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Part 1:

Motivation
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Goal

Goal:
Optimize the matrix-free deal.II1 GPU implementation for CEED BP52.

1General purpose finite element library deal.II: https://www.dealii.org/.
2Solve Poisson problem for p = 5 and q = p+1 with preconditioned conjugate gradient methods.
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https://www.dealii.org/


Base

Given modules in deal.II:
I efficient matrix-free implementation
I GPU support with CUDA-aware MPI-support (with not satisfying performance results)
I standard preconditioned conjugate gradient method (next slide)

Kronbichler, Kormann, A generic interface for parallel finite element operator application. Comput. Fluids 63:135–147, 2012
Kronbichler, Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators. arXiv:1711.03590, 2017
M. Kronbichler, K. Ljungkvist. Multigrid for matrix-free high-order finite element computations on graphics processors, ACM Transactions on Parallel Computing, 2019
Daniel Arndt and Bruno Turcksin, Tutorial step-64, online available https://www.dealii.org/developer/doxygen/deal.II/step_64.html
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Preconditioned CG (PCG)

Algorithm 1: (Standard) preconditioned CG solver
Data: A, x0, b, M−1

Result: x
1 [startup];
2 for k = 0,1,. . . do
3 v ← Ap;
4 α ← γ/(pT v);
5 x ← x+α·p;
6 r ← r−α·v ;
7 if ||r||2 < ε then
8 return

9 v ←M−1r ;
10 β ← γ ;
11 γ ← rT v ;
12 β ← γ/β ;
13 p← v+β ·p;
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I Ad evaluated matrix-free
I vectors live either on host or device
I CG algorithm can operate on both types of vectors
I CPU and GPU implementation of vector operations

I note: M := diag(A) here!



Reformulated (merged) PCG

Algorithm 2: Cache friendly CG preconditioned by a diagonal
Data: A, x0, b, M−1

Result: x
1 [startup];
2 for k = 0,1,. . . do
3 r ← r −αv x ← x +αp p←M−1 r +βp ; // pre

4 v ← Ap ; // vmult

5 a← pT v b← rT r c← rT v d ← vT v e← rT M−1r f ← rT M−1v g← vT M−1v ; // post

6 α ← e/a;
7 if

√
b+2αc+α2d < ε then

8 x ← x +αp;
9 return

10 β ← (e−2α f +α2g)/e;

Observation: Works very well for CPUs!
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Part 2:

Optimization steps
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Base (single node/single GPU)

Profile of a single iteration (with NVIDIA Nsight):

Observations:

+ schoolbook-like: easy to understand; working for any preconditioners

- (too) many kernel calls and redundant memory loads
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Reformulated algorithm (single node/single GPU)

Profile of a single iteration (with NVIDIA Nsight):

Observations:

+ 3 kernel calls3

- limited to diagonal preconditioner

3We eliminated ”set” and merged into ”update a” in a next step (not shown here) with reduced memory access.
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Reformulated algorithm (multi node/single GPU)

Profile of a single iteration (with NVIDIA Nsight):

”update ghost values” ”computation” ”compress”
Observations:

- No overlap of communication and computation.
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Overlapping communication and computation
(multi node/single GPU)

Profile of a single iteration (with NVIDIA Nsight):

”update ghost values” ”compress”

Split up matrix-vector multiplication into three parts→ Observations:

+ Overlap of (actual) communication and computation.
- MPI (MPI Isend, MPI Waitall) memcopies data (DtoH and HtoD), which blocks

communication.
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Overlapping MPI memcopy with computation
(multi node/single GPU)

Profile of a single iteration (with NVIDIA Nsight):

Move first and last part of matrix-vector multiplication on to a new streams→ Observations:

+ Implicit synchronization (by default stream).

+ Perfect overlap.
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Running multiple processes on a node

I work in progress
I hope: better utilization of the GPU and the network card
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Final code

The final code can be found online:
I https://github.com/peterrum/deal-and-ceed-on-gpu

I https://github.com/peterrum/dealii/tree/dealii-on-gpu
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https://github.com/peterrum/deal-and-ceed-on-gpu
https://github.com/peterrum/dealii/tree/dealii-on-gpu


Part 3:

Results
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Intel Skylake vs NVIDIA Volta (p/q=4/5) vs Pascal (p/q=5/6)

Achieved throughput:

I Pascal (4×): 7.6 GDoF

Total peak performance:
I Pascal: 4.7 TFlop/s
I Volta: 7.8 TFlop/s
I Skylake: 4.2 TFlop/s

Maximum memory bw:
I Pascal: 732 GB/s
I Volta: 900 GB/s
I Skylake: 191 GB/s
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Scaling with up to 60 P100 nodes on Piz Daint
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Variants of BP5 on Pascal (p/q=5/6)

Variant 1:

I do not merge coefficient

(J−1
q |Jq|wqJ−T

q )

in quadrature points
I instead: load Jq , |Jq|
I i.e.: load 10 vs. 6 doubles
I (additional work)

Observation:

I Performance drop
higher than expected!
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Variants of BP5 on Pascal (p/q=5/6) (cont.)

Variant 2:

I integrate in Gauss
quadrature points

I requires interpolation
I additional 2 ·dim

sum-factorization sweeps

Observation:

I Basis transformation
comes for free!
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Part 4:

Conclusions and lessons learned
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Conclusions and lessons learned

I GPU programming is fun (although we did not have to do much), except the redundant
conversion of block- and thread-id

I similar optimization strategies work for CPU and GPU
(e.g. minimize data access overlapping communication and computation)

I given a heavily optimized FEM code (matrix-free exploiting caches and SIMD), the
usage of GPUs will not lead to a significant speed-up
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Outlook

I Step-by-step integration of the new features in deal.II.
I Extend the functionality of MatrixFree (GPU) so that it matches MatrixFree (CPU).

I geometric multigrid and hybrid multigrid methods4

I discontinuous Galerkin methods
I over-integration p+1� q

I Investigation of compute nodes with multiple GPUs.
I Build a minimal build configuration for GPU-only runs.

4 P. Munch, An efficient hybrid multigrid solver for high-order discontinuous Galerkin methods, Master’s thesis, 2018
(online available: https://mediatum.ub.tum.de/node?id=1514962)
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https://mediatum.ub.tum.de/node?id=1514962 )


Thanks to the organizers and the mentors!
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