Google-Top-Spot-Worth
http://searchenginewatch.com/article/2050861/How-Much-is-a-Google-Top-Spot-Worth
http://searchenginewatch.com/article/2050861/How-Much-is-a-Google-Top-Spot-Worth
http://searchenginewatch.com/article/2050861/How-Much-is-a-Google-Top-Spot-Worth
http://searchenginewatch.com/article/2050861/How-Much-is-a-Google-Top-Spot-Worth
http://searchenginewatch.com/article/2050861/How-Much-is-a-Google-Top-Spot-Worth
http://www.uie.com/brainsparks/2011/09/14/do-users-change-their-settings/
http://www.uie.com/brainsparks/2011/09/14/do-users-change-their-settings/
http://www.uie.com/brainsparks/2011/09/14/do-users-change-their-settings/

Failures in System Configurable Software: Cost-Based

Prioritization. In Proceedings of the 20th IEEE International

Symposium on Software Reliability Engineering (ISSRE’09),
Mysuru, Karnataka, India, November 2009.

[59] Y. Sverdlik. Microsoft: Misconfigured Network Device Led

to Azure Outage. http://www.datacenterdynamics.
com/focus/archive/2012/07/microsoft-

misconfigured-network-device-led-azure-outage,
2012.

[60] G. Tamura, R. Casallas, A. Cleve, and L. Duchien. QoS
Contract Preservation through Dynamic Reconfiguration: A
Formal Semantics Approach. Science of Computer

Programming, 94(3):301–332, November 2014.

[61] The Association of Support Professionals. Technical Support

Cost Ratios. http://www.asponline.com/tscr.pdf,
2000.

[62] The Standish Group. Modernization: Clearing a Pathway to
Success. 2010. https://www.standishgroup.com/

sample_research_files/Modernization.pdf.

[63] K. Thomas. Thanks, Amazon: The Cloud Crash Reveals
Your Importance. 2002. http://www.pcworld.com/
article/226033/thanks_amazon_for_making_

possible_much_of_the_internet.html.

[64] N. F. Velasquez, S. Weisband, and A. Durcikova. Designing
Tools for System Administrators: An Empirical Test of the
Integrated User Satisfaction Model. In Proceedings of the

22nd Large Installation System Administration Conference

(LISA’08), San Diego, CA, USA, November 2008.

[65] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Automatic Misconfiguration Troubleshooting with

PeerPressure. In Proceedings of the 6th USENIX Conference

on Operating Systems Design and Implementation

(OSDI’04), San Francisco, California, USA, December 2004.

[66] T. Wang, M. Harman, Y. Jia, and J. Krinke. Searching for

Better Configurations: A Rigorous Approach to Clone
Evaluation. In Proceedings of the 9th Joint Meeting of the

European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE’13), Saint Petersburg, Russia,

August 2013.

[67] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang,
C. Yuan, and Z. Zhang. STRIDER: A Black-box, State-based
Approach to Change and Configuration Management and

Support. In Proceedings of the 17th Large Installation

Systems Administration Conference (LISA’03), San Diego,
CA, USA, October 2003.

[68] M. Welsh. What I Wish Systems Researchers Would Work
On. 2013. http://matt-welsh.blogspot.com/2013/

05/what-i-wish-systems-researchers-would.html.

[69] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration
Debugging as Search: Finding the Needle in the Haystack. In
Proceedings of the 6th USENIX Conference on Operating

Systems Design and Implementation (OSDI’04), San
Francisco, California, USA, December 2004.

[70] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki. Generating
Range Fixes for Software Configuration. In Proceedings of

the 34th International Conference on Software Engineering

(ICSE’12), Zurich, Switzerland, June 2012.

[71] Y. Xiong, H. Zhang, A. Hubaux, S. She, J. Wang, and

K. Czarnecki. Range Fixes: Interactive Error Resolution for
Software Configuration. IEEE Transactions on Software

Engineering (TSE), December 2014.
[72] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan,

Y. Zhou, and S. Pasupathy. Do Not Blame Users for
Misconfigurations. In Proceedings of the 24th Symposium on

Operating System Principles (SOSP’13), Farmington, PA,
USA, November 2013.

[73] T. Xu and Y. Zhou. Systems Approaches to Tackling
Configuration Errors: A Survey. ACM Computing Surveys

(CSUR), 47(4), July 2015.

[74] C. Yilmaz, M. B. Cohen, and A. A. Porter. Covering Arrays
for Efficient Fault Characterization in Complex
Configuration Spaces. IEEE Transactions on Software

Engineering (TSE), 32(1):1–15, January 2006.

[75] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram,
and S. Pasupathy. An Empirical Study on Configuration
Errors in Commercial and Open Source Systems. In

Proceedings of the 23rd ACM Symposium on Operating

Systems Principles (SOSP’11), Cascais, Portugal, October
2011.

[76] D. Yuan, S. Park, and Y. Zhou. Characterizing Logging

Practices in Open-Source Software. In Proceedings of the

34th International Conference on Software Engineering

(ICSE’12), Zurich, Switzerland, June 2012.

[77] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and

A. Kumar. Context-based Online Configuration Error
Detection. In Proceedings of 2011 USENIX Annual

Technical Conference, Portland, OR, USA, June 2011.

[78] A. Zeller. Why Programs Fail: A Guide to Systematic

Debugging (2nd Edition). Morgan Kaufmann Publishers,
June 2009.

[79] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala,
T. Xu, and Y. Zhou. EnCore: Exploiting System

Environment and Correlation Information for
Misconfiguration Detection. In Proceedings of the 19th

International Conference on Architecture Support for

Programming Languages and Operating Systems

(ASPLOS-XIX), Salt Lake City, UT, USA, March 2014.

[80] S. Zhang and M. D. Ernst. Automated Diagnosis of Software
Configuration Errors. In Proceedings of the 35th

International Conference on Software Engineering

(ICSE’13), San Francisco, CA, USA, May 2013.

[81] S. Zhang and M. D. Ernst. Which Configuration Option
Should I Change? In Proceedings of the 36th Internationl

Conference on Software Engineering (ICSE’14), Hyderabad,
India, May 2014.

[82] W. Zheng, R. Bianchini, and T. D. Nguyen. Automatic
Configuration of Internet Services. In Proceedings of the 2nd

EuroSys Conference (EuroSys’07), Lisbon, Portugal, March
2007.

[83] W. Zheng, R. Bianchini, and T. D. Nguyen. MassConf:
Automatic Configuration Tuning By Leveraging User
Community Information. In Proceedings of the 2nd

ACM/SPEC International Conference on Performance

Engineering (ICPE’11), Karlsruhe, Germany, March 2011.

319

http://www.datacenterdynamics.com/focus/archive/2012/07/microsoft-misconfigured-network-device-led-azure-outage
http://www.datacenterdynamics.com/focus/archive/2012/07/microsoft-misconfigured-network-device-led-azure-outage
http://www.datacenterdynamics.com/focus/archive/2012/07/microsoft-misconfigured-network-device-led-azure-outage
http://www.asponline.com/tscr.pdf
https://www.standishgroup.com/sample_research_files/Modernization.pdf
https://www.standishgroup.com/sample_research_files/Modernization.pdf
http://www.pcworld.com/article/226033/thanks_amazon_for_making_possible_much_of_the_internet.html
http://www.pcworld.com/article/226033/thanks_amazon_for_making_possible_much_of_the_internet.html
http://www.pcworld.com/article/226033/thanks_amazon_for_making_possible_much_of_the_internet.html
http://matt-welsh.blogspot.com/2013/05/what-i-wish-systems-researchers-would.html
http://matt-welsh.blogspot.com/2013/05/what-i-wish-systems-researchers-would.html

	Introduction
	Motivation
	Our Contribution

	Methodology
	Software
	Configuration Settings of Real Users
	Real-world Configuration Issues
	Threats to Validity

	Understanding Users' Configu-ration Settings in the Field
	Do Users Really Need So Many Configuration Knobs?
	Should We Offer More Choices in Setting Configuration Knobs?
	What Is The ``Cost'' of Too Many Knobs?
	What Kinds of Knobs Are Most Utilized?

	Configuration Simplification
	Simplification Guidelines
	Effectiveness of Simplification

	Configuration Navigation
	Methodology
	Effectiveness of Navigation
	Search by Keywords
	Google Search
	NLP-based Navigation

	Discussion and Future Work
	Implications and Incentives
	Further Simplification

	Related Work
	Conclusion
	Replication Package
	References

