
Faster Discovery of Faster System Configurations with
Spectral Learning

Vivek Nair, Tim Menzies, Xipeng Shen
NC State University, USA
vivekaxl, tim.menzies,

xipengshen@gmail.com

Norbert Siegmund, Sven Apel
University of Passau, Germany

norbert.siegmund, apel@uni-passau.de

ABSTRACT
Despite the huge spread and economical importance of configurable
software systems, there is unsatisfactory support in utilizing the
full potential of these systems with respect to finding performance-
optimal configurations. Prior work on predicting the performance
of software configurations suffered from either (a) requiring far
too many sample configurations or (b) large variances in their pre-
dictions. Both these problems can be avoided using the WHAT
spectral learner. WHAT ’s innovation is the use of the spectrum
(eigenvalues) of the distance matrix between the configurations of
a configurable software system, to perform dimensionality reduc-
tion. Within that reduced configuration space, many closely associ-
ated configurations can be studied by executing only a few sample
configurations. For the subject systems studied here, a few dozen
samples yield accurate and stable predictors—less than 10 % pre-
diction error, with a standard deviation of less than 2 %. When
compared to the state of the art, our approach (a) requires 2 to 10
times fewer samples to achieve similar prediction accuracies, and
(b) its predictions are more stable (i.e., have lower standard devi-
ation). Furthermore, we demonstrate that predictive models gen-
erated by WHAT can be used by optimizers to discover system
configurations that closely approach the optimal performance.

Categories/Subject Descriptors: D.2 [Software Engineering];
I.2 [Artificial Intelligence];

Keywords: Performance Prediction, Spectral Learning, Decision
Trees, Search-Based Software Engineering, Sampling.

1. INTRODUCTION
Most software systems today are configurable. Despite the unde-

niable benefits of configurability, large configuration spaces chal-
lenge developers, maintainers, and users. In the face of hundreds
of configuration options, it is difficult to keep track of the effects
of individual configuration options and their mutual interactions.
So, predicting the performance of individual system configurations
or determining the optimal configuration is often more guess work
than engineering. In their recent paper, Xu et al. documented the
difficulties developers face with understanding the configuration

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Submitted to FSE’16 Seattle, WA, USA. 2016
c© 2016 ACM. ISBN YYY-YYYY-YY-YYY/YY/YYY. . . $ZZ.00

DOI: XX.XXX/XXX+X

spaces of their systems [28]. As a result, developers tend to ignore
over 5/6ths of the configuration options, which leaves consider-
able optimization potential untapped and induces major economic
cost [28].

Addressing the challenge of performance prediction and opti-
mization in the face of large configuration spaces, researchers have
developed a number of approaches that rely on sampling and ma-
chine learning [7,19,24]. While gaining some ground, state-of-the-
art approaches face two problems: (a) they require far too many
sample configurations for learning or (b) they are prone to large
variances in their predictions. For example, prior work on pre-
dicting performance scores using regression-trees had to compile
and execute hundreds to thousands of specific system configura-
tions [7]. A more balanced approach by Siegmund et al. is able to
learn predictors for configurable systems [24] with low mean er-
rors, but with large variances of prediction accuracy (e.g. in half of
the results, the performance predictions for the Apache Web server
were up to 50 % wrong). Guo et al. [7] also proposed an incre-
mental method to build a predictor model, which uses incremental
random samples with steps equal to the number of configuration
options (features) of the system. This approach also suffered from
unstable predictions (e.g., predictions had a mean error of up to
22 %, with a standard deviation of up 46 %). Finally, Sarkar et
al. [19] proposed a projective-learning approach (using fewer mea-
surements than Guo at al. and Siegmund et al.) to quickly compute
the number of sample configurations for learning a stable predictor.
However, as we will discuss, after making that prediction, the total
number of samples required for learning the predictor is compara-
tively high (up to hundreds of samples).

The problems of large sample sets and large variances in predic-
tion can be avoided using the WHAT spectral learner, which is our
main contribution. WHAT ’s innovation is the use of the spectrum
(eigenvalues) of the distance matrix between the configurations of a
configurable system, to perform dimensionality reduction. Within
that reduced configuration space, many closely associated configu-
rations can be studied by measuring only a few samples. In a num-
ber of experiments, we compared WHAT against the state-of-the-
art approaches of Siegmund et al. [24], Guo et al. [7], and Sarkar
et al. [19] by means of six real-world configurable systems: Berke-
ley DB, the Apache Web server, SQLite, the LLVM compiler, and
the x264 video encoder. We found that WHAT performs as well
or better than prior approaches, while requiring far fewer samples
(just a few dozen). This is significant and most surprising, since
some of the systems explored here have up to millions of possible
configurations.

Overall, we make the following contributions:

• We present a novel sampling and learning approach for pre-
dicting the performance of software configurations in the face

1

of large configuration spaces. The approach is based on a
spectral learner that uses an approximation to the first princi-
pal component of the configuration space to recursively clus-
ter it, relying only on a few points as representatives of each
cluster.

• We demonstrate the practicality and generality of our ap-
proach by conducting experiments on six real-world config-
urable software systems (see Figure 1). The results show
that our approach is more accurate (lower mean error) and
more stable (lower standard deviation) than state-of-the-art
approaches.

• We report on a comparative analysis of our approach and
three state-of-the-art approaches, demonstrating that our ap-
proach outperforms previous approaches in terms of sample
size and prediction stability. A key finding is the utility of
the principal component of a configuration space to find in-
formative samples from a large configuration space.

2. BACKGROUND & RELATED WORK
A configurable software system has a set X of Boolean configu-

ration options,1 also referred to as features or independent variables
in our setting. We denote the number of features of system S as n.
The configuration space of S can be represented by a Boolean space
Zn

2, which is denoted by F . All valid configurations of S belong to
a set V , which is represented by vectors ~Ci (with 1≤ i≤ |V |) in Zn

2.
Each element of a configuration represents a feature, which can ei-
ther be True or False, based on whether the feature is selected or
not. Each valid instance of a vector (i.e., a configuration) has a
corresponding performance score associated to it.

The literature offers two approaches to performance prediction
of software configurations: a maximal sampling and a minimal
sampling approach: With maximal sampling, we compile all pos-
sible configurations and record the associated performance scores.
Maximal sampling can be impractically slow. For example, the
performance data used in this paper required 26 days of CPU time
for measuring (and much longer, if we also count the time required
for compiling the code prior to execution). Other researchers have
commented that, in real world scenarios, the cost of acquiring the
optimal configuration is overly expensive and time consuming [27].

If collecting performance scores of all configurations is imprac-
tical, minimal sampling can be used to intelligently select and exe-
cute just enough configurations (i.e., samples) to build a predictive
model. For example, Zhang et al. [29] approximate the config-
uration space as a Fourier series, after which they can derive an
expression showing how many configurations must be studied to
build predictive models with a given error. While a theoretically
satisfying result, that approach still needs thousands to hundreds of
thousands of executions of sample configurations.

Another set of approaches are the four "additive" minimal sam-
pling methods of Siegmund et al. [24]. Their first method, called
feature-wise sampling (FW), is their basic method. To explain FW,
we note that, from a configurable software system, it is theoreti-
cally possible to enumerate many or all of the valid configurations2.
Since each configuration (~Ci) is a vector of n Booleans, it is possi-
ble to use this information to isolate examples of how much each
feature individually contributes to the total run time:

1In this paper, we concentrate on Boolean options, as they make up the majority of all
options; see Siegmund et al., for how to incorporate numeric options [23].
2Though, in practice, this can be very difficult. For example, in models like the Linux
Kernel such an enumeration is practically impossible [20].

1. Find a pair of configurations ~Ci and ~C2, where ~C2 uses exactly
the same features as ~Ci, plus one extra feature fi.

2. Set the run time Π(fi) for feature fi to be the difference in
the performance scores between ~C2 and ~Ci.

3. The run time for a new configuration ~Ci (with 1 ≤ i ≤ |V |)
that has not been sampled before is then the sum of the run
time of its features, as determined before:

Π(Ci) = ∑
f j∈Ci

Π(f j) (1)

When many pairs, such as ~C1,~C2, satisfy the criteria of point 1,
Siegmund et al. used the pair that covers the smallest number of
features. Their minimal sampling method, FW, compiles and ex-
ecutes only these smallest C1 and C2 configurations. Siegmund et
al. also offers three extensions to the basic method, which are based
on sampling not just the smallest ~Ci,~C2 pairs, but also any configu-
rations with interactions between features. All the following min-
imal sampling policies compile and execute valid configurations
selected via one of three heuristics:

PW (pair-wise): For each pair of features, try to find a configu-
ration that contains the pair and has a minimal number of
features selected.

HO (higher-order): Select extra configurations, in which three fea-
tures, f1, f2, f3, are selected if two of the following pair-wise
interactions exist: (f1, f2) and (f2, f3) and (f1, f3).

HS (hot-spot): Select extra configurations that contain features that
are frequently interacting with other features.

Guo et al. [7] proposed a progressive random sampling approach,
which samples in steps of the number of features of the software
system in question. They used the sampled configurations to train
a regression tree, which is then used to predict the performance
scores of other system configurations. The termination criterion of
this approach is based on a heuristic, similar to the PW heuristics
of Siegmund et al.

Sarkar et al. [19] proposed a cost model for predicting the effort
(or cost) required to generate an accurate predictive model. The
user can use this model to decide whether to go ahead and build the
predictive model. This method randomly samples configurations
and uses a heuristic based on feature frequencies as termination
criterion. The samples are then used to train a regression tree; the
accuracy of the model is measured by using a test set (where the
size of the training set is equal to size of the test set). One of four
projective functions (e.g., exponential) is selected based on how
correlated they are to accuracy measures. The projective function
is used to approximate the accuracy-measure curve, and the elbow
point of the curve is then used as the optimal sample size. Once the
optimal size is known, Sarkar et al. uses the approach of Guo et al.
to build the actual prediction model.

The advantage of these previous approaches is that, unlike the
results of Zhang et al., they require only dozens to hundreds of sam-
ples. Also, like our approach, they do not require to enumerate all
configurations, which is important for highly configurable software
systems. That said, as shown by our experiments (see Section 4),
these approaches produce estimates with larger mean errors and
partially larger variances than our approach. While sometimes the
approach by Sarkar et al. results in models with (slightly) lower
mean error rates, it still requires a considerably larger number of
samples (up to hundreds, while WHAT requires only few dozen).

2

3. APPROACH

3.1 Spectral Learning
The minimal sampling method proposed in this paper is based

on a spectral-learning algorithm that explores the spectrum (eigen-
values) of the distance matrix between configurations. In theory,
such spectral learners are an appropriate method to handle noisy,
redundant, and tightly inter-connected variables, for the following
reasons: When data sets have many irrelevancies or closely associ-
ated data parameters d, then only a few eigenvectors e, e� d are
required to characterize the data. In that reduced space:

• Multiple inter-connected variables i, j,k ⊆ d can be repre-
sented by a single eigenvector;

• Noisy variables from d are ignored, because they do not con-
tribute to the signal in the data;

• Variables become (approximately) parallel lines in e space.
For redundancies i, j ∈ d, we can ignore j since effects that
change over j also change in the same way over i;

That is, in theory, samples of configurations drawn via an eigenspace
sampling method would not get confused by noisy, redundant, or
tightly inter-connected variables. Accordingly, we expect predic-
tions built from that sample to have lower mean errors and lower
variances on that error.

Spectral methods have been used before for a variety of data
mining applications [11]. Algorithms, such as PDDP [1], use spec-
tral methods, such as principle component analysis (PCA), to re-
cursively divide data into smaller regions. Software-analytics re-
searchers use spectral methods (again, PCA) as a pre-processor
prior to data mining to reduce noise in software-related data sets [26].
However, to the best of our knowledge, spectral methods have not
been used before in software engineering as a basis of a minimal
sampling method.

WHAT is somewhat different from other spectral learners ex-
plored in, for instance, image processing applications [21]. Work
on image processing does not address defining a minimal sampling
policy to predict performance scores. Also, a standard spectral
method requires an O(N2) matrix multiplication to compute the
components of PCA [10]. Worse, in the case of hierarchical divi-
sion methods, such as PDDP, the polynomial-time inference must
be repeated at every level of the hierarchy. Competitive results can
be achieved using an O(2N) analysis that we have developed previ-
ously [15], which is based on a heuristic proposed by Faloutsos and
Lin [5] (which Platt has shown computes a Nyström approximation
to the first component of PCA [17]).

Our approach inputs N (with 1≤ |N| ≤ |V |) valid configurations
(~C), N1,N2, ..., and then:

1. Picks any point Ni (1≤ i≤ |N|) at random;

2. Finds the point West ∈ N that is furthest away from Ni;

3. Finds the point East ∈ N that is furthest from West.

The line joining East and West is our approximation for the first
principal component. Using the distance calculation shown in Equa-
tion 2, we define δ to be the distance between East and West.
WHAT uses this distance (δ) to divide all the configurations as
follows: The value xi is the projection of Ni on the line running
from East to West3. We divide the examples based on the median
3The projection of Ni can be calculated in the following way:

a = dist(East,Ni);b = dist(West,Ni);xi =

√
a2−b2+δ2

2δ
.

value of the projection of xi. Now, we have two clusters of data di-
vided based on the projection values (of Ni) on the line joining East
and West. This process is applied recursively on these clusters until
a predefined stopping condition. In our study, the recursive split-
ting of the Ni’s stops when a sub-region contains less than

√
|N|

examples.

dist(x,y) =

√

∑i(xi− yi)2 if xi and yi is numeric{
0, if xi = yi

1, otherwise
if xi and yi is Boolean

(2)

We explore this approach for three reasons:

• It is very fast: This process requires only 2|n| distance com-
parisons per level of recursion, which is far less than the
O(N2) required by PCA [4] or other algorithms such as K-
Means [8].

• It is not domain-specific: Unlike traditional PCA, our ap-
proach is general in that it does not assume that all the vari-
ables are numeric. As shown in Equation 2,4 we can approx-
imate distances for both numeric and non-numeric data (e.g.,
Boolean).

• It reduces the dimensionality problem: This technique ex-
plores the underlying dimension (first principal component)
without getting confused by noisy, related, and highly asso-
ciated variables.

3.2 Spectral Sampling
When the above clustering method terminates, our sampling pol-

icy (which we will call S1:Random) is then applied:

Random sampling (S1): compile and execute one configuration,
picked at random, from each leaf cluster;

We use this sampling policy, because (as we will show later) it
performs better than:

East-West sampling (S2): compile and execute the East and West
poles of the leaf clusters;

Exemplar sampling (S3): compile and execute all items in all leaves
and return the one with lowest performance score.

Note that S3 is not a minimal sampling policy (since it executes
all configurations). We use it here as one baseline against which
we can compare the other, more minimal, sampling policies. In the
results that follow, we also compare our sampling methods against
another baseline using information gathered after executing all con-
figurations.

3.3 Regression-Tree Learning
After collecting the data using one of the sampling policies (S1,

S2, or S3), as described in Section 3.2, we use a CART regression-
tree learner [2] to build a performance predictor. Regression-tree
learners seek the attribute-range split that most increases our abil-
ity to make accurate predictions. CART explores splits that divide
N samples into two sets A and B, where each set has a standard de-
viation on the target variable of σ1 and σ2. CART finds the “best”
split defined as the split that minimizes A

N σ1+
B
N σ2. Using this best

split, CART divides the data recursively.
In summary, WHAT combines:

4In our study, dist accepts configurations (~C) and returns the distance between them.
If xi and yi ∈ Rn, then the distance function would be same as the standard Euclidean
distance.

3

1. The FASTMAP method of Faloutsos and Lin [5];

2. A spectral-learning algorithm initially inspired by Boley’s
PDDP system [1], which we modify by replacing PCA with
FASTMAP (called “WHERE” in prior work [15]);

3. The sampling policy that explores the leaf clusters found by
this recursive division;

4. The CART regression-tree learner that converts the data from
the samples collected by sampling policy into a run-time pre-
diction model [2].

That is,

WHERE = PDDP − PCA + FASTMAP

WHAT = WHERE + SamplingPolicy + CART

This unique combination of methods has not been previously ex-
plored in the software-engineering literature.

4. EXPERIMENTS
All materials required for reproducing this work are available at

https://goo.gl/689Dve.

4.1 Research Questions
We formulate our research questions in terms of the challenges

of exploring large complex configuration spaces. Since our model
explores the spectral space, our hypothesis is that only a small num-
ber of samples is required to explore the whole space. However, a
prediction model built from a very small sample of the configura-
tion space might be very inaccurate and unstable, that is, it may
exhibit very large mean prediction errors and variances on the pre-
diction error.

Also, if we learn models from small regions of the training data,
it is possible that a learner will miss trends in the data between the
sample points. Such trends are useful when building optimizers
(i.e., systems that input one configuration and propose an alternate
configuration that has, for instance, a better performance). Such
optimizers might need to evaluate hundreds to millions of alter-
nate configurations. To speed up that process, optimizers can use a
surrogate model 5 that mimics the outputs of a system of interest,
while being computationally cheap(er) to evaluate [14]. For exam-
ple, when optimizing performance scores, we might ask a CART
for a performance prediction (rather than compile and execute the
corresponding configuration). Note that such surrogate-based rea-
soning critically depends on how well the surrogate can guide op-
timization.

Therefore, to assess feasibility of our sampling policies, we must
consider:

• Performance scores generated from our minimal sampling
policy;

• The variance of the error rates when comparing predicted
performance scores with actual ones;

• The optimization support offered by the performance predic-
tor (i.e., can the model work in tandem with other off-the-
shelf optimizers to generate useful solutions).

The above considerations lead to four research questions:

RQ1: Can WHAT generate good predictions after executing only
a small number of configurations?

5Also known as response surface methods, meta models, or emulators.

Here, by “good” we mean that the predictions made by models
that were trained using sampling with WHAT are as accurate, or
more accurate, as those generated from models supplied with more
samples.

RQ2: Does less data used in building the models cause larger vari-
ances in the predicted values?

RQ3: Can “good” surrogate models (to be used in optimizers) be
built from minimal samples?

Note that RQ2 and RQ3 are of particular concern with our ap-
proach, since our goal is to sample as little as possible from the
configuration space.

RQ4: How good is WHAT compared to the state of the art of
learning performance predictors from configurable software
systems?

To answer RQ4, we will compare WHAT against approaches
presented by Siegmund et al. [24], Guo et al. [7], and Sarkar et
al. [19].

Berkeley DB C Edition (BDBC) is an embedded database system writ-
ten in C. It is one of the most deployed databases in the world, due to its
low binary footprint and its configuration abilities. We used the bench-
mark provided by the vendor to measure response time.
Berkeley DB Java Edition (BDBJ) is a complete re-development in
Java with full SQL support. Again, we used a benchmark provided by
the vendor measuring response time.
Apache is a prominent open-source Web server that comes with various
configuration options. To measure performance, we used the tools auto-
bench and httperf to generate load on the Web server. We increased the
load until the server could not handle any further requests and marked
the maximum load as the performance value.
SQLite is an embedded database system deployed over several millions
of devices. It supports a vast number of configuration options in terms
of compiler flags. As benchmark, we used the benchmark provided by
the vendor and measured the response time.
LLVM is a compiler infrastructure written in C++. It provides various
configuration options to tailor the compilation process. As benchmark,
we measured the time to compile LLVM’s test suite.
x264 is a video encoder in C that provides configuration options to ad-
just output quality of encoded video files. As benchmark, we encoded
the Sintel trailer (735 MB) from AVI to the xH.264 codec and measured
encoding time.
System LOC Features Configurations
BDBC 219,811 18 2,560
BDBJ 42,596 32 400
Apache 230,277 9 192
SQLite 312,625 39 3,932,160
LLVM 47,549 11 1,024
x264 45,743 16 1,152

Figure 1: Subject systems used in the experiments.

4.2 Subject Systems
The configurable systems we used in our experiments are de-

scribed in Figure 1. Note, with “predicting performance”, we mean
predicting performance scores of the subject systems while execut-
ing test suites provided by the developers or the community, as de-
scribed in Figure 1. To compare the predictions of our and prior
approaches with actual performance measures, we use data sets
that have been obtained by measuring nearly all configurations6.
We say nearly all configurations, for the following reasoning: For
all except one of our subject systems, the total number of valid
configurations was tractable (192 to 2560). However, SQLite has
6http://openscience.us/repo/performance-predict/cpm.html

4

3,932,160 possible configurations, which is an impractically large
number of configurations to test whether our predictions are accu-
rate and stable. Hence, for SQLite, we use the 4500 samples for
testing prediction accuracy and stability, which we could collect in
one day of CPU time. Taking this into account, we will pay partic-
ular attention to the variance of the SQLite results.

4.3 Experimental Rig
RQ1 and RQ2 require the construction and assessment of nu-

merous runtime predictors from small samples of the data. The
following rig implements that construction process.

For each configurable software system, we built a table of data,
one row per valid configuration. We then ran all configurations of
all software systems and recorded the performance scores (i.e., that
are invoked by a benchmark). The exception is SQLite for which
we measured only the configurations needed to detect interactions
and additionally 100 random configurations to evaluate the accu-
racy of predictions. To this table, we added a column showing the
performance score obtained from the actual measurements for each
configuration.

Note that the following procedure ensures that we never test any
prediction model on the data used to learn that model. Next, we
repeated the following procedure 20 times (the figure of 20 repe-
titions was selected using the Central Limit Theorem): For each
system in {BDBC, BDBJ, Apache, SQLite, LLVM, x264}

• Randomize the order of the rows in their table of data;

• For X in {10, 20, 30, ... , 90};

– Let Train be the first X % of the data
– Let Test be the rest of the data;
– Pass Train to WHAT to select sample configurations;
– Determine the performance scores associated with these

configurations. This corresponds to a table lookup, but
would entail compiling and executing a system config-
uration in a practical setting.

– Using the Train data and their performance scores, build
a performance predictor using CART.

– Using the Test data, assess the accuracy of the predictor
using the error measure of Equation 3 (see below).

The validity of the predictors built by the regression tree is ver-
ified on testing data. For each test item, we determine how long
it actually takes to run the corresponding system configuration and
compare the actual measured performance to the prediction from
CART. The resulting prediction error is then computed using:

error =
| predicted−actual |

actual
∗100 (3)

RQ2 requires testing the standard deviation of the prediction er-
ror rate. To support that test, we:

• Determine the X-th point in the above experiments, where all
predictions stop improving (elbow point);

• Measure the standard deviation of the error at this point,
across our 20 repeats.

As shown in Figure 2, all our results plateaued after studying X =
40 % of the valid configurations7. Hence to answer RQ2, we will
compare all 20 predictions at X = 40 %.
7Just to clarify one frequently asked question about this work, we note that our rig
“studies” 40 % of the data. We do not mean that our predictive models require access-
ing the performance scores from the 40 % of the data. Rather, by “study” we mean
reflect on a sample of configurations to determine what minimal subset of that sample
deserves to be compiled and executed.

RQ3 uses the learned regression tree as a surrogate model within
an optimizer;

• Take X = 40% of the configurations;

• Apply WHAT to build a CART model using some minimal
sample taken from that 40 %;

• Use that CART model within some standard optimizer while
searching for configurations with least runtime;

• Compare the faster configurations found in this manner with
the fastest configuration known for that system.

This last item requires access to a ground truth of performance
scores for a large number of configurations. For this experiment,
we have access to that ground truth (since we have access to all
system configurations, except for SQLite). Note that such a ground
truth would not be needed when practitioners choose to use WHAT
in their own work (it is only for our empirical investigation).

For the sake of completeness, we explored a range of optimizers
seen in the literature in this second experiment: DE [25], NSGA-
II [3], and our own GALE [12, 30] system. Normally, it would be
reasonable to ask why we used those three, and not the hundreds
of other optimizers described in the literature [6, 9]. However, as
shown below, all these optimizers in this domain exhibited very
similar behavior (all found configurations close to the best case per-
formance). Hence, the specific choice of optimizer is not a critical
variable in our analysis.

5. RESULTS

5.1 RQ1

Can WHAT generate good predictions after executing only a
small number of configurations?

Figure 2 shows the mean errors of the predictors learned after tak-
ing X % of the configurations, then asking WHAT and some sam-
pling method (S1, S2, and S3) to (a) find what configurations to
measure; then (b) asking CART to build a predictor using these
measurements. The horizontal axis of the plots shows what X %
of the configurations are studied; the vertical axis shows the mean
relative error (from Equation 3). In that figure:
• The×—× lines in Figure 2 show a baseline result where data

from the performance scores of 100 % of configurations were
used by CART to build a runtime predictor.
• The other lines show the results using the sampling methods

defined in Section 3.2. Note that these sampling methods
used runtime data only from a subset of 100 % of the perfor-
mance scores seen in configurations from 0 to X %.

In Figure 2, lower y-axis values are better since this means lower
prediction errors. Overall, we find that:

• Some software systems exhibit large variances in their error
rate, below X = 40 % (e.g., BDBC and BDBJ).

• Above X = 40 %, there is little effect on the overall change
of the sampling methods.

• Mostly, S3 shows the highest overall error, so that it cannot
be recommended.

• Always, the ×—× baseline shows the lowest errors, which
is to be expected since predictors built on the baseline have
access to all data.

5

0

10

20

A
p
a
ch
e

0

40

80

120

160

B
D
B
C

0

10

20

30 B
D
B
J

0

5

10

15

X
2
6
4

0

5

10 S
Q
Lite

20 40 60 80
Percentage of Data

0

5

LLV
M

M
R
E

S1−Random
S2−EastWest

S3−Exemplar

Baseline

Figure 2: Errors of the predictions made by WHAT with four
different sampling policies. Note that, on the y-axis, lower er-
rors are better.

• We see a trend that the error of S1 and S2 are within 5 % of
the baseline results. Hence, we can recommend these two
minimal sampling methods.

Figure 3 provides information about which of S1 or S2 we should
recommend. This figure displays data taken from the X = 40 %
point of Figure 2 and displays how many performance scores of
configurations are needed by our sub-sampling methods (while re-
flecting on the configurations seen in the range 0≤ X ≤ 40). Note
that:

• S3 needs up to thousands of performance-score points, so it
cannot be recommended as minimal-sampling policy;

• S2 needs twice as much performance-score information as S1
(S2 uses two samples per leaf cluster while S1 uses only one).

• S1 needs performance-score information on only a few dozen
(or less) configurations to generate the predictions with the
lower errors seen in Figure 2.

Combining the results of Figure 2 and Figure 3, we conclude that:

Apache BDBC BDBJ LLVM SQLite X264
0

500

1000

1500

2000

N
u
m

b
e
r
o
f
E
v
a
lu

a
ti
o
n
s

S3−Exemplar S1−Random S2−EastWest

Figure 3: Comparing evaluations of different sampling policies.
We see that the number of configurations evaluated for S2 is
twice as high as S1, as it selects 2 points from each cluster, where
as S1 selects only 1 point.

S1 is our preferred spectral sampling method. Furthermore,
the answer to RQ1 is “yes”, because applying WHAT , we
can (a) generate runtime predictors using just a few dozens
of sample performance scores; and (b) these predictions have
error rates within 5 % of the error rates seen if predictors are
built from information about all performance scores.

5.2 RQ2

Do less data used in building the models cause larger variances in
the predicted values?

Two competing effects can cause increased or decreased vari-
ances in runtime predictions. The less we sample the configuration
space, the less we constrain model generation in that space. Hence,
one effect that can be expected is that models learned from too few
samples exhibit large variances. But, a compensating effect can
be introduced by sampling from the spectral space since that space
contains fewer confusing or correlated variables than the raw con-
figuration space.

Figure 4 reports which one of these two competing effects are
dominant. Figure 2 shows that after some initial fluctuations, after
seeing X = 40 % of the configurations, the variances in prediction
errors reduces to nearly zero.

Hence, we answer RQ2 with “no”: Selecting a small number
of samples does not necessarily increase variance (at least to
say, not in this domain).

5.3 RQ3

Can “good” surrogate models (to be used in optimizers) be built
from minimal samples?

The results of answering RQ1 and RQ2 suggest to use WHAT
(with S1) to build runtime predictors from a small sample of data.
RQ3 asks if that predictor can be used by an optimizer to infer what
other configurations correspond to system configurations with fast
performance scores. To answer this question, we ran a random set

6

0

10

20

A
p
a
ch

e

0

100

200

B
D
B
C

0

10

20

30 B
D
B
J

0

5

10

15

X
2
6
4

0

5

10 S
Q
Lite

20 40 60 80
Percentage of Data

0

5

LLV
MS

ta
n
d
a
rd

 D
e
v
ia

ti
o
n

S1−Random
S2−EastWest

S3−Exemplar

Baseline

Figure 4: Standard deviations seen at various points of Fig-
ure 2.

of 100 configurations, 20 times, and related that baseline to three
optimizers (GALE [12], DE [25] and NSGA-II [3]) using their de-
fault parameters.

When these three optimizers mutated existing configurations to
suggest new ones, these mutations were checked for validity. Any
mutants that violated the system’s constraints (e.g., a feature ex-
cluding another feature) were rejected and the survivors were “eval-
uated” by asking the CART surrogate model. These evaluations ei-
ther rejected the mutant or used it in generation i+ 1, as the basis
for a search for more, possibly better mutants.

Figure 5 shows the configurations found by three optimizers pro-
jected onto the ground truth of the performance scores of nearly all
configurations (see Section 4.2). Again note that, while we use that
ground truth for the validation of these results, our optimizers used
only a small part of that ground-truth data in their search for the
fastest configurations (see the WHAT + S1 results of Figure 3).

The important feature of Figure 5 is that all the optimized con-
figurations fall within 1 % of the fastest configuration according to
the ground truth (see all the left-hand-side dots on each plot). Ta-
ble 1 compares the performance of the optimizers used in this study.
Note that the performances are nearly identical, which leads to the
following conclusions:

Figure 5: Solutions found by GALE, NSGA-II and DE (shown
as points) laid against the ground truth (all known configu-
ration performance scores). It can be observed that all the
optimizers can find the configuration with lower performance
scores.

The answer to RQ3 is “yes”: For optimizing performance
scores, we can use surrogates built from few runtime sam-
ples. The choice of the optimizer does not critically effect
this conclusion.

5.4 RQ4

How good is WHAT compared to the state of the art of learning
performance predictors from configurable software systems?

We compare WHAT with the three state-of-the-art predictors
proposed in the literature [24], [7], [19], as discussed in Section 2.
Note that all approaches use regression-trees as predictors, except
Siegmund’s approach, which uses a regression function derived us-
ing linear programming.

The blue bars of Figure 6 show the mean error rate, the standard
deviation of the error rate, and the mean percentage of total config-

7

A
p
a
ch
e

B
D
B
C

B
D
B
J

LL
V
M

S
Q
Li
te

X
2
6
4

100

101

102

Mean(%) Fault Rate

A
p
a
ch
e

B
D
B
C

B
D
B
J

LL
V
M

S
Q
Li
te

X
2
6
4

10-1

100

101

102

Standard Deviation (%) Fault Rate

A
p
a
ch
e

B
D
B
C

B
D
B
J

LL
V
M

S
Q
Li
te

X
2
6
4

100

101

102

Measurement (%) wrt Config

Siegmund Guo (2N) Guo (PW) Sarkar WHAT

Figure 6: Comparison between WHAT and the state-of-the-art approaches regarding mean error, standard deviation, and the per-
centage of configurations used for training the model.

Table 1: The table shows how the minimum performance scores
as found by the learners GALE, NSGA-II, and DE, vary over
20 repeated runs. Mean values are denoted µ and IQR denotes
the 25th–75th percentile. A low IQR suggests that the surrogate
model build by WHAT is stable and can be utilized by off the
shelf optimizers to find performance-optimal configurations.

Dataset
Searcher

GALE DE NSGAII

Mean IQR Mean IQR Mean IQR

Apache 870 0 840 0 840 0
BDBC 0.363 0.004 0.359 0.002 0.354 0.005
BDBJ 3139 70 3139 70 3139 70
LLVM 202 3.98 200 0 200 0
SQLite 13.1 0.241 13.1 0 13.1 0.406
X264 248 3.3 244 0.003 244 0.05

urations used in 30 repeats of the different approaches. Note that
the y-axis of that figure is a logarithmic scale so, within each plot:

• Differences near the bottom are very small differences;

• Differences near the top are very large differences;

As seen in the left and middle plots of Figure 6, the FW approach
of Siegmund et al. (i.e., the sampling approach using the fewest
number of configurations) often has the highest error rate and the
highest standard deviation on that error rate. Hence, we cannot
recommend this method or, if one wishes to use this method, we
recommend using the other sampling heuristics (e.g., HO, HS) to
make more accurate predictions (but at the cost of much more mea-
surements). Moreover, the size of the standard deviation of this
method causes further difficulties in estimating which configura-
tions are those exhibiting a large prediction error.

As to the approach of Guo et al. (with PW), this does not standout
on any of our measurements. Its error results are within 1 % of

WHAT ; its standard deviation are usually larger; and it requires
much more data than WHAT .

In terms of the number of measured samples required to build
a model, the right-hand-side plot of Figure 6 shows that WHAT
requires the fewest samples except for two cases: the approach of
Guo et al. (with 2N) working on BDBC and LLVM. In both these
cases, the mean error and standard deviation on the error estimate is
larger than WHAT (see the red bars in the left and middle plots of
Figure 6). Furthermore, in the case of BDBC, the error values are
µ = 14%, σ = 13%, which are much larger than WHAT ’s error
scores of µ = 6%, σ = 5%.

Although the approach of Sarkar et al. produces an error rate
that is sometimes less than the one of WHAT (see the left-hand-
side of Figure 6), it requires the most number of measurements.
Moreover, WHAT ’s accuracy is close to Sarkar’s approach (1 % to
2 % difference). Hence, we cannot recommend this approach, too.

The right-hand-side of Figure 6 shows the percent of required
measurements. Table 2 shows the same expressed as absolute val-
ues. We see that most state-of-the-art approaches often require
many more samples than WHAT . Using those fewest numbers of
samples, WHAT has within 1 to 2 % of the lowest standard devi-
ation rates and within 1 to 2 % of lowest error rates. The excep-
tion is Sarkar’s approach, which has 5 % lower mean error rates (in
BDBC, see the left-hand-side plot of Figure 6). However, as shown
in right-hand-side of Table 2, Sarkar’s approach needs nearly three
times more measurements than WHAT (191 vs 64 samples). Given
the overall reduction of the error is small (5 % difference between
Sarkar and WHAT in mean error), the overall cost of tripling the
data-collection cost is often not feasible in a practical context and
might not justify the small additional benefit in accuracy.

Hence, we answer RQ4 with “yes”, since WHAT yields pre-
dictions that are similar to or more accurate than prior work,
while requiring fewer samples.

8

Table 2: Comparison of the number of the samples required
with the state of the art. The grey colored cells indicate the
approach which has the lowest number of samples. We notice
that WHAT and Guo (2N) uses less data compared to other
approaches. The high fault rate of Guo (2N) accompanied with
high variability in the predictions makes WHAT our preferred
method.

Samples
Dataset Siegmund Guo (2N) Guo (PW) Sarkar WHAT

Apache 29 181 29 55 16
BDBC 139 36 139 191 64
BDBJ 48 52 48 57 16
LLVM 62 22 64 43 32
SQLite 566 78 566 925 64
X264 81 32 81 93 32

6. RELIABILITY AND VALIDITY
Reliability refers to the consistency of the results obtained from

the research. For example, how well independent researchers could
reproduce the study? To increase external reliability, this paper
has taken care to either clearly define our algorithms or use im-
plementations from the public domain (SciKitLearn) [16]. Also,
all the data used in this work is available on-line in the PROMISE
code repository and all our algorithms are on-line at github.com/ai-
se/where.

Validity refers to the extent to which a piece of research actually
investigates what the researcher purports to investigate [22]. Inter-
nal validity checks if the differences found in the treatments can be
ascribed to the treatments under study.

One internal validity issue with our experiments is the choice of
training and testing data sets discussed in Figure 1. Recall that
while all our learners used the same testing data set, our untuned
learners were only given access to training data.

Another internal validity issues is instrumentation. The very low
µ and σ error values reported in this study are so small that it is
reasonable to ask whether they are due to some instrumentation
quirk, rather than due to using a clever sample strategy:

• Our low µ values are consistent with prior work (e.g. [19]);

• As to our low σ values, we note that, when the error val-
ues are so close to 0 %, the standard deviation of the error is
“squeezed” between zero and those errors. Hence, we would
expect that experimental rigs that generate error values on
the order of 5 % and Equation 3 should have σ values of
0≤ σ ≤ 5 (e.g., like those seen in our introduction).

Regarding SQLite, we cannot measure all possible configura-
tions in reasonable time. Hence, we sampled only 100 configura-
tions to compare prediction and actual performance values. We are
aware that this evaluation leaves room for outliers. Also, we are
aware that measurement bias can cause false interpretations [15].
Since we aim at predicting performance for a special workload, we
do not have to vary benchmarks.

We aimed at increasing the external validity by choosing soft-
ware systems from different domains with different configuration
mechanisms and implemented with different programming languages.
Furthermore, the systems used are deployed and used in the real
world. Nevertheless, assuming the evaluations to be automatically
transferable to all configurable software systems is not fair. To fur-
ther strengthen external validity, we run the model (generated by
WHAT + S1) against other optimizers, such as NSGA-II and dif-

ferential evolution [25]. That is, we validated whether the learned
models are not only applicable for GALE style of perturbation. In
Table 1, we see that the models developed are valid for all optimiz-
ers, as all optimizers are able to find the near optimal solutions.

7. RELATED WORK
In 2000, Shi and Maik [21] claimed the term “spectral cluster-

ing” as a reference to their normalized cuts image segmentation
algorithm that partitions data through a spectral (eigenvalue) anal-
ysis of the Laplacian representation of the similarity graph between
instances in the data.

In 2003, Kamvar et al. [11] generalized that definition saying
that “spectral learners” were any data-mining algorithm that first
replaced the raw dimensions with those inferred from the spectrum
(eigenvalues) of the affinity (a.k.a. distance) matrix of the data, op-
tionally adjusted via some normalization technique).

Our clustering based on first principal component splits the data
on a approximation to an eigenvector, found at each recursive level
of the data (as described in §3.1). Hence, this method is a “spectral
clusterer” in the general Kamvar sense. Note that, for our data, we
have not found that Kamvar’s normalization matrices are needed.

Regarding sampling, there are a wide range of methods know as
experimental designs or designs of experiments [18]. They usually
rely on fractional factorial designs as in the combinatorial testing
community [13].

Furthermore, there is a recent approach that learns performance-
influence models for configurable software systems [23]. While
this approach can handle even numeric features, it has similar sam-
pling techniques for the Boolean features as reported in their earlier
work [24]. Since we already compared to that earlier work and do
not consider also numeric features, we did not compare our work
to performance-influence models.

8. CONCLUSIONS
Configurable software systems today are widely used in prac-

tice, but expose challenges regarding finding performance-optimal
configurations. State-of-the-art approaches require too many mea-
surements or are prone to large variances in their performance pre-
dictions. To avoid these shortcomings, we have proposed a fast
spectral learner, called WHAT , along with three new sampling
techniques. The key idea of WHAT is to explore the configura-
tion space with eigenvalues of the features used in a configuration
to determine exactly those configurations for measurement that re-
veal key performance characteristics. This way, we can study many
closely associated configurations with only a few measurements.

We evaluated our approach on six real-world configurable soft-
ware systems borrowed from the literature. Our approach achieves
similar to lower error rates, while being stable when compared to
the state of the art. In particular, with the exception of Berkeley
DB, our approach is more accurate than the state-of-the-art ap-
proaches by Siegmund et al. [24] and Guo et al. [7]. Furthermore,
we achieve a similar prediction accuracy and stability as the ap-
proach by Sarkar et al [19], while requiring a far smaller number of
configurations to be measured. We also demonstrated that our ap-
proach can be used to build cheap and stable surrogate prediction
models, which can be used by off-the-shelf optimizers to find the
performance-optimal configuration.

9

9. REFERENCES
[1] Daniel Boley. Principal direction divisive partitioning. Data

mining and knowledge discovery, 2(4):325–344, 1998.
[2] Leo Breiman, Jerome Friedman, Charles J Stone, and

Richard A Olshen. Classification and regression trees. CRC
press, 1984.

[3] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and
T Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[4] Qian Du and James E Fowler. Low-complexity principal
component analysis for hyperspectral image compression.
International Journal of High Performance Computing
Applications, 22(4):438–448, 2008.

[5] Christos Faloutsos and King-Ip Lin. Fastmap: A fast
algorithm for indexing, data-mining and visualization of
traditional and multimedia datasets. volume 24. ACM, 1995.

[6] Roger Fletcher. Practical methods of optimization. John
Wiley & Sons, 2013.

[7] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert
Siegmund, and Andrzej Wasowski. Variability-aware
performance prediction: A statistical learning approach. In
IEEE/ACM 28th International Conference on Automated
Software Engineering, pages 301–311. IEEE, 2013.

[8] Greg Hamerly. Making k-means even faster. Society for
Industrial and Applied Mathematics.

[9] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang.
Search-based software engineering: Trends, techniques and
applications. ACM Computing Surveys, 45(1):11, 2012.

[10] Alexander Ilin and Tapani Raiko. Practical approaches to
principal component analysis in the presence of missing
values. The Journal of Machine Learning Research,
11:1957–2000, 2010.

[11] Kamvar Kamvar, Sepandar Sepandar, Klein Klein, Dan Dan,
Manning Manning, and Christopher Christopher. Spectral
learning. In International Joint Conference of Artificial
Intelligence. Stanford InfoLab, 2003.

[12] Joseph Krall, Tim Menzies, and Misty Davies. Gale:
Geometric active learning for search-based software
engineering. IEEE Transactions on Software Engineering,
41(10):1001–1018, 2015.

[13] D Richard Kuhn, Raghu N Kacker, and Yu Lei. Introduction
to combinatorial testing. CRC press, 2013.

[14] Ilya Gennadyevich Loshchilov. Surrogate-assisted
evolutionary algorithms. PhD thesis, 2013.

[15] Tim Menzies, Andrew Butcher, David Cok, Andrian Marcus,
Lucas Layman, Forrest Shull, Burak Turhan, and Thomas
Zimmermann. Local versus global lessons for defect
prediction and effort estimation. IEEE Transactions on
Software Engineering, 39(6):822–834, 2013.

[16] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
et al. Scikit-learn: Machine learning in python. The Journal
of Machine Learning Research, 12:2825–2830, 2011.

[17] John Platt. Fastmap, Metricmap, and Landmark MDS are all
nystrom algorithms. pages 261–268. Society for Artificial
Intelligence and Statistics, 2005.

[18] Friedrich Pukelsheim. Optimal Design of Experiments,
volume 50. Society for Industrial and Applied Mathematics,
1993.

[19] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and
Krzysztof Czarnecki. Cost-efficient sampling for
performance prediction of configurable systems. In 30th
IEEE/ACM International Conference on Automated Software
Engineering, pages 342–352. IEEE, 2015.

[20] Abdel Salam Sayyad, Joe Ingram, Tim Menzies, and Hany
Ammar. Scalable product line configuration: A straw to
break the camel’s back. In IEEE/ACM 28th International
Conference on Automated Software Engineering, pages
465–474. IEEE, 2013.

[21] Jianbo Shi and Jitendra Malik. Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(8):888–905, 2000.

[22] Janet Siegmund, Norbert Siegmund, and Sven Apel. Views
on internal and external validity in empirical software
engineering. In Proceedings of the 37th International
Conference on Software Engineering, pages 9–19. IEEE,
2015.

[23] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and
Christian Kästner. Performance-influence models for highly
configurable systems. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, pages
284–294. ACM, 2015.

[24] Norbert Siegmund, Sergiy S Kolesnikov, Christian Kästner,
Sven Apel, Don Batory, Marko Rosenmüller, and Gunter
Saake. Predicting performance via automated
feature-interaction detection. In Proceedings of the 34th
International Conference on Software Engineering, pages
167–177. IEEE Press, 2012.

[25] Rainer Storn and Kenneth Price. Differential evolution–a
simple and efficient heuristic for global optimization over
continuous spaces. Journal of global optimization,
11(4):341–359, 1997.

[26] Christopher Theisen, Kim Herzig, Patrick Morrison,
Brendan Murphy, and Laurie Williams. Approximating
attack surfaces with stack traces. In Proceedings of the 37th
International Conference on Software Engineering, pages
199–208. IEEE Press, 2015.

[27] Gary M Weiss and Ye Tian. Maximizing classifier utility
when there are data acquisition and modeling costs. Data
Mining and Knowledge Discovery, 17(2):253–282, 2008.

[28] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou,
Shankar Pasupathy, and Rukma Talwadker. Hey, you have
given me too many knobs!: Understanding and dealing with
over-designed configuration in system software. In
Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, pages 307–319. ACM, 2015.

[29] Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki.
Performance prediction of configurable software systems by
fourier learning. In 30th IEEE/ACM International
Conference on Automated Software Engineering, pages
365–373. IEEE, 2015.

[30] Marcela Zuluaga, Guillaume Sergent, Andreas Krause, and
Markus Püschel. Active learning for multi-objective
optimization. In Proceedings of the 30th International
Conference on Machine Learning, pages 462–470, 2013.

10

