
deal.II on GPU
Final presentation at Eurohack 19, Lugano, Switzerland

Peter Munch123, Momme Allalen4, Martin Kronbichler12,
Paddy Ó Conbhuı́4, Prashanth Kanduri5

1deal.II developer

2Institute for Computational Mechanics, Technical University of Munich, Germany

3Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, Germany

4CFD-Lab, Leibniz Supercomputing Centre, Germany

4Irish Centre for High-End Computing, Ireland

5CSCS/ ETH Zürich, Switzerland

October 4, 2019

Part 1:

Motivation

1/22

Goal

Goal:
Optimize the matrix-free deal.II1 GPU implementation for CEED BP52.

1General purpose finite element library deal.II: https://www.dealii.org/.
2Solve Poisson problem for p = 5 and q = p+1 with preconditioned conjugate gradient methods.

2/22

https://www.dealii.org/

Base

Given modules in deal.II:
I efficient matrix-free implementation
I GPU support with CUDA-aware MPI-support (with not satisfying performance results)
I standard preconditioned conjugate gradient method (next slide)

Kronbichler, Kormann, A generic interface for parallel finite element operator application. Comput. Fluids 63:135–147, 2012
Kronbichler, Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators. arXiv:1711.03590, 2017
M. Kronbichler, K. Ljungkvist. Multigrid for matrix-free high-order finite element computations on graphics processors, ACM Transactions on Parallel Computing, 2019
Daniel Arndt and Bruno Turcksin, Tutorial step-64, online available https://www.dealii.org/developer/doxygen/deal.II/step_64.html

3/22

https://www.dealii.org/developer/doxygen/deal.II/step_64.html

Preconditioned CG (PCG)

Algorithm 1: (Standard) preconditioned CG solver
Data: A, x0, b, M−1

Result: x
1 [startup];
2 for k = 0,1,. . . do
3 v ← Ap;
4 α ← γ/(pT v);
5 x ← x+α·p;
6 r ← r−α·v ;
7 if ||r||2 < ε then
8 return

9 v ←M−1r ;
10 β ← γ ;
11 γ ← rT v ;
12 β ← γ/β ;
13 p← v+β ·p;

4/22

I Ad evaluated matrix-free
I vectors live either on host or device
I CG algorithm can operate on both types of vectors
I CPU and GPU implementation of vector operations

I note: M := diag(A) here!

Reformulated (merged) PCG

Algorithm 2: Cache friendly CG preconditioned by a diagonal
Data: A, x0, b, M−1

Result: x
1 [startup];
2 for k = 0,1,. . . do
3 r ← r −αv x ← x +αp p←M−1 r +βp ; // pre

4 v ← Ap ; // vmult

5 a← pT v b← rT r c← rT v d ← vT v e← rT M−1r f ← rT M−1v g← vT M−1v ; // post

6 α ← e/a;
7 if

√
b+2αc+α2d < ε then

8 x ← x +αp;
9 return

10 β ← (e−2α f +α2g)/e;

Observation: Works very well for CPUs!

5/22

Part 2:

Optimization steps

6/22

Base (single node/single GPU)

Profile of a single iteration (with NVIDIA Nsight):

Observations:

+ schoolbook-like: easy to understand; working for any preconditioners

- (too) many kernel calls and redundant memory loads

7/22

Reformulated algorithm (single node/single GPU)

Profile of a single iteration (with NVIDIA Nsight):

Observations:

+ 3 kernel calls3

- limited to diagonal preconditioner

3We eliminated ”set” and merged into ”update a” in a next step (not shown here) with reduced memory access.
8/22

Reformulated algorithm (multi node/single GPU)

Profile of a single iteration (with NVIDIA Nsight):

”update ghost values” ”computation” ”compress”
Observations:

- No overlap of communication and computation.

9/22

Overlapping communication and computation
(multi node/single GPU)

Profile of a single iteration (with NVIDIA Nsight):

”update ghost values” ”compress”

Split up matrix-vector multiplication into three parts→ Observations:

+ Overlap of (actual) communication and computation.
- MPI (MPI Isend, MPI Waitall) memcopies data (DtoH and HtoD), which blocks

communication.
10/22

Overlapping MPI memcopy with computation
(multi node/single GPU)

Profile of a single iteration (with NVIDIA Nsight):

Move first and last part of matrix-vector multiplication on to a new streams→ Observations:

+ Implicit synchronization (by default stream).

+ Perfect overlap.

11/22

Running multiple processes on a node

I work in progress
I hope: better utilization of the GPU and the network card

12/22

Final code

The final code can be found online:
I https://github.com/peterrum/deal-and-ceed-on-gpu

I https://github.com/peterrum/dealii/tree/dealii-on-gpu

13/22

https://github.com/peterrum/deal-and-ceed-on-gpu
https://github.com/peterrum/dealii/tree/dealii-on-gpu

Part 3:

Results

14/22

Intel Skylake vs NVIDIA Volta (p/q=4/5) vs Pascal (p/q=5/6)

Achieved throughput:

I Pascal (4×): 7.6 GDoF

Total peak performance:
I Pascal: 4.7 TFlop/s
I Volta: 7.8 TFlop/s
I Skylake: 4.2 TFlop/s

Maximum memory bw:
I Pascal: 732 GB/s
I Volta: 900 GB/s
I Skylake: 191 GB/s

103 104 105 106 107 108
0

1,000

2,000

3,000

2.4 GDoF/node

DoF per node

[m
ill

io
n

D
oF

x
C

G
its

]/
[n

od
es

x
se

c]

P100 (1 node) P100 (2 node) P100 (4 node)

V100 (1 node) Skylake (1 node)

Note: Skylake/Pascal run merged PCG. Volta runs standard implementations! 15/22

Scaling with up to 60 P100 nodes on Piz Daint

1 2 4 8 16 32 60
0

1,000

2,000

3,000

2.4 GDoF/node

DoF per node

[m
ill

io
n

D
oF

x
C

G
its

]/
[n

od
es

x
se

c]

strong (≈ 17 Mil. DoFs) weak (≈ 4.3 Mil. DoFs/node)

16/22

Variants of BP5 on Pascal (p/q=5/6)

Variant 1:

I do not merge coefficient

(J−1
q |Jq|wqJ−T

q)

in quadrature points
I instead: load Jq , |Jq|
I i.e.: load 10 vs. 6 doubles
I (additional work)

Observation:

I Performance drop
higher than expected!

103 104 105 106 107 108
0

1,000

2,000

3,000

1.7 GDoF/node

DoF per node

[m
ill

io
n

D
oF

x
C

G
its

]/
[n

od
es

x
se

c]

P100 (1 node) P100 (2 node) P100 (4 node)

17/22

Variants of BP5 on Pascal (p/q=5/6) (cont.)

Variant 2:

I integrate in Gauss
quadrature points

I requires interpolation
I additional 2 ·dim

sum-factorization sweeps

Observation:

I Basis transformation
comes for free!

103 104 105 106 107 108
0

1,000

2,000

3,000

2.4 GDoF/node

DoF per node

[m
ill

io
n

D
oF

x
C

G
its

]/
[n

od
es

x
se

c]

P100 (1 node) P100 (2 node) P100 (4 node)

18/22

Part 4:

Conclusions and lessons learned

19/22

Conclusions and lessons learned

I GPU programming is fun (although we did not have to do much), except the redundant
conversion of block- and thread-id

I similar optimization strategies work for CPU and GPU
(e.g. minimize data access overlapping communication and computation)

I given a heavily optimized FEM code (matrix-free exploiting caches and SIMD), the
usage of GPUs will not lead to a significant speed-up

20/22

Outlook

I Step-by-step integration of the new features in deal.II.
I Extend the functionality of MatrixFree (GPU) so that it matches MatrixFree (CPU).

I geometric multigrid and hybrid multigrid methods4

I discontinuous Galerkin methods
I over-integration p+1� q

I Investigation of compute nodes with multiple GPUs.
I Build a minimal build configuration for GPU-only runs.

4 P. Munch, An efficient hybrid multigrid solver for high-order discontinuous Galerkin methods, Master’s thesis, 2018
(online available: https://mediatum.ub.tum.de/node?id=1514962)

21/22

https://mediatum.ub.tum.de/node?id=1514962)

Thanks to the organizers and the mentors!

22/22

