
Predicting Performance via Automated Feature-Interaction Detection

Norbert Siegmund,∗ Sergiy S. Kolesnikov,† Christian Kästner,‡ Sven Apel,†
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Abstract—Customizable programs and program families pro-
vide user-selectable features to allow users to tailor a program
to an application scenario. Knowing in advance which feature
selection yields the best performance is difficult because a direct
measurement of all possible feature combinations is infeasible.
Our work aims at predicting program performance based on
selected features. However, when features interact, accurate
predictions are challenging. An interaction occurs when a
particular feature combination has an unexpected influence
on performance. We present a method that automatically
detects performance-relevant feature interactions to improve
prediction accuracy. To this end, we propose three heuristics
to reduce the number of measurements required to detect
interactions. Our evaluation consists of six real-world case stud-
ies from varying domains (e.g., databases, encoding libraries,
and web servers) using different configuration techniques (e.g.,
configuration files and preprocessor flags). Results show an
average prediction accuracy of 95 %.

I. INTRODUCTION

There are many ways to customize a program. Commonly,
a program uses command-line parameters, configuration files,
etc. [1]. Another way is to derive tailor-made programs at
compile-time using product-line technology. In product-line
engineering, stakeholders derive tailored programs by means
of a program generator to satisfy their requirements [2]. The
generation process is based on features, where a feature is a
stakeholder-visible behavior or characteristic of a program [2].
By mapping features to implementation units, a generator
produces a program based on a user’s feature selection. In
this paper, we use product-line terminology and call any
customization option that stakeholders can select at compile-
time or load-time a feature of a program.

Stakeholders are also interested in non-functional prop-
erties of a program. For example, a database management
system is usually customized to achieve maximum perfor-
mance when used on a server, but is customized differently
for low energy consumption when deployed on a battery-
supplied system (e.g., on a smartphone or sensor node).
Besides the target platform, other factors influence non-
functional properties of a program. Database performance
depends on the workload, cache size, page size, disk speed,
reliability and security features, and so forth. Non-functional
properties can be customized by selecting a specific set of

features, called a configuration, that yields a valid program.
However, finding the best configuration efficiently is a hard
task. There can be hundreds of features resulting in myriads of
configurations: 33 optional and independent features yields a
configuration for each human on the planet, and 320 optional
features yields more configurations than there are estimated
atoms in the universe. To find the configuration with the best
performance for a specific workload requires an intelligent
search; brute-force is infeasible.

We aim at predicting a configuration’s non-functional
properties for a specific workload based on the user-selected
features [3][4]. That is, we aggregate the influence of each
selected feature on a non-functional property to compute the
properties of a specific configuration. Here, we concentrate
on performance predictions only. Unfortunately, the accuracy
of performance predictions may be low, because many
factors influence performance. Usually, a property, such as
performance, is program-wide: it emerges from the presence
and interplay of multiple features. For example, database
performance depends on whether a search index or encryption
is used and how both features operate together. If we
knew how the combined presence of two features influences
performance, we could predict a configuration’s performance
more accurately. Two features interact if their simultaneous
presence in a configuration leads to an unexpected behavior,
whereas their individual presences do not [5][6].

Today, developers detect feature interactions by analyzing
the program (e.g. source code or control flow) or specification
of features [7]. These and similar approaches require sub-
stantial domain knowledge, exhaustive analysis capacities, or
availability of source code to achieve the task. Furthermore,
each implementation technique (e.g., configuration options,
#ifdef statements, generators, components, and aspects)
requires a specialized solution. To the best of our knowledge,
there is no generally applicable approach that treats a
customizable program as a black box and detects performance
feature interactions automatically.

We improve the accuracy of predictions in two steps: (i)
we detect which features interact and (ii) we measure to
what extent they interact. In our approach, we aim at finding
the sweet spot between prediction accuracy, generality in
terms of a black-box approach, and measurement effort.
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The distinguishing property of our approach is that we
neither require domain knowledge, source code, nor complex
program-analysis methods, and we are not restricted to
special implementation techniques, programming languages,
or domains. Overall, we make the following contributions:

• An approach for efficient (in terms of measurement
complexity) automated detection and quantification of
performance feature interactions to enable an accurate
prediction of a configuration’s performance.

• An improved tool, called SPL Conqueror [8], to measure
performance, detect feature interactions, and predict
performance in an automated manner.

• A demonstration of practicality and generality of our
approach with six customizable programs and product
lines from different domains, programming languages,
and customization mechanism.

• A 95 percent prediction accuracy when feature interac-
tions are included, which is a 15 percent improvement
over an approach that takes no interactions into account.

In contrast to our previous work [3][8], we (1) do not
rely on domain knowledge, (2) reduce the effort for pair-
wise measurement, (3) measure and predict performance
instead of footprint size, (4) incorporate higher-order feature
interactions, and (5) evaluate our approach with additional
industrial product lines.

II. A MODEL OF FEATURE INTERACTIONS

Our work relies on a recent model of feature composi-
tion [9]. If program P consists of features a, b, and c, we
write: P = a · b · c where · denotes the associative and
commutative composition of features. Evaluating a · b · c
generates P .1

Features interact: Features that perform one way in
isolation may behave differently when other features are
present; interactions may affect semantics as well as (in our
case) performance of the overall system. A classic example
is a flood-control (fc) sensor working with a fire-alarm (fa)
sensor [10]. If only one of fc or fa is present, the behavior is
unambiguous: Water is turned on when fire is detected and
turned off when a flood is detected. When fc and fa are both
present, there is an interaction fc#fa that turns water off
after the fire sensor turned water on to prevent a fire. In code,
we make this interaction explicit such that we can control
this interaction with an appropriate behavior. Nevertheless,
the interaction is present whether we handle it or not.

More generally, if a program P contains features a and b,
it should also include the interaction a#b. Basic mathematics
encodes these ideas. When a stakeholder wants features a
and b, (s)he also wants their interaction a#b (because a#b
says how a and b are to work correctly together, e.g., keeping
water on when fire and flood are detected). The associative

1Henceforth, capital letters denote compositions of one or more terms,
lowercase letters a are terms (features or feature interactions).

and commutative operation × expands a given configuration
to all feature terms and all feature-interaction terms:2

a× b = a#b · a · b (1)

That is, a program does not only contain the behavior of
each individual feature, but also the interaction behaviors
among all features. Many of these feature interactions have
no observable effect; only some of them are relevant. In
this paper, we propose heuristics to detect only the relevant
performance feature interactions.

To relate the above abstract model to performance pre-
diction, we state that performance of a feature composition
Π(a · b) be the sum of their individual performance values:3

Π(a · b) = Π(a) + Π(b) (2)

From (1) and (2), we estimate P ’s performance as follows:

Π(P ) = Π(a× b× c)

= Π(a · b · c · a#b · a#c · b#c · a#b#c)

= Π(a) + Π(b) + Π(c) +

Π(a#b) + Π(a#c) + Π(b#c) + Π(a#b#c)

To improve prediction accuracy, we need to determine
the influence of an interaction on performance. We use a
basic result that follows from (1) and (2). If we can measure
a performance value for Π(a) and Π(b), we certainly can
measure the value of Π(a× b). We therefore know the value
of Π(a#b):

Π(a#b) = Π(a× b)−Π(a)−Π(b) (3)

Here is the challenge: a product of n features yields
O(2n) terms. We cannot compute a value for each term,
as this is infeasible for anything beyond programs with few
features. Furthermore, (3) assumes that we can measure the
performance influence of each feature in isolation. This is
not always possible. We avoid both problems by composing
multiple terms that cannot be separately measured as a
single term, called a delta. Given a base configuration C,
we compute the impact of a feature a on C’s performance
as the performance delta induced by feature a:

ΔaC = Π(a× C)−Π(C) (4)

From (4) and (1), an equivalent definition of ΔaC is:

ΔaC = Π(a× C)−Π(C) // (4)

= Π(a#C) + Π(a) + Π(C)−Π(C) // (1)

= Π(a#C) + Π(a) (5)

That is, ΔaC is the performance contribution of a by itself
plus the performance contributions of a’s interaction with all

2Commutativity and other axioms of sequential, interaction, and product
composition are spelled out in [9]; details beyond what is presented here
are non-essential to this paper.

3As a limitation of this approach, we require additivity of performance
measurements.
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terms in C. (If C is the empty set, then ΔaC = Π(a)). If
C is a product of i features, ΔaC is a sum of O(2i) terms.

As we demonstrate in subsequent sections, knowing ΔaC
for some C is often sufficient to accurately predict the
performance of programs that include a. We do not need to
assign values to each of ΔaC ’s terms; we measure only two
variants of (4) instead of 2i terms. Herein lies the key to the
efficiency and practicality of our approach.

III. PREDICTING PERFORMANCE

We predict performance (and other non-functional prop-
erties) by measuring the influence of each feature, its delta,
and summing the deltas for all relevant features. With few
measurements (linear complexity in the number of features),
we can predict performance of all configurations (exponential
in the number of features). Although the approach is simple,
it yields surprisingly good results.

The general concept of quantifying the influence of each
feature on performance is as follows: For each feature
a, we find a configuration min(a) that is minimal in the
number of features such that min(a) does not contain a and
both min(a) and a×min(a) are valid configurations.4 We
determine each feature’s delta as:

Δamin = Π(a×min(a)) − Π(min(a))

Consider the feature model in Figure 1, which has five
features. The minimal configuration for each feature is:5

Feature min()
b {}
i b
t b
e b
d b× e

We need only five measurements to determine the influence
of each feature (all values in our example are measured in
transactions per second):

Δbmin = Π(b)− 0 = 100

Δimin = Π(b× i)−Π(b) = 15

Δtmin = Π(b× t)−Π(b) = − 10

Δemin = Π(b× e)−Π(b) = − 20

Δdmin = Π(b× e× d)−Π(b× e) = − 10

4Features may not be independent, such that we cannot measure arbitrary
configurations. We explored calculating deltas in the presence of complex
domain dependencies previously [3]. It is outside the scope of this paper.

With constraints between features, in principle, there can be multiple
minimal configurations (for example, in the presence of mutually exclusive
features). In this case, we use any minimal configuration. Furthermore,
we admit the empty or null program as a minimal configuration when
determining the performance of a root feature.

5A feature model, a standard idea in product-line engineering [2],
defines features and their relationships. Features are decomposed into a
hierarchical structure and are marked as mandatory, optional, or mutually
exclusive. To select a child feature, the parent feature must be selected.
A configuration is valid if its feature selection fulfills all constraints (i.e.,
arbitrary propositional formulas) of the feature model.
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Figure 1. Measuring deltas for features and interactions.

To predict the performance of a configuration, we simply
add the deltas of all relevant features. For example, for
configuration b×t×i, we predict Δbmin+Δtmin+Δimin =
100− 10 + 15 = 105.

Unfortunately, this prediction scheme is inaccurate. As
mentioned earlier, when measuring feature deltas, we might
obtain very different results when using different config-
urations. Consider Figure 1b, which computes the delta
for feature t for a different configuration. Our first value,
computed above, was Δtmin = −10, whereas the newly
computed value is Δtb×i = −5. Consequently, predictions
for the same configuration b× t× i will differ when using
Δtmin (105) or Δtb×i (110). The difference is due to
feature interactions. Detecting and quantifying the influence
of interactions allows us to overcome the differences among
different deltas leading to consistent predictions. The question
is: Which features interact that cause this discrepancy?

If we know that two features interact, we can improve
our prediction by measuring the delta for their interaction.
Suppose configuration C has both features a and b. The
contribution of the interaction of a and b to C is:

Δ(a#b)C = Π(a#b× C)−Π(C)

= Π(a#b#C) + Π(a#b) + Π(C)−Π(C)

= Π(a#b) + Π(a#b#C) (6)

Similar to the delta of a feature, the delta of interaction a#b
includes the interaction a#b and all interaction terms of a#b
with terms in C.
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In Figure 1c, we illustrate such a measurement for
interaction i#t. Knowing the interaction’s delta improves
our predictions: in our example, it patches the value of
Δtmin. If more than two features interact (a.k.a., higher-
order interactions [11]), we proceed in a similar way. The
challenge is how to find interactions that actually contribute
to performance out of an exponential number of potential
interactions.

IV. AUTOMATED DETECTION OF FEATURE INTERACTIONS

Our goal is to identify feature interactions automatically
using a small number of measurements. Our approach
consists of two steps: (1) identifying features that participate
in some interactions (called interacting features) and (2)
finding minimal combinations of features that actually cause
a feature interaction. We use the setting from Figure 1 as
our running example.

A. Detecting Interacting Features

Our first step is to identify features that interact. The
rationale is to reduce our search space. For example, suppose
a program has 16 features, in which 4 features interact, the
rest do not. We have to look only at 24 = 16 instead of
216 = 65536 configurations to detect interactions.

In the presence of interacting features, the delta for a
feature a differs depending on which base configurations it
was measured with. We say a is not an interacting feature
if ΔaC is the same for all possible base configurations C
(within some measurement accuracy). Conversely, if ΔaC
changes with different configurations of C, we know that a
is interacting. We express this as:

a interacts ⇔ ∃ C, D | C �= D ∧ ΔaC �= ΔaD

To avoid measuring ΔaC for a potentially exponential
number of configurations of C, we use a heuristic. We
determine the deltas of a that are most likely to differ,
because it is affected by the largest number of feature
interactions: We compare Δamin, the delta for the minimal
configuration, with Δamax, a delta for a configuration with
most features selected. Let max(a) and a×max(a) be two
valid configurations, such that max(a) does not contain a
and is a maximal set of features that could be composed
with a. We call max(a) a maximal configuration.6 Δamax

is their performance difference:

Δamax = Π(a×max(a)) − Π(max(a))

The rationale of determining max(a) is that it maximizes
the number of features that could interact with a. Conse-
quently, if Δamin and Δamax are similar, then a does not
interact with the features that are present in max(a) but not
in min(a). Otherwise, a interacts with those features (we
do not know yet with which features and to what extent).

6We allow the empty set as a valid configuration. This is necessary to
create a maximal configuration for mandatory features.

Thus, with at most four measurements per feature (two for
Δamin using Π(a×Min) and Π(Min), and two for Δamax

using Π(a×Max) and Π(Max)), we discover interacting
features.7

In our running example, we determine the following max-
imal configurations and assume the following corresponding
measurements:8

Feature max() Π(max())
i b × t × e × d 60
t b × i × e × d 85
e b × i × t 110
d b × i × t × e 90

Note max(e) does not include d, as d requires e for
a valid configuration (Figure 1). With these additional
measurements, we compute the additional deltas as follows
with six measurements:

Δimax = Π(i×max(i))−Π(max(i)) = 20

Δtmax = Π(t×max(t))−Π(max(t)) = −5

Δemax = Π(e×max(e))−Π(max(e)) = −20

Δdmax = Π(d×max(d))−Π(max(d)) = −10

We conclude that features i and t are interacting:

Δimin �= Δimax since 15 �= 20

Δtmin �= Δtmax since − 10 �= −5

Δemin = Δemax since − 20 = −20

Δdmin = Δdmax since − 10 = −10

We know that feature i interacts with a feature in the set
max(i)\min(i). From these candidate features, we can
exclude features b, e, and d, because their deltas do not
change. Feature t remains the only candidate for interaction.
The same conclusion is reached had we analyzed feature
t (concluding feature i is the only possible interaction
candidate). In this way, we found the feature combination
that causes an interaction. Note that if we find more than two
interacting features, we have no information which feature
combination causes an interaction. This is the goal of the
next step.

B. Identifying Feature Combinations Causing Interactions

After detecting all interacting features, we have to find the
specific, valid combinations that actually have an influence
on performance. Suppose we know that features a, b, and c
are interacting. We have to identify which of the following
interactions have an influence on performance: a#b, a#c,
b#c, or a#b#c. Again, we do not want to measure all

7Of course, there is an obvious situation that we can not detect: when
two interactions cancel each other (e.g., one has influence +4 and another
one −4), we will not detect them. We have no evidence that this situation
is common, but we are aware of its existence.

8Surprisingly, max(b) is an empty configuration, because feature b is
mandatory; the only valid configuration without feature b is the empty set.
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combinations (whose number is exponential in the number
of interacting features).

We use three heuristics. Each makes an assumption under
which it can detect interactions (thus improving performance
prediction) with a few additional measurements. Some
heuristics are based on the experience we gained during
the manual analysis of feature interactions (i.e, searching the
source code for nested #ifdef statements, using domain
knowledge, etc.) for the prediction of a program’s binary
footprint [3]. Other heuristics are based on assumptions we
make due to analyses of source-code feature interactions and
on related work (see Section VI). We explore in our evaluation
whether our heuristics actually reduce measurement effort
and improve accuracy of our predictions.

Auxiliary – Implication Graph: In all three heuristics,
we reason about feature chains in an implication graph.
An implication graph is a graph in which nodes represent
features and directed edges denote implications between
features. Using implications, we conclude that Δamin always
includes the influence of all interactions with features
implied by a (i.e., all features in a’s implication chain).
For example, if feature a always requires the presence of
feature b, then we have implicitly quantified the influence of
interaction a#b when computing Δamin . This mechanism
reduces computation effort in all heuristics, especially, for
hierarchically-deep feature models and for feature models
with many constraints.

Heuristic 1 – Pair-Wise Interactions (PW): We assume
that pair-wise (or first-order) interactions are the most
common form of performance feature interactions.

We justify this assumption as follows: Related research
often uses a similar approach: The software-test commu-
nity often uses pair-wise testing to verify the correctness
of programs [12][13]. Pair-wise testing was also applied
successfully to test feature interactions in the communication
domain [14] and to find bugs in product-line configura-
tions [15]. Furthermore, analysis of variability in 40 large-
scale programs showed that structural interactions are mostly
between two features [16]; although structural interactions do
not necessarily cause performance feature interactions, we
assume that this distribution also holds for performance,
because the additional code may have some affect on
performance.

Within the set of interacting features, we use this heuristic
to locate pair-wise interactions first (as they are the most
common). We search for higher-order interactions with the
remaining heuristics.

Heuristic 2 – Composition of Higher-Order Interactions
(HO): We assume that second-order feature interactions
(i.e., interactions among three features) can be predicted
by analyzing already detected pair-wise interactions.

The rationale is, if three features interact pair-wise in
any combination, they likely also participate in a triple-wise
interaction. That is, if we know that two of these three

interactions {a#b, b#c, a#c} are non-zero, then and only
then will we check whether a#b#c has an influence on
performance. For example, if both a#b and b#c allocate
1 GB RAM, then it is likely that there is an interaction
a#b#c that results in a lower performance (because 2 GB
RAM was allocated). We experienced this phenomenon in
previous work on measuring and predicting footprint [3]. A
different footprint may also indicate a possible impact on
performance, because either functionality is added (increased
footprint) or is removed (decreased footprint). This added or
removed functionality can cause performance deviations.

We do not consider other higher-order interactions to save
a huge number of measurements. Thus, we might miss some
interactions in attempt to balance measurement effort and
accuracy.

Heuristic 3 – Hot-Spot Features (HS): Finally, we
assume the existence of hot-spot features. We experienced
that there are usually a few features that interact with
many features and there are many features that interact
only with few features. High coupling between features or
many dependencies can impact the performance of the whole
system, because both features strongly interact with each
other at the implementation level.

These observations are analogous to previous work
on coupling in feature-oriented and object-oriented soft-
ware [17][18], and footprint feature interaction [3]. We
anticipate the same distribution for performance feature
interactions, following a power law[18].

Using this heuristic, we perform additional measurements
to locate interactions of hot-spot features with other inter-
acting features. Specifically, we attempt to locate second-
order interactions for hot-spot features, because they seem to
represent a performance-critical functionality in a program.
We do not identify interactions with an order higher than
three, because this increases measurement effort substantially.

C. Realization

So far, we described a general approach to (1) detect
interacting features and (2) to find feature combinations that
cause interactions. Next, we detail how we implemented
these techniques and heuristics in our tool SPL Conqueror:
http://fosd.de/SPLConqueror

As an underlying data structure, we use an implication
graph, as described earlier. We can easily generate this
graph from a feature model using a SAT solver [19]. To
locate pair-wise interactions (PW heuristic), we consider
only pair-wise interactions between interacting features of
different implication chains. We do not need to determine
interactions of features belonging to the same implication
chain, because the interaction is already included in Δamin .
Furthermore, the order of the measurements is crucial. Our
algorithm starts from the top of one implication chain and
determines the influence of interacting features with the
interacting features of another chain, also starting from
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the top. Afterwards, we continue with the next chain. For
example, in Figure 2, the order we use to detect pair-wise
interactions is F1#F6, F1#F7, F4#F6, F4#F7, F6#F11,
F7#F11,F1#F11, F4#F11.

To identify whether two features a and b interact, we
compare the measured performance Π(a× b) with the per-
formance prediction of the same configuration that includes
all known feature interactions up to this time. If the result
of Δa#bC exceeds a threshold (e.g., we use the standard
deviation of measurement bias as a threshold), we record it.

Next, we search for second-order interactions among
features that interact in a pair-wise fashion (HO heuristic).
Again, we perform additional measurements and compare
them to the predicted results. For example, if we noticed that
F1 interacts with F7 and F7 interacts with F14, we would
examine whether interaction F1#F7#F14 has an influence
on performance.

Finally, we search for further second-order interactions
involving hot-spot features (HS heuristic). We count the
number of interactions per feature identified so far. Next,
we compute the average number of interactions per feature.
We classify all features that interact above the arithmetic
mean as hot-spot features (other thresholds are possible, too).
With hot-spot features, we search (with the usual mechanism:
additional measurements, comparing deltas) for interactions
involving (1) a hot-spot feature, (2) a feature that already
interacts with this hot-spot feature, and (3) an interacting
feature that does not interact pair-wise with the hot-spot
feature.

V. EVALUATION

Our approach to performance prediction is simple. But it
is the simplicity that makes it practical. We demonstrate this
with six real-world case studies.

The goal of our evaluation is to judge prediction accuracy
and the utility of our heuristics. That is, we analyze how we
detect performance feature interactions with additional mea-
surements and how detected interactions improve prediction
accuracy. To that end, we compare predictions with actual
performance measurements.

Table I
OVERVIEW OF SAMPLE PROGRAMS USED IN THE EVALUATION

Project Domain Lang. LOC Features Configs

Berkeley DB CE Database C 219,811 18 2560
Berkeley DB JE Database Java 42,596 32 400
Apache Web Server C 230,277 9 192
SQLite Database C 312,625 39 3,932,160
LLVM Compiler C++ 47,549 11 1024
x264 Video Enc. C 45,743 16 1152

A. Experimental Setting

We selected six existing real-world programs (i.e., three
customizable programs and three product lines) with different
characteristics to cover a broad spectrum of scenarios (see
Table I). They are of different sizes (45 thousand to 300
thousand lines of code, 192 to millions of configurations),
implemented in different languages (C, C++, and Java), and
configurable with varying mechanisms (such as conditional
compilation, configuration files, and command-line options).

The programs we selected have usually under 3 000
configurations. The reason is that, this way, we can actually
measure all configurations of these programs in a reasonable
time. Hence, even though it required over 60 days of
measurement with multiple computers, we could actually
perform the brute-force approach and determine accuracy of
our prediction over all configurations.

1) Setup: We measure all configurations of all programs
that affect performance (i.e., that are invoked by a benchmark).
The exception is SQLite in which we measure only the
configurations needed to detect interactions and additionally
100 random configurations to evaluate the accuracy of
predictions. We identified features in each case study and
created a feature model describing their dependencies. All
feature models and measurement results are available online
at the tool’s website.

We automated the process of generating programs accord-
ing to specific configurations and running the benchmark.
Since Berkeley DB C and Java and SQLite use compile-
time configuration, we compiled a new program for each
configuration that includes only the relevant features. For
Apache, LLVM, and x264, we mapped the configuration to
command-line parameters. We used five standard desktop
computers for the measurements.9

We repeated each measurement between 5 to 20 times
depending on the measurement bias. It is known that
measurement bias can cause false interpretations and are
difficult to control [20], especially for performance [21]. The
width of the 95 % confidence interval is smaller than 10 %
of the according means. We used a range between 2 to 10 %

9Intel Core 2 Quad CPU 2.66 GHZ, 4GB RAM, Vista 64Bit; AMD
Athlon64 2.2GHz, 2GB RAM, Debian GNU/Linux 7; AMD Athlon64
Dual Core @2.0GHz, 2GB RAM, Debian GNU/Linux 7; Intel Core2
Quad @2.4GHz, 8GB RAM, Debian GNU/Linux 7. Each program was
benchmarked on an individual systems.
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to specify the threshold for detecting performance feature
interactions. We use the mean of all measurements of a single
configuration C as Π(C).

2) Benchmarks: We use standard benchmarks either deliv-
ered by the vendor or used in the community of the respective
application. We did not develop our own benchmark to avoid
bias and uncommon performance behavior caused by flaws
in benchmark designs.

Since performance predictions are especially important in
the database domain, we list three database product lines:
Berkeley DB’s Java and C version (which differ significantly
in their implementation and provided functionality) and
SQLite. For each program, we use the benchmark delivered
by the vendor. For example, we use Oracle’s standard
benchmark to measure the performance of Berkeley DB. The
workload produced by the benchmarks is a typical sequence
of database operations.

Furthermore, we selected the Apache Web server to
measure its performance in different configurations. We used
the tools autobench and httperf to produce the following
workload: For each server configuration, we send 810 requests
per second to a static HTML page (2 KB) provided by the
server. After 60 seconds, we increase the request rate by
30 until 2700 requests per seconds are reached. After this
process, we analyzed at which request rate the Web server
could no longer respond or produced connection errors.

LLVM is a modular compiler infrastructure. For our
benchmarks, we use the opt-tool that provides different
compile-time optimizations. We measure the time LLVM
needs to compile its standard test suite (i.e., with differ-
ent optimizations, such as inline functions and combine
redundant instructions enabled). In this case, the workload
is the program code from the LLVM test suite that has to
be compiled with the enabled optimizations.

x264 is a command line tool to encode video streams into
H.264 and MPEG-4 AVC format. The tool provides several
options, such as parallel encoding on multiple processors. We
measured the time needed to encode the video trailer Sintel
(735 MB). This trailer is used by different video-encoding
projects as a standard benchmark for encoders.

B. Results

We compute a fault rate of our prediction as the rela-
tive difference between predicted and actual performance:
|actual−predicted|

actual and accuracy as 1-fault rate in percent. As
said, we measure each program several times. From these
measurements, we compute the average performance (i.e.,
arithmetic mean) and the standard deviation. We use the
average performance to compute the delta of a feature. We
use the standard deviation to set the threshold at which we
identify a feature interaction, because we consider every
unexpected performance behavior above the measurement
error as an interaction.

1) Accuracy and Effort: In Table II, we show the results
of our six case studies: For each approach, we depict the
required number of measurements, the time needed for these
measurements, and the number of identified interactions.
Furthermore, we show the distribution of the fault rate of
our predictions with box plots. Finally, we show for each
approach the mean fault rate of all predictions including the
standard deviation. Note that, when adding a new heuristic,
we keep the previous heuristic working, because they are
successively applied to a program.

The feature-wise (FW) approach does not use a heuristic
and does not account for feature interactions. We achieve
good predictions for programs in which interactions have
no substantial influence on performance. For example, our
predictions have an average error rate of less than 8 % for
all LLVM configurations. In contrast, we usually have a
high fault rate (e.g., over 44 % for BerkeleyDB C version)
when no interactions are considerd. The average accuracy of
performance prediction is 79.7 %.

Using the pair-wise heuristic (PW) usually improves predic-
tions significantly (91 %, on average), because the majority of
interactions are pair-wise. The benefit of implication chains
compared to the common pair-wise measurement is that
it reduces the number of measurements. For example, we
require 81 measurements to detect first-order interactions for
x264 (see Table II), which is 82 less than 163, which would
be needed to measure all pairs of features.

With the higher-order (HO) heuristic, we achieve an aver-
age accuracy of 93.7 % for all case studies. Interestingly, for
LLVM, we could not find a feature combination that satisfies
our preconditions to search for higher-order interactions. It
is important to note that this heuristic usually doubles the
number of measurements. For Apache the fault rate increases,
because measurement bias over the determined threshold lead
to a false detection of interactions. We detected these false
positives when we search for third-order feature interactions,
as we do with the hot-spot heuristic.

Finally, the hot-spot heuristic (HS) (including the other
two heuristics) improves accuracy again to 95.4 % on
average. Considering that the measurement bias for a single
measurement of the case studies Apache, LLVM, and x264
is 5 %, for SQLite it is 1 %, and for Berkeley C and Java
version it is 2 % our predictions are as accurate as the bias
of a single measurement.

2) Influence of Heuristics: Since all our heuristics are
consecutively applied, we can visualize the trade-off between
additional measurements and error rate of predictions as
in Figure 3. Dashed lines represent the average error rate
of our predictions and straight lines depict the percentage
of measurements, compared to the maximum number of
measurements. As expected, with an increasing number of
measurements the fault rate decreases. The results show
that the relative number of measurements strongly differ to
achieve the same accuracy for different programs. Further
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Table II
EVALUATION RESULTS FOR SIX CASE STUDIES; APPROACHES (APPR.): FEATURE-WISE (FW), PAIR-WISE (PW), HIGHER-ORDER (HO), HOT-SPOT (HS),

BRUTE FORCE (BF). MEAN: MEAN FAULT RATE OF PREDICTIONS, STD: STANDARD DEVIATION OF PREDICTIONS.

Effort Fault Rate (in %)

Program Appr. Measurements Time (in h) Interactions Distribution Mean±Std

Berkeley CE FW 15 (0.6 %) 3 0 44.1±42.3

PW 139 (5.4 %) 23 14 ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●● ●●●●●●● ●● ●●●●● ●●●●●● ●●● ●●●●●●● ●● ●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●● ●●●●●●● ●● ●●●●● ●●●●●● ●●● ●●●●●●● ●● ●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●● 3.9±5.3

HO 160 (6.3 %) 27 22 ●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●●● ●●●●●● ● ●●●●●●● ●●● ●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●●● ●●●●●● ● ●●●●●●● ●●● ●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● 2.8±3.7

HS 164 (6.4 %) 27 22 ●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●●● ●●●●●● ● ●●●●●●● ●●● ●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●●● ●●●●●● ● ●●●●●●● ●●● ●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● 2.8±3.7

BF 2 560 (100 %) 426 - −40 −20 0 20 40−40 −20 0 20 40

Berkeley JE FW 10 (3 %) 8.4 0 17.7±19.6

PW 48 (12 %) 40 24 ●● ●●●● ●● ●●●● 8.5±9.6

HO 116 (29 %) 97 51 ● ● ●●●●●●● ●●●●●●●● ● ●●●●●●● ●●●●●●● 3.8±5.7

HS 162 (40.5 %) 137 69 ● ●● ●●● ●●●●● ●● ●● ●●● ● ●● ● ●●● ●●●●●● ●●●●● ●● ●●● ●●●●● ●● ●● ●●● ● ●● ● ●●● ●●●●●● ●●●● 1.7±3.5

BF 400 (100 %) 335 - −40 −20 0 20 40−40 −20 0 20 40

Apache FW 9 (4.7 %) 10 0 ●●● ●● ●● ●●●●● ●● ●● ●● 14.9±24.8

PW 29 (15.1 %) 32 18 ● ●●●●● ●● ● ●● ●●● ●●●●● ●● ● ●● ●● 7.7±11.2

HO 80 (41.7 %) 89 44 ●● ●● ●●● ● ●● ●●●● ●●● ●● ●●● ● ●● ●●●● ● 11.6±22.7

HS 143 (74.5 %) 159 73 ●● ●● ●●●●● ●● ●●● ●●●● ●● ● ● ●● ●●●● ●● ●● ● ● ●● ●● ●●●●● ● ●●● ●●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●●●●● ●● ●●●●● ●● ●●● ●●●● ●● ● ● ●● ●●●● ●● ●● ● ● ●● ●● ●●●●● ● ●●● ●●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●●● 5.3±10.8

BF 192 (100 %) 213 - −40 −20 0 20 40−40 −20 0 20 40

SQLite FW 26 (0 %) 2.1 0 7.8±9.2

PW 566 (0 %) 47 2 ●●●●●● ●●●●●●●● ●● 9.3±12.5

HO 566 (0 %) 47 3 ●● 7.1±9.1

HS 569 (0 %) 47.4 3 ●● 7±9

BF 3 932 160 (100 %) 327 680 −40 −20 0 20 40−40 −20 0 20 40

LLVM FW 11 (1.1 %) 2 0 7.8±9

PW 62 (6.1 %) 12 27 ● ● ●●●●●●● ●●● ●●● ●● ● ●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●●●●●●● ●● ●● ●● ●●●●●●● ● ●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●●● ●●●●● ●●●●● ● ●●●●●●● ●●● ●●● ●● ● ●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●●●●●●● ●● ●● ●● ●●●●●●● ● ●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●●● ●●●●● ●●●● 7.4±10.2

HO 62 (6.1 %) 12 27 ● ● ●●●●●●● ●●● ●●● ●● ● ●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●●●●●●● ●● ●● ●● ●●●●●●● ● ●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●●● ●●●●● ●●●●● ● ●●●●●●● ●●● ●●● ●● ● ●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●●●●●●● ●● ●● ●● ●●●●●●● ● ●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●●● ●●●●● ●●●● 7.4±10.2

HS 88 (8.6 %) 17 38 ●● ●●●●●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ● ●●●● ●●●● ●●● ●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●● ●●● ●●● ●● ●●●● ●●●●●● ●●●●●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ● ●●●● ●●●● ●●● ●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●● ●●● ●●● ●● ●●●● ●●●● 5.7±7

BF 1 024 (100 %) 202 - −40 −20 0 20 40−40 −20 0 20 40

x264 FW 12 (1 %) 2 0 29.6±22

PW 81 (7 %) 16 13 17.9±27.2

HO 89 (7.7 %) 17 17 ● ●● ● 5.1±15.1

HS 89 (7.7 %) 17 17 ● ●● ● 5.1±15.1

BF 1 152 (100 %) 224 - −40 −20 0 20 40−40 −20 0 20 40

note that we have to measure approximately 0.1 % of all
variants of SQLite, which demonstrates the scalability of our
approach.

Pair-Wise vs. Higher-Order Interactions: Look at the
Apache case study (which is similar to others): A higher-order
interaction usually improves predictions. We detected 18 first-
order interactions and 55 higher-order interactions. Using
the PW heuristic, we have some features that interact with
many other features (e.g., KeepAlive) and other features that

interact only with one or two features (e.g., ExtendedStatus).
Although without using the hot-spot heuristic, we observe
that some features are more likely to interact. Additionally,
we found two features (Base and InMemory) that do not
interact which substantially decreases the search space.

C. Threats to Validity

Internal Validity: Regarding SQLite, we cannot measure
all possible configurations in reasonable time. Hence, we
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Figure 3. Comparing percentage of measurements (straight lines) with
average error rates of predictions (dashed lines) for each heuristic.

sampled only 100 configurations to compare prediction and
actual performance values. We are aware that this evaluation
leaves room for outliers.

Also, we are aware that measurement bias can cause false
interpretations [20]. Since we aim at predicting performance
for a special workload, we do not have to vary benchmarks.
Additionally, we determined the width of a 95 % confidence
interval of our measurements smaller than 10 % of the
according means.

External Validity: We aimed at increasing external
validity by choosing programs from different domains with
different configuration mechanisms and implemented with
different programming languages. Furthermore, we used
programs that are deployed and used in the real-world. Nev-
ertheless, we are aware that the results of our evaluations are
not automatically transferable to all configurable programs.
In addition to our sample program selection, the strong and
exhaustive evaluation (over 60 days of measurement with 5
computers) indicate that our heuristics hold for many practical
application scenarios.

D. Discussion

Although we use a simplistic performance model, we
demonstrated that the approach is feasible. With an average
accuracy of 95 %, we achieve predictions that even stay in the
range of the observed measurement bias for the case studies.
It is important to note that we experienced large differences
in accuracy when we changed the threshold at which a
performance feature interaction is detected. Having a too
small threshold causes many false detections of interactions.
The fault rate increases, because we sum the influence of
measurement bias instead of the influence of interactions.

We observed that we need a relatively large number of
measurements when many alternative features exist compared
to independent features, because alternative features limit the
number of valid configurations significantly. For example,
we can generate only 400 configurations in Berkeley DB

Java, though it has 32 features. This number is below
quadratic. Hence, already the detection of interacting features
requires a relatively many measurements. However, having
programs with a small number of valid configurations makes
a brute-force approach feasible, which is not our intended
scenario.

Furthermore, we do not consider performance behavior of
a program independently of the workload. We make accurate
statements for any configuration given a specific workload.
That is, we address end-users that have a certain application
scenario in mind, but do not know which configuration
performs best. Measurements can be performed on a live
system in a real environment, which produces more accurate
predictions than standard benchmark results in a synthetic
environment. With a new workload, we have to repeat
the measurements. We believe that many interactions still
exist, though the values of the interactions will change.
This, however, means that we may save measurements
for new workloads, since we already know which features
interact.

We believe that our approach is not limited to the detec-
tion of non-functional feature interactions for the property
performance, but also for other quantifiable and additive
non-functional properties, such as binary footprint, memory
footprint, and bandwidth.

VI. RELATED WORK

A. Performance Prediction

There are several approaches that aim at predicting
performance of a customizable program or a product line.
Abdelaziz et al. provide an overview of component-based
prediction approaches [22]. Typically, the approaches belong
to one of three categories: model-based, measurement-based
(as we use in this paper), and mixed.

Model-based: Model-based predictions are com-
mon [23][24]. For example, linear and multiple regres-
sion explore relationships between input parameters and
measurements. Based on a regression model, different
estimation methods (e.g., ordinary least squares) can be
used to predict performance for specific input parame-
ters. Bayesian (or belief) networks are used to model
dependencies between variables in a network [25]. They
are used to learn causal relationships and hence may
be applicable to detect feature interactions. Furthermore,
machine-learning approaches can be used to find the cor-
relation between a configuration and a measurement (e.g.,
canonical correlation analysis [26]). It uses dataset pairs
to identify those linear combinations of variables with
the best correlation. Principal component analysis [27]
finds dimensions of maximal variance in a dataset that
can also be used to detect interactions. Ganapathi et al.
provides an analysis for different machine-learning ap-
proaches in the context of performance prediction of database
queries [28].

175



The feasibility of model-based approaches depends on the
application scenario and program to be analyzed. Our work
differs in that it offers a general way to produce accurate
predictions independent of the application scenario, and it
uses heuristics to significantly reduce measurement effort.

Krogmann et al. [29] combine monitoring data, genetic
programming, and reverse engineering to reduce the number
of measurements to create a platform-independent behavioral
model of components. For a platform-specific prediction,
they use bytecode-benchmark results of concrete systems
to parameterize the behavior model. We predict the perfor-
mance independently of the used programming language and
availability of bytecode.

Happe et al. present a compositional reasoning approach,
based on the Palladio component model [30]. The idea is
that each component specifies its resource demands and
predicted execution time in a global repository. The approach
is applicable to component-based programs only, whereas
we use a single approach for all customizable programs.

Also in this vein, MDE-based work uses feature models to
customize or synthesize performance models (e.g. [31]). This
line of research requires up-front and detailed knowledge
of domain-specific performance modeling, where tuning
predictions for accuracy can be difficult. Our approach avoids
these problems by directly measuring performance.

Measurement-based: Sincero et al. [4] predict a config-
urations’s non-functional properties based on a knowledge
base consisting of measurements of already produced and
measured configurations. They aim at finding a correlation
between feature selection and measurement. This way, they
can provide qualitative information about how a feature
influences a non-functional property during configuration.
In contrast to our approach, they do not actually predict a
value quantitatively, and they do not provide means to detect
feature interactions.

Chen et al. [32] use a combined benchmarking and
profiling approach to predict the performance of component-
based applications. Based on a benchmark and a Java profiling
tool, a performance prediction model is constructed for
application server components. In contrast, we correlate the
measurements to the configuration, and measure only those
configurations from which we expect to detect performance
feature interactions.

Abdelaziz et al. argue that most measurement approaches
lack generality [22], as they are applicable only to specific
application scenarios or infrastructures [32][33]. Our work
can be used for a broad range of applications of different
domains, implementation techniques, etc.

B. Feature-Interaction Detection

There is a large body of research on automated detection
of feature interactions (e.g., see Nhlabatsi et al. [6] and
Calder et al. [34] for surveys). Many approaches aim at
detecting feature interactions at the specification level. For

example, Calder and Miller use a pair-wise measurement
approach based on linear temporal logic to detect feature
interactions [7]. They specify the behavior of a product line in
Promela (a modeling language). Using a model checker, they
generate for each pair-wise combination a model checking
run to verify whether the defined properties are still valid.
Other approaches use state charts to model and detect feature
interactions [35]. For example, in [36] feature specifications
are translated to a reachability graph. The authors use state
transitions to detect whether a certain state is not exclusively
reachable in isolation (i.e. a feature interaction occurs).

There are approaches that provide means to detect semantic
feature interactions, i.e., feature interactions that change the
functional behavior of a program. Some use model checking
techniques to find semantic feature interactions [37][38].
Apel’s work uses model-checking techniques to verify
whether semantic constraints still hold in a particular feature
combination [39][40]. Other approaches aim at investigating
the code base to detect structural feature interactions. For
example, Liu et al. [9][41] propose to model feature interac-
tions explicitly using algebraic theory. In contrast to these
approaches, we focus on performance feature interactions in
a black-box fashion.

VII. CONCLUSION

We presented a method that allows stakeholders to accu-
rately predict the performance of customized and generated
programs. It detects interactions among configuration options
and evaluates their influence on performance. We detect
feature interactions in a step-wise manner. First, we find
features that interact. Second, we detect combinations of these
features that cause a measurable interaction and quantify their
impact on performance. The common weak spot of such an
approach is the exhaustive number of measurements required
to detect interactions. We solved this problem with three
heuristics that reduce the number of measurements without
sacrificing precision in predictions.

Our evaluations demonstrate that an accuracy of 95 %
is possible, on average, when using our heuristics. We
demonstrated generality by using applications of varying
domains, implemented with different programming languages
and techniques, and configured via configuration files or
compilation options.
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