deal.ll on GPU

Final presentation at Eurohack 19, Lugano, Switzerland

Peter Munch'23, Momme Allalen*, Martin Kronbichler'2,
Paddy O Conbhui*, Prashanth Kanduri®

"deal.ll developer
2Institute for Computational Mechanics, Technical University of Munich, Germany
3Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, German
y
4CFD-Lab, Leibniz Supercomputing Centre, Germany
“Irish Centre for High-End Computing, Ireland
5CSCS/ ETH Ziirich, Switzerland

October 4, 2019

Part 1:
Motivation

1/22

Goal B TUT i M e~ @

Goal:
Optimize the matrix-free deal.ll' GPU implementation for CEED BP52.

"General purpose finite element library deal.ll: https://www.dealii.org/.

2Solve Poisson problem for p = 5 and g = p+ 1 with preconditioned conjugate gradient methods.
2/22

https://www.dealii.org/

Base B TUT i M e~ @

Given modules in deal.ll:
» efficient matrix-free implementation
» GPU support with CUDA-aware MPI-support (with not satisfying performance results)
» standard preconditioned conjugate gradient method (next slide)

Kronbichler, Kormann, A generic interface for parallel finite element operator application. Comput. Fluids 63:135-147, 2012

Kronbichler, Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators. arXiv:1711.03590, 2017

M. Kronbichler, K. Ljungkvist. Multigrid for matrix-free high-order finite element computations on graphics processors, ACM Transactions on Parallel Computing, 2019
Daniel Arndt and Bruno Turcksin, Tutorial step-64, online available https://www.dealii.org/developer/doxygen/deal.II/step_64.html

3/22

https://www.dealii.org/developer/doxygen/deal.II/step_64.html

Preconditioned CG (PCQG) B TUTT i A e <

Algorithm 1: (Standard) preconditioned CG solver

Data: A, xp, b, M~

Result: x

[startup];

fork=0,1,... do

v« Ap;

a+v/(p"v);

X < X+o-p;

r<r—o-v;

if |[r]2> < € then
| return

v

Ad evaluated matrix-free
vectors live either on host or device

v

v

CG algorithm can operate on both types of vectors

\4

ve M- CPU and GPU implementation of vector operations

B«
yr'y;

B+ v/B;
p <+ v+B-p;

v

note: M := diag(A) here!

4/22

Reformulated (merged) PCG

sees
seee icHES <%
m TI.ITI Y (N4

Algorithm 2: Cache friendly CG preconditioned by a diagonal

Data: A, xg, b, M~

Result: x

[startup];

fork=0,1,... do

rer-av x<x+top p«M'ripp;

V< Ap;

a<p'v br'r c«r

o+ e/a;

if Vb-+2ac+ o?d < € then
X< X+ ap;

L return

Tv d«viv e«r"M'r

B «— (e—2af+a?g)/e;

// pre
// vmult
fer"M'v g viM'y; // post

Observation: Works very well for CPUs!

5/22

Part 2:
Optimization steps

6/22

Base (single node/single GPU) B TUT i e

Profile of a single iteration (with NVIDIA Nsight):

O S SO S ioet N
I\Hlncl\l\ \\IHwﬂI\ \HHW\I

I i O ——— T — R e R |
Observations:

+ schoolbook-like: easy to understand; working for any preconditioners
- (too) many kernel calls and redundant memory loads

7/22

Reformulated algorithm (single node/single GPU) B TUT i M foe
Profile of a single iteration (with NVIDIA Nsight):

sy ___¥ |
. 3 . | Y30 | W
Observations:

+ 3 kernel calls®
- limited to diagonal preconditioner

3We eliminated "set” and merged into "update_a” in a next step (not shown here) with reduced memory access.
8/22

Reformulated algorithm (multi node/single GPU)

Profile of a single iteration (with NVIDIA Nsight):

oo T | D) | — L e— R N R

: __ e e " " l: _ :
0 [S — .7 . |)
- . | . I
== -
“update ghost values” “computation” ”compress”

Observations:

- No overlap of communication and computation.

9/22

Overlapping communication and computation
(multi node/single GPU)

B TUM & M o <
Profile of a single iteration (with NVIDIA Nsight):

B 1 SuimmirorQIeNe . 8 6 R oo QUH RS

= | —
e —— e i
— = 1| —
| [CEsep) CCCwees] (Ceenesmen) & Coemsmen) [[(Cwaeb)
' ,
— -
] [
- e
| |]

“update ghost values” ”compress”
Split up matrix-vector multiplication into three parts — Observations:
+ Overlap of (actual) communication and computation.

- MPI (MPI_lsend, MPI_Waitall) memcopies data (DtoH and HtoD), which blocks
communication.

10/22

Overlapping MPI memcopy with computation - e
(multi node/single GPU) TUT i M o=

Profile of a single iteration (with NVIDIA Nsight):

Move first and last part of matrix-vector multiplication on to a new streams — Observations:

+ Implicit synchronization (by default stream).
+ Perfect overlap.

11/22

Running multiple processes on a node

» work in progress
» hope: better utilization of the GPU and the network card

12/22

Final code B TUT i ™ e

The final code can be found online:
» https://github.com/peterrum/deal-and-ceed-on—-gpu
» https://github.com/peterrum/dealii/tree/dealii-on—gpu

13/22

https://github.com/peterrum/deal-and-ceed-on-gpu
https://github.com/peterrum/dealii/tree/dealii-on-gpu

Part 3:
Results

14/22

%
L

Intel Skylake vs NVIDIA Volta (p/q=4/5) vs Pascal (p/q=5/6) B TUT] i [(o= <

UL \H‘ T 1 T T 11T
Achieved throughput:
» Pascal (4x): 7.6 GDoF

3,000 |-

2.4 GDoF/node

Total peak performance: 2,000

» Pascal: 4.7 TFlop/s

» Volta: 7.8 TFlop/s

» Skylake: 4.2 TFlop/s
Maximum memory bw:

1,000

[million DoF x CG its] / [nodes x sec]

» Pascal: 732 GB/s 0103 — “‘104 ‘ ““‘1‘05 — 106 ‘1‘07 — ““1”03
» Volta: 900 GB/s DoF per node

> Skylake: 191 GB/s —F— P100 (1 node) —@— P100 (2 node) —A— P100 (4 node)
—%— V100 (1 node) —x— Skylake (1 node)

Note: Skylake/Pascal run merged PCG. Volta runs standard implementations! 15/22

Scaling with up to 60 P100 nodes on Piz Daint B TUT i M foe

3,000 - f

2.4 GDoF/node

2,000 |-

1,000

[million DoF x CG its] / [nodes x sec]

DoF per node

—f3— strong (=~ 17 Mil. DoFs) —@— weak (=~ 4.3 Mil. DoFs/node)

16/22

Variants of BP5 on Pascal (p/q=5/6) B TUT i ™ e

Variant 1:

3,000
» do not merge coefficient

—1 -7
(Jq '[Jqlwgdg ") 2,000 |
1.7 GDoF/node

in quadrature points
» instead: load Jg, |Jq|

[million DoF x CG its] / [nodes x sec]

_ 1,000 |- .
> i.e.: load 10 vs. 6 doubles
» (additional work)
- [N [Ll Lol [T
Observation: S0 104 108 108 107 108
» Performance drop DoF per node

higher than expected! —B— P100 (1 node) —@— P100 (2 node) —A— P100 (4 node)

17/22

Variants of BP5 on Pascal (p/q=5/6) (cont.) B Tum i

Variant 2:
> integrate in Gauss
quadrature points
> requires interpolation

» additional 2 - dim
sum-factorization sweeps

Observation:

» Basis transformation
comes for free!

[million DoF x CG its] / [nodes x sec]

ICHEC (¥
o (o o

7

3,000

2.4 GDoF/node

2,000 (-

1,000 |-

0
108

104 10° 108 107
DoF per node

—&— P100 (1 node) —@— P100 (2 node) —é— P100 (4 node)

108

18/22

Part 4:
Conclusions and lessons learned

19/22

Conclusions and lessons learned B TUT i ™ e

» GPU programming is fun (although we did not have to do much), except the redundant
conversion of block- and thread-id

» similar optimization strategies work for CPU and GPU
(e.g. minimize data access overlapping communication and computation)

» given a heavily optimized FEM code (matrix-free exploiting caches and SIMD), the
usage of GPUs will not lead to a significant speed-up

20/22

Outlook B TUM & 1 e o

v

Step-by-step integration of the new features in deal.ll.
Extend the functionality of MatrixFree (GPU) so that it matches MatrixFree (CPU).

» geometric multigrid and hybrid multigrid methods*
» discontinuous Galerkin methods
» over-integration p+1 < g

v

v

Investigation of compute nodes with multiple GPUs.

v

Build a minimal build configuration for GPU-only runs.

4 P Munch, An efficient hybrid multigrid solver for high-order discontinuous Galerkin methods, Master’s thesis, 2018
(online available: https://mediatum.ub.tum.de/node?id=1514962)
21/22

https://mediatum.ub.tum.de/node?id=1514962)

et .
ICHEC <4
B TUT i [(e

Thanks to the organizers and the mentors!

22/22

