
/*
 config.h - compile time configuration
 Part of Grbl

 Copyright (c) 2012-2016 Sungeun K. Jeon for Gnea Research LLC
 Copyright (c) 2009-2011 Simen Svale Skogsrud

 Grbl is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published
by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 Grbl is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

// This file contains compile-time configurations for Grbl's
internal system. For the most part,
// users will not need to directly modify these, but they are here
for specific needs, i.e.
// performance tuning or adjusting to non-typical machines.

// IMPORTANT: Any changes here requires a full re-compiling of the
source code to propagate them.

#ifndef config_h
#define config_h
#include "grbl.h" // For Arduino IDE compatibility.

// Define CPU pin map and default settings.
// NOTE: OEMs can avoid the need to maintain/update the defaults.h
and cpu_map.h files and use only
// one configuration file by placing their specific defaults and pin
map at the bottom of this file.
// If doing so, simply comment out these two defines and see
instructions below.
#define DEFAULTS_GENERIC
#define CPU_MAP_ATMEGA328P // Arduino Uno CPU

// Serial baud rate
// #define BAUD_RATE 230400
#define BAUD_RATE 115200

// Define realtime command special characters. These characters are
'picked-off' directly from the
// serial read data stream and are not passed to the grbl line
execution parser. Select characters

// that do not and must not exist in the streamed g-code program.
ASCII control characters may be
// used, if they are available per user setup. Also, extended ASCII
codes (>127), which are never in
// g-code programs, maybe selected for interface programs.
// NOTE: If changed, manually update help message in report.c.

#define CMD_RESET 0x18 // ctrl-x.
#define CMD_STATUS_REPORT '?'
#define CMD_CYCLE_START '~'
#define CMD_FEED_HOLD '!'

// NOTE: All override realtime commands must be in the extended
ASCII character set, starting
// at character value 128 (0x80) and up to 255 (0xFF). If the normal
set of realtime commands,
// such as status reports, feed hold, reset, and cycle start, are
moved to the extended set
// space, serial.c's RX ISR will need to be modified to accomodate
the change.
// #define CMD_RESET 0x80
// #define CMD_STATUS_REPORT 0x81
// #define CMD_CYCLE_START 0x82
// #define CMD_FEED_HOLD 0x83
#define CMD_SAFETY_DOOR 0x84
#define CMD_JOG_CANCEL 0x85
#define CMD_DEBUG_REPORT 0x86 // Only when DEBUG enabled, sends
debug report in '{}' braces.
#define CMD_FEED_OVR_RESET 0x90 // Restores feed override
value to 100%.
#define CMD_FEED_OVR_COARSE_PLUS 0x91
#define CMD_FEED_OVR_COARSE_MINUS 0x92
#define CMD_FEED_OVR_FINE_PLUS 0x93
#define CMD_FEED_OVR_FINE_MINUS 0x94
#define CMD_RAPID_OVR_RESET 0x95 // Restores rapid override
value to 100%.
#define CMD_RAPID_OVR_MEDIUM 0x96
#define CMD_RAPID_OVR_LOW 0x97
// #define CMD_RAPID_OVR_EXTRA_LOW 0x98 // *NOT SUPPORTED*
#define CMD_SPINDLE_OVR_RESET 0x99 // Restores spindle override
value to 100%.
#define CMD_SPINDLE_OVR_COARSE_PLUS 0x9A
#define CMD_SPINDLE_OVR_COARSE_MINUS 0x9B
#define CMD_SPINDLE_OVR_FINE_PLUS 0x9C
#define CMD_SPINDLE_OVR_FINE_MINUS 0x9D
#define CMD_SPINDLE_OVR_STOP 0x9E
#define CMD_COOLANT_FLOOD_OVR_TOGGLE 0xA0
#define CMD_COOLANT_MIST_OVR_TOGGLE 0xA1

// If homing is enabled, homing init lock sets Grbl into an alarm
state upon power up. This forces
// the user to perform the homing cycle (or override the locks)
before doing anything else. This is
// mainly a safety feature to remind the user to home, since

position is unknown to Grbl.
#define HOMING_INIT_LOCK // Comment to disable

// Define the homing cycle patterns with bitmasks. The homing cycle
first performs a search mode
// to quickly engage the limit switches, followed by a slower locate
mode, and finished by a short
// pull-off motion to disengage the limit switches. The following
HOMING_CYCLE_x defines are executed
// in order starting with suffix 0 and completes the homing routine
for the specified-axes only. If
// an axis is omitted from the defines, it will not home, nor will
the system update its position.
// Meaning that this allows for users with non-standard cartesian
machines, such as a lathe (x then z,
// with no y), to configure the homing cycle behavior to their
needs.
// NOTE: The homing cycle is designed to allow sharing of limit
pins, if the axes are not in the same
// cycle, but this requires some pin settings changes in cpu_map.h
file. For example, the default homing
// cycle can share the Z limit pin with either X or Y limit pins,
since they are on different cycles.
// By sharing a pin, this frees up a precious IO pin for other
purposes. In theory, all axes limit pins
// may be reduced to one pin, if all axes are homed with seperate
cycles, or vice versa, all three axes
// on separate pin, but homed in one cycle. Also, it should be noted
that the function of hard limits
// will not be affected by pin sharing.
// NOTE: Defaults are set for a traditional 3-axis CNC machine. Z-
axis first to clear, followed by X & Y.
#define HOMING_CYCLE_0 (1<<Z_AXIS) // REQUIRED: First
move Z to clear workspace.
#define HOMING_CYCLE_1 ((1<<X_AXIS)|(1<<Y_AXIS)) // OPTIONAL: Then
move X,Y at the same time.
// #define HOMING_CYCLE_2 // OPTIONAL:
Uncomment and add axes mask to enable

// NOTE: The following are two examples to setup homing for 2-axis
machines.
// #define HOMING_CYCLE_0 ((1<<X_AXIS)|(1<<Y_AXIS)) // NOT
COMPATIBLE WITH COREXY: Homes both X-Y in one cycle.

// #define HOMING_CYCLE_0 (1<<X_AXIS) // COREXY COMPATIBLE: First
home X
// #define HOMING_CYCLE_1 (1<<Y_AXIS) // COREXY COMPATIBLE: Then
home Y

// Number of homing cycles performed after when the machine
initially jogs to limit switches.
// This help in preventing overshoot and should improve
repeatability. This value should be one or
// greater.

#define N_HOMING_LOCATE_CYCLE 1 // Integer (1-128)

// Enables single axis homing commands. $HX, $HY, and $HZ for X, Y,
and Z-axis homing. The full homing
// cycle is still invoked by the $H command. This is disabled by
default. It's here only to address
// users that need to switch between a two-axis and three-axis
machine. This is actually very rare.
// If you have a two-axis machine, DON'T USE THIS. Instead, just
alter the homing cycle for two-axes.
// #define HOMING_SINGLE_AXIS_COMMANDS // Default disabled.
Uncomment to enable.

// After homing, Grbl will set by default the entire machine space
into negative space, as is typical
// for professional CNC machines, regardless of where the limit
switches are located. Uncomment this
// define to force Grbl to always set the machine origin at the
homed location despite switch orientation.
// #define HOMING_FORCE_SET_ORIGIN // Uncomment to enable.

// Number of blocks Grbl executes upon startup. These blocks are
stored in EEPROM, where the size
// and addresses are defined in settings.h. With the current
settings, up to 2 startup blocks may
// be stored and executed in order. These startup blocks would
typically be used to set the g-code
// parser state depending on user preferences.
#define N_STARTUP_LINE 2 // Integer (1-2)

// Number of floating decimal points printed by Grbl for certain
value types. These settings are
// determined by realistic and commonly observed values in CNC
machines. For example, position
// values cannot be less than 0.001mm or 0.0001in, because machines
can not be physically more
// precise this. So, there is likely no need to change these, but
you can if you need to here.
// NOTE: Must be an integer value from 0 to ~4. More than 4 may
exhibit round-off errors.
#define N_DECIMAL_COORDVALUE_INCH 4 // Coordinate or position value
in inches
#define N_DECIMAL_COORDVALUE_MM 3 // Coordinate or position value
in mm
#define N_DECIMAL_RATEVALUE_INCH 1 // Rate or velocity value in in/
min
#define N_DECIMAL_RATEVALUE_MM 0 // Rate or velocity value in mm/
min
#define N_DECIMAL_SETTINGVALUE 3 // Decimals for floating point
setting values
#define N_DECIMAL_RPMVALUE 0 // RPM value in rotations per
min.

// If your machine has two limits switches wired in parallel to one

axis, you will need to enable
// this feature. Since the two switches are sharing a single pin,
there is no way for Grbl to tell
// which one is enabled. This option only effects homing, where if a
limit is engaged, Grbl will
// alarm out and force the user to manually disengage the limit
switch. Otherwise, if you have one
// limit switch for each axis, don't enable this option. By keeping
it disabled, you can perform a
// homing cycle while on the limit switch and not have to move the
machine off of it.
// #define LIMITS_TWO_SWITCHES_ON_AXES

// Allows GRBL to track and report gcode line numbers. Enabling
this means that the planning buffer
// goes from 16 to 15 to make room for the additional line number
data in the plan_block_t struct
// #define USE_LINE_NUMBERS // Disabled by default. Uncomment to
enable.

// Upon a successful probe cycle, this option provides immediately
feedback of the probe coordinates
// through an automatically generated message. If disabled, users
can still access the last probe
// coordinates through Grbl '$#' print parameters.
#define MESSAGE_PROBE_COORDINATES // Enabled by default. Comment to
disable.

// Enables a second coolant control pin via the mist coolant g-code
command M7 on the Arduino Uno
// analog pin 4. Only use this option if you require a second
coolant control pin.
// NOTE: The M8 flood coolant control pin on analog pin 3 will still
be functional regardless.
// #define ENABLE_M7 // Disabled by default. Uncomment to enable.

// This option causes the feed hold input to act as a safety door
switch. A safety door, when triggered,
// immediately forces a feed hold and then safely de-energizes the
machine. Resuming is blocked until
// the safety door is re-engaged. When it is, Grbl will re-energize
the machine and then resume on the
// previous tool path, as if nothing happened.
// #define ENABLE_SAFETY_DOOR_INPUT_PIN // Default disabled.
Uncomment to enable.

// After the safety door switch has been toggled and restored, this
setting sets the power-up delay
// between restoring the spindle and coolant and resuming the cycle.
#define SAFETY_DOOR_SPINDLE_DELAY 4.0 // Float (seconds)
#define SAFETY_DOOR_COOLANT_DELAY 1.0 // Float (seconds)

// Enable CoreXY kinematics. Use ONLY with CoreXY machines.
// IMPORTANT: If homing is enabled, you must reconfigure the homing

cycle #defines above to
// #define HOMING_CYCLE_0 (1<<X_AXIS) and #define HOMING_CYCLE_1
(1<<Y_AXIS)
// NOTE: This configuration option alters the motion of the X and Y
axes to principle of operation
// defined at (http://corexy.com/theory.html). Motors are assumed to
positioned and wired exactly as
// described, if not, motions may move in strange directions. Grbl
requires the CoreXY A and B motors
// have the same steps per mm internally.
// #define COREXY // Default disabled. Uncomment to enable.

// Inverts pin logic of the control command pins based on a mask.
This essentially means you can use
// normally-closed switches on the specified pins, rather than the
default normally-open switches.
// NOTE: The top option will mask and invert all control pins. The
bottom option is an example of
// inverting only two control pins, the safety door and reset. See
cpu_map.h for other bit definitions.
// #define INVERT_CONTROL_PIN_MASK CONTROL_MASK // Default disabled.
Uncomment to disable.
// #define INVERT_CONTROL_PIN_MASK ((1<<CONTROL_SAFETY_DOOR_BIT)|
(1<<CONTROL_RESET_BIT)) // Default disabled.

// Inverts select limit pin states based on the following mask. This
effects all limit pin functions,
// such as hard limits and homing. However, this is different from
overall invert limits setting.
// This build option will invert only the limit pins defined here,
and then the invert limits setting
// will be applied to all of them. This is useful when a user has a
mixed set of limit pins with both
// normally-open(NO) and normally-closed(NC) switches installed on
their machine.
// NOTE: PLEASE DO NOT USE THIS, unless you have a situation that
needs it.
// #define INVERT_LIMIT_PIN_MASK ((1<<X_LIMIT_BIT)|
(1<<Y_LIMIT_BIT)) // Default disabled. Uncomment to enable.

// Inverts the spindle enable pin from low-disabled/high-enabled to
low-enabled/high-disabled. Useful
// for some pre-built electronic boards.
// NOTE: If VARIABLE_SPINDLE is enabled(default), this option has no
effect as the PWM output and
// spindle enable are combined to one pin. If you need both this
option and spindle speed PWM,
// uncomment the config option USE_SPINDLE_DIR_AS_ENABLE_PIN below.
// #define INVERT_SPINDLE_ENABLE_PIN // Default disabled. Uncomment
to enable.

// Inverts the selected coolant pin from low-disabled/high-enabled
to low-enabled/high-disabled. Useful
// for some pre-built electronic boards.

// #define INVERT_COOLANT_FLOOD_PIN // Default disabled. Uncomment
to enable.
// #define INVERT_COOLANT_MIST_PIN // Default disabled. Note: Enable
M7 mist coolant in config.h

// When Grbl powers-cycles or is hard reset with the Arduino reset
button, Grbl boots up with no ALARM
// by default. This is to make it as simple as possible for new
users to start using Grbl. When homing
// is enabled and a user has installed limit switches, Grbl will
boot up in an ALARM state to indicate
// Grbl doesn't know its position and to force the user to home
before proceeding. This option forces
// Grbl to always initialize into an ALARM state regardless of
homing or not. This option is more for
// OEMs and LinuxCNC users that would like this power-cycle
behavior.
// #define FORCE_INITIALIZATION_ALARM // Default disabled. Uncomment
to enable.

// At power-up or a reset, Grbl will check the limit switch states
to ensure they are not active
// before initialization. If it detects a problem and the hard
limits setting is enabled, Grbl will
// simply message the user to check the limits and enter an alarm
state, rather than idle. Grbl will
// not throw an alarm message.
#define CHECK_LIMITS_AT_INIT

//
--

// ADVANCED CONFIGURATION OPTIONS:

// Enables code for debugging purposes. Not for general use and
always in constant flux.
// #define DEBUG // Uncomment to enable. Default disabled.

// Configure rapid, feed, and spindle override settings. These
values define the max and min
// allowable override values and the coarse and fine increments per
command received. Please
// note the allowable values in the descriptions following each
define.
#define DEFAULT_FEED_OVERRIDE 100 // 100%. Don't change
this value.
#define MAX_FEED_RATE_OVERRIDE 200 // Percent of programmed
feed rate (100-255). Usually 120% or 200%
#define MIN_FEED_RATE_OVERRIDE 10 // Percent of programmed
feed rate (1-100). Usually 50% or 1%
#define FEED_OVERRIDE_COARSE_INCREMENT 10 // (1-99). Usually 10%.
#define FEED_OVERRIDE_FINE_INCREMENT 1 // (1-99). Usually 1%.

#define DEFAULT_RAPID_OVERRIDE 100 // 100%. Don't change this

value.
#define RAPID_OVERRIDE_MEDIUM 50 // Percent of rapid (1-99).
Usually 50%.
#define RAPID_OVERRIDE_LOW 25 // Percent of rapid (1-99).
Usually 25%.
// #define RAPID_OVERRIDE_EXTRA_LOW 5 // *NOT SUPPORTED* Percent of
rapid (1-99). Usually 5%.

#define DEFAULT_SPINDLE_SPEED_OVERRIDE 100 // 100%. Don't change
this value.
#define MAX_SPINDLE_SPEED_OVERRIDE 200 // Percent of
programmed spindle speed (100-255). Usually 200%.
#define MIN_SPINDLE_SPEED_OVERRIDE 10 // Percent of
programmed spindle speed (1-100). Usually 10%.
#define SPINDLE_OVERRIDE_COARSE_INCREMENT 10 // (1-99). Usually
10%.
#define SPINDLE_OVERRIDE_FINE_INCREMENT 1 // (1-99). Usually 1%.

// When a M2 or M30 program end command is executed, most g-code
states are restored to their defaults.
// This compile-time option includes the restoring of the feed,
rapid, and spindle speed override values
// to their default values at program end.
#define RESTORE_OVERRIDES_AFTER_PROGRAM_END // Default enabled.
Comment to disable.

// The status report change for Grbl v1.1 and after also removed the
ability to disable/enable most data
// fields from the report. This caused issues for GUI developers,
who've had to manage several scenarios
// and configurations. The increased efficiency of the new reporting
style allows for all data fields to
// be sent without potential performance issues.
// NOTE: The options below are here only provide a way to disable
certain data fields if a unique
// situation demands it, but be aware GUIs may depend on this data.
If disabled, it may not be compatible.
#define REPORT_FIELD_BUFFER_STATE // Default enabled. Comment to
disable.
#define REPORT_FIELD_PIN_STATE // Default enabled. Comment to
disable.
#define REPORT_FIELD_CURRENT_FEED_SPEED // Default enabled. Comment
to disable.
#define REPORT_FIELD_WORK_COORD_OFFSET // Default enabled. Comment
to disable.
#define REPORT_FIELD_OVERRIDES // Default enabled. Comment to
disable.
#define REPORT_FIELD_LINE_NUMBERS // Default enabled. Comment to
disable.

// Some status report data isn't necessary for realtime, only
intermittently, because the values don't
// change often. The following macros configures how many times a
status report needs to be called before

// the associated data is refreshed and included in the status
report. However, if one of these value
// changes, Grbl will automatically include this data in the next
status report, regardless of what the
// count is at the time. This helps reduce the communication
overhead involved with high frequency reporting
// and agressive streaming. There is also a busy and an idle refresh
count, which sets up Grbl to send
// refreshes more often when its not doing anything important. With
a good GUI, this data doesn't need
// to be refreshed very often, on the order of a several seconds.
// NOTE: WCO refresh must be 2 or greater. OVR refresh must be 1 or
greater.
#define REPORT_OVR_REFRESH_BUSY_COUNT 20 // (1-255)
#define REPORT_OVR_REFRESH_IDLE_COUNT 10 // (1-255) Must be less
than or equal to the busy count
#define REPORT_WCO_REFRESH_BUSY_COUNT 30 // (2-255)
#define REPORT_WCO_REFRESH_IDLE_COUNT 10 // (2-255) Must be less
than or equal to the busy count

// The temporal resolution of the acceleration management subsystem.
A higher number gives smoother
// acceleration, particularly noticeable on machines that run at
very high feedrates, but may negatively
// impact performance. The correct value for this parameter is
machine dependent, so it's advised to
// set this only as high as needed. Approximate successful values
can widely range from 50 to 200 or more.
// NOTE: Changing this value also changes the execution time of a
segment in the step segment buffer.
// When increasing this value, this stores less overall time in the
segment buffer and vice versa. Make
// certain the step segment buffer is increased/decreased to account
for these changes.
#define ACCELERATION_TICKS_PER_SECOND 100

// Adaptive Multi-Axis Step Smoothing (AMASS) is an advanced feature
that does what its name implies,
// smoothing the stepping of multi-axis motions. This feature
smooths motion particularly at low step
// frequencies below 10kHz, where the aliasing between axes of
multi-axis motions can cause audible
// noise and shake your machine. At even lower step frequencies,
AMASS adapts and provides even better
// step smoothing. See stepper.c for more details on the AMASS
system works.
#define ADAPTIVE_MULTI_AXIS_STEP_SMOOTHING // Default enabled.
Comment to disable.

// Sets the maximum step rate allowed to be written as a Grbl
setting. This option enables an error
// check in the settings module to prevent settings values that will
exceed this limitation. The maximum
// step rate is strictly limited by the CPU speed and will change if

something other than an AVR running
// at 16MHz is used.
// NOTE: For now disabled, will enable if flash space permits.
// #define MAX_STEP_RATE_HZ 30000 // Hz

// By default, Grbl sets all input pins to normal-high operation
with their internal pull-up resistors
// enabled. This simplifies the wiring for users by requiring only a
switch connected to ground,
// although its recommended that users take the extra step of wiring
in low-pass filter to reduce
// electrical noise detected by the pin. If the user inverts the pin
in Grbl settings, this just flips
// which high or low reading indicates an active signal. In normal
operation, this means the user
// needs to connect a normal-open switch, but if inverted, this
means the user should connect a
// normal-closed switch.
// The following options disable the internal pull-up resistors,
sets the pins to a normal-low
// operation, and switches must be now connect to Vcc instead of
ground. This also flips the meaning
// of the invert pin Grbl setting, where an inverted setting now
means the user should connect a
// normal-open switch and vice versa.
// NOTE: All pins associated with the feature are disabled, i.e. XYZ
limit pins, not individual axes.
// WARNING: When the pull-ups are disabled, this requires additional
wiring with pull-down resistors!
//#define DISABLE_LIMIT_PIN_PULL_UP
//#define DISABLE_PROBE_PIN_PULL_UP
//#define DISABLE_CONTROL_PIN_PULL_UP

// Sets which axis the tool length offset is applied. Assumes the
spindle is always parallel with
// the selected axis with the tool oriented toward the negative
direction. In other words, a positive
// tool length offset value is subtracted from the current location.
#define TOOL_LENGTH_OFFSET_AXIS Z_AXIS // Default z-axis. Valid
values are X_AXIS, Y_AXIS, or Z_AXIS.

// Enables variable spindle output voltage for different RPM values.
On the Arduino Uno, the spindle
// enable pin will output 5V for maximum RPM with 256 intermediate
levels and 0V when disabled.
// NOTE: IMPORTANT for Arduino Unos! When enabled, the Z-limit pin
D11 and spindle enable pin D12 switch!
// The hardware PWM output on pin D11 is required for variable
spindle output voltages.
#define VARIABLE_SPINDLE // Default enabled. Comment to disable.

// Used by variable spindle output only. This forces the PWM output
to a minimum duty cycle when enabled.
// The PWM pin will still read 0V when the spindle is disabled. Most

users will not need this option, but
// it may be useful in certain scenarios. This minimum PWM settings
coincides with the spindle rpm minimum
// setting, like rpm max to max PWM. This is handy if you need a
larger voltage difference between 0V disabled
// and the voltage set by the minimum PWM for minimum rpm. This
difference is 0.02V per PWM value. So, when
// minimum PWM is at 1, only 0.02 volts separate enabled and
disabled. At PWM 5, this would be 0.1V. Keep
// in mind that you will begin to lose PWM resolution with increased
minimum PWM values, since you have less
// and less range over the total 255 PWM levels to signal different
spindle speeds.
// NOTE: Compute duty cycle at the minimum PWM by this equation: (%
duty cycle)=(SPINDLE_PWM_MIN_VALUE/255)*100
// #define SPINDLE_PWM_MIN_VALUE 5 // Default disabled. Uncomment to
enable. Must be greater than zero. Integer (1-255).

// By default on a 328p(Uno), Grbl combines the variable spindle PWM
and the enable into one pin to help
// preserve I/O pins. For certain setups, these may need to be
separate pins. This configure option uses
// the spindle direction pin(D13) as a separate spindle enable pin
along with spindle speed PWM on pin D11.
// NOTE: This configure option only works with VARIABLE_SPINDLE
enabled and a 328p processor (Uno).
// NOTE: Without a direction pin, M4 will not have a pin output to
indicate a difference with M3.
// NOTE: BEWARE! The Arduino bootloader toggles the D13 pin when it
powers up. If you flash Grbl with
// a programmer (you can use a spare Arduino as "Arduino as ISP".
Search the web on how to wire this.),
// this D13 LED toggling should go away. We haven't tested this
though. Please report how it goes!
// #define USE_SPINDLE_DIR_AS_ENABLE_PIN // Default disabled.
Uncomment to enable.

// Alters the behavior of the spindle enable pin with the
USE_SPINDLE_DIR_AS_ENABLE_PIN option . By default,
// Grbl will not disable the enable pin if spindle speed is zero and
M3/4 is active, but still sets the PWM
// output to zero. This allows the users to know if the spindle is
active and use it as an additional control
// input. However, in some use cases, user may want the enable pin
to disable with a zero spindle speed and
// re-enable when spindle speed is greater than zero. This option
does that.
// NOTE: Requires USE_SPINDLE_DIR_AS_ENABLE_PIN to be enabled.
// #define SPINDLE_ENABLE_OFF_WITH_ZERO_SPEED // Default disabled.
Uncomment to enable.

// With this enabled, Grbl sends back an echo of the line it has
received, which has been pre-parsed (spaces
// removed, capitalized letters, no comments) and is to be

immediately executed by Grbl. Echoes will not be
// sent upon a line buffer overflow, but should for all normal lines
sent to Grbl. For example, if a user
// sendss the line 'g1 x1.032 y2.45 (test comment)', Grbl will echo
back in the form '[echo: G1X1.032Y2.45]'.
// NOTE: Only use this for debugging purposes!! When echoing, this
takes up valuable resources and can effect
// performance. If absolutely needed for normal operation, the
serial write buffer should be greatly increased
// to help minimize transmission waiting within the serial write
protocol.
// #define REPORT_ECHO_LINE_RECEIVED // Default disabled. Uncomment
to enable.

// Minimum planner junction speed. Sets the default minimum junction
speed the planner plans to at
// every buffer block junction, except for starting from rest and
end of the buffer, which are always
// zero. This value controls how fast the machine moves through
junctions with no regard for acceleration
// limits or angle between neighboring block line move directions.
This is useful for machines that can't
// tolerate the tool dwelling for a split second, i.e. 3d printers
or laser cutters. If used, this value
// should not be much greater than zero or to the minimum value
necessary for the machine to work.
#define MINIMUM_JUNCTION_SPEED 0.0 // (mm/min)

// Sets the minimum feed rate the planner will allow. Any value
below it will be set to this minimum
// value. This also ensures that a planned motion always completes
and accounts for any floating-point
// round-off errors. Although not recommended, a lower value than
1.0 mm/min will likely work in smaller
// machines, perhaps to 0.1mm/min, but your success may vary based
on multiple factors.
#define MINIMUM_FEED_RATE 1.0 // (mm/min)

// Number of arc generation iterations by small angle approximation
before exact arc trajectory
// correction with expensive sin() and cos() calcualtions. This
parameter maybe decreased if there
// are issues with the accuracy of the arc generations, or increased
if arc execution is getting
// bogged down by too many trig calculations.
#define N_ARC_CORRECTION 12 // Integer (1-255)

// The arc G2/3 g-code standard is problematic by definition.
Radius-based arcs have horrible numerical
// errors when arc at semi-circles(pi) or full-circles(2*pi).
Offset-based arcs are much more accurate
// but still have a problem when arcs are full-circles (2*pi). This
define accounts for the floating
// point issues when offset-based arcs are commanded as full

circles, but get interpreted as extremely
// small arcs with around machine epsilon (1.2e-7rad) due to
numerical round-off and precision issues.
// This define value sets the machine epsilon cutoff to determine if
the arc is a full-circle or not.
// NOTE: Be very careful when adjusting this value. It should always
be greater than 1.2e-7 but not too
// much greater than this. The default setting should capture most,
if not all, full arc error situations.
#define ARC_ANGULAR_TRAVEL_EPSILON 5E-7 // Float (radians)

// Time delay increments performed during a dwell. The default value
is set at 50ms, which provides
// a maximum time delay of roughly 55 minutes, more than enough for
most any application. Increasing
// this delay will increase the maximum dwell time linearly, but
also reduces the responsiveness of
// run-time command executions, like status reports, since these are
performed between each dwell
// time step. Also, keep in mind that the Arduino delay timer is not
very accurate for long delays.
#define DWELL_TIME_STEP 50 // Integer (1-255) (milliseconds)

// Creates a delay between the direction pin setting and
corresponding step pulse by creating
// another interrupt (Timer2 compare) to manage it. The main Grbl
interrupt (Timer1 compare)
// sets the direction pins, and does not immediately set the stepper
pins, as it would in
// normal operation. The Timer2 compare fires next to set the
stepper pins after the step
// pulse delay time, and Timer2 overflow will complete the step
pulse, except now delayed
// by the step pulse time plus the step pulse delay. (Thanks
langwadt for the idea!)
// NOTE: Uncomment to enable. The recommended delay must be > 3us,
and, when added with the
// user-supplied step pulse time, the total time must not exceed
127us. Reported successful
// values for certain setups have ranged from 5 to 20us.
// #define STEP_PULSE_DELAY 10 // Step pulse delay in microseconds.
Default disabled.

// The number of linear motions in the planner buffer to be planned
at any give time. The vast
// majority of RAM that Grbl uses is based on this buffer size. Only
increase if there is extra
// available RAM, like when re-compiling for a Mega2560. Or decrease
if the Arduino begins to
// crash due to the lack of available RAM or if the CPU is having
trouble keeping up with planning
// new incoming motions as they are executed.
// #define BLOCK_BUFFER_SIZE 16 // Uncomment to override default in
planner.h.

// Governs the size of the intermediary step segment buffer between
the step execution algorithm
// and the planner blocks. Each segment is set of steps executed at
a constant velocity over a
// fixed time defined by ACCELERATION_TICKS_PER_SECOND. They are
computed such that the planner
// block velocity profile is traced exactly. The size of this buffer
governs how much step
// execution lead time there is for other Grbl processes have to
compute and do their thing
// before having to come back and refill this buffer, currently at
~50msec of step moves.
// #define SEGMENT_BUFFER_SIZE 6 // Uncomment to override default in
stepper.h.

// Line buffer size from the serial input stream to be executed.
Also, governs the size of
// each of the startup blocks, as they are each stored as a string
of this size. Make sure
// to account for the available EEPROM at the defined memory address
in settings.h and for
// the number of desired startup blocks.
// NOTE: 80 characters is not a problem except for extreme cases,
but the line buffer size
// can be too small and g-code blocks can get truncated. Officially,
the g-code standards
// support up to 256 characters. In future versions, this default
will be increased, when
// we know how much extra memory space we can re-invest into this.
// #define LINE_BUFFER_SIZE 80 // Uncomment to override default in
protocol.h

// Serial send and receive buffer size. The receive buffer is often
used as another streaming
// buffer to store incoming blocks to be processed by Grbl when its
ready. Most streaming
// interfaces will character count and track each block send to each
block response. So,
// increase the receive buffer if a deeper receive buffer is needed
for streaming and avaiable
// memory allows. The send buffer primarily handles messages in
Grbl. Only increase if large
// messages are sent and Grbl begins to stall, waiting to send the
rest of the message.
// NOTE: Grbl generates an average status report in about 0.5msec,
but the serial TX stream at
// 115200 baud will take 5 msec to transmit a typical 55 character
report. Worst case reports are
// around 90-100 characters. As long as the serial TX buffer doesn't
get continually maxed, Grbl
// will continue operating efficiently. Size the TX buffer around
the size of a worst-case report.
// #define RX_BUFFER_SIZE 128 // (1-254) Uncomment to override

defaults in serial.h
// #define TX_BUFFER_SIZE 100 // (1-254)

// A simple software debouncing feature for hard limit switches.
When enabled, the interrupt
// monitoring the hard limit switch pins will enable the Arduino's
watchdog timer to re-check
// the limit pin state after a delay of about 32msec. This can help
with CNC machines with
// problematic false triggering of their hard limit switches, but it
WILL NOT fix issues with
// electrical interference on the signal cables from external
sources. It's recommended to first
// use shielded signal cables with their shielding connected to
ground (old USB/computer cables
// work well and are cheap to find) and wire in a low-pass circuit
into each limit pin.
// #define ENABLE_SOFTWARE_DEBOUNCE // Default disabled. Uncomment
to enable.

// Configures the position after a probing cycle during Grbl's check
mode. Disabled sets
// the position to the probe target, when enabled sets the position
to the start position.
// #define SET_CHECK_MODE_PROBE_TO_START // Default disabled.
Uncomment to enable.

// Force Grbl to check the state of the hard limit switches when the
processor detects a pin
// change inside the hard limit ISR routine. By default, Grbl will
trigger the hard limits
// alarm upon any pin change, since bouncing switches can cause a
state check like this to
// misread the pin. When hard limits are triggered, they should be
100% reliable, which is the
// reason that this option is disabled by default. Only if your
system/electronics can guarantee
// that the switches don't bounce, we recommend enabling this
option. This will help prevent
// triggering a hard limit when the machine disengages from the
switch.
// NOTE: This option has no effect if SOFTWARE_DEBOUNCE is enabled.
// #define HARD_LIMIT_FORCE_STATE_CHECK // Default disabled.
Uncomment to enable.

// Adjusts homing cycle search and locate scalars. These are the
multipliers used by Grbl's
// homing cycle to ensure the limit switches are engaged and cleared
through each phase of
// the cycle. The search phase uses the axes max-travel setting
times the SEARCH_SCALAR to
// determine distance to look for the limit switch. Once found, the
locate phase begins and
// uses the homing pull-off distance setting times the LOCATE_SCALAR

to pull-off and re-engage
// the limit switch.
// NOTE: Both of these values must be greater than 1.0 to ensure
proper function.
// #define HOMING_AXIS_SEARCH_SCALAR 1.5 // Uncomment to override
defaults in limits.c.
// #define HOMING_AXIS_LOCATE_SCALAR 10.0 // Uncomment to override
defaults in limits.c.

// Enable the '$RST=*', '$RST=$', and '$RST=#' eeprom restore
commands. There are cases where
// these commands may be undesirable. Simply comment the desired
macro to disable it.
// NOTE: See SETTINGS_RESTORE_ALL macro for customizing the `$RST=*`
command.
#define ENABLE_RESTORE_EEPROM_WIPE_ALL // '$RST=*' Default
enabled. Comment to disable.
#define ENABLE_RESTORE_EEPROM_DEFAULT_SETTINGS // '$RST=$' Default
enabled. Comment to disable.
#define ENABLE_RESTORE_EEPROM_CLEAR_PARAMETERS // '$RST=#' Default
enabled. Comment to disable.

// Defines the EEPROM data restored upon a settings version change
and `$RST=*` command. Whenever the
// the settings or other EEPROM data structure changes between Grbl
versions, Grbl will automatically
// wipe and restore the EEPROM. This macro controls what data is
wiped and restored. This is useful
// particularily for OEMs that need to retain certain data. For
example, the BUILD_INFO string can be
// written into the Arduino EEPROM via a seperate .INO sketch to
contain product data. Altering this
// macro to not restore the build info EEPROM will ensure this data
is retained after firmware upgrades.
// NOTE: Uncomment to override defaults in settings.h
// #define SETTINGS_RESTORE_ALL (SETTINGS_RESTORE_DEFAULTS |
SETTINGS_RESTORE_PARAMETERS | SETTINGS_RESTORE_STARTUP_LINES |
SETTINGS_RESTORE_BUILD_INFO)

// Enable the '$I=(string)' build info write command. If disabled,
any existing build info data must
// be placed into EEPROM via external means with a valid checksum
value. This macro option is useful
// to prevent this data from being over-written by a user, when used
to store OEM product data.
// NOTE: If disabled and to ensure Grbl can never alter the build
info line, you'll also need to enable
// the SETTING_RESTORE_ALL macro above and remove
SETTINGS_RESTORE_BUILD_INFO from the mask.
// NOTE: See the included grblWrite_BuildInfo.ino example file to
write this string seperately.
#define ENABLE_BUILD_INFO_WRITE_COMMAND // '$I=' Default enabled.
Comment to disable.

// AVR processors require all interrupts to be disabled during an
EEPROM write. This includes both
// the stepper ISRs and serial comm ISRs. In the event of a long
EEPROM write, this ISR pause can
// cause active stepping to lose position and serial receive data to
be lost. This configuration
// option forces the planner buffer to completely empty whenever the
EEPROM is written to prevent
// any chance of lost steps.
// However, this doesn't prevent issues with lost serial RX data
during an EEPROM write, especially
// if a GUI is premptively filling up the serial RX buffer
simultaneously. It's highly advised for
// GUIs to flag these gcodes (G10,G28.1,G30.1) to always wait for an
'ok' after a block containing
// one of these commands before sending more data to eliminate this
issue.
// NOTE: Most EEPROM write commands are implicitly blocked during a
job (all '$' commands). However,
// coordinate set g-code commands (G10,G28/30.1) are not, since they
are part of an active streaming
// job. At this time, this option only forces a planner buffer sync
with these g-code commands.
#define FORCE_BUFFER_SYNC_DURING_EEPROM_WRITE // Default enabled.
Comment to disable.

// In Grbl v0.9 and prior, there is an old outstanding bug where the
`WPos:` work position reported
// may not correlate to what is executing, because `WPos:` is based
on the g-code parser state, which
// can be several motions behind. This option forces the planner
buffer to empty, sync, and stop
// motion whenever there is a command that alters the work
coordinate offsets `G10,G43.1,G92,G54-59`.
// This is the simplest way to ensure `WPos:` is always correct.
Fortunately, it's exceedingly rare
// that any of these commands are used need continuous motions
through them.
#define FORCE_BUFFER_SYNC_DURING_WCO_CHANGE // Default enabled.
Comment to disable.

// By default, Grbl disables feed rate overrides for all G38.x probe
cycle commands. Although this
// may be different than some pro-class machine control, it's
arguable that it should be this way.
// Most probe sensors produce different levels of error that is
dependent on rate of speed. By
// keeping probing cycles to their programmed feed rates, the probe
sensor should be a lot more
// repeatable. If needed, you can disable this behavior by
uncommenting the define below.
// #define ALLOW_FEED_OVERRIDE_DURING_PROBE_CYCLES // Default
disabled. Uncomment to enable.

// Enables and configures parking motion methods upon a safety door
state. Primarily for OEMs
// that desire this feature for their integrated machines. At the
moment, Grbl assumes that
// the parking motion only involves one axis, although the parking
implementation was written
// to be easily refactored for any number of motions on different
axes by altering the parking
// source code. At this time, Grbl only supports parking one axis
(typically the Z-axis) that
// moves in the positive direction upon retracting and negative
direction upon restoring position.
// The motion executes with a slow pull-out retraction motion,
power-down, and a fast park.
// Restoring to the resume position follows these set motions in
reverse: fast restore to
// pull-out position, power-up with a time-out, and plunge back to
the original position at the
// slower pull-out rate.
// NOTE: Still a work-in-progress. Machine coordinates must be in
all negative space and
// does not work with HOMING_FORCE_SET_ORIGIN enabled. Parking
motion also moves only in
// positive direction.
// #define PARKING_ENABLE // Default disabled. Uncomment to enable

// Configure options for the parking motion, if enabled.
#define PARKING_AXIS Z_AXIS // Define which axis that performs the
parking motion
#define PARKING_TARGET -5.0 // Parking axis target. In mm, as
machine coordinate [-max_travel,0].
#define PARKING_RATE 500.0 // Parking fast rate after pull-out in
mm/min.
#define PARKING_PULLOUT_RATE 100.0 // Pull-out/plunge slow feed rate
in mm/min.
#define PARKING_PULLOUT_INCREMENT 5.0 // Spindle pull-out and plunge
distance in mm. Incremental distance.
 // Must be positive value or
equal to zero.

// Enables a special set of M-code commands that enables and
disables the parking motion.
// These are controlled by `M56`, `M56 P1`, or `M56 Px` to enable
and `M56 P0` to disable.
// The command is modal and will be set after a planner sync. Since
it is g-code, it is
// executed in sync with g-code commands. It is not a real-time
command.
// NOTE: PARKING_ENABLE is required. By default, M56 is active upon
initialization. Use
// DEACTIVATE_PARKING_UPON_INIT to set M56 P0 as the power-up
default.
// #define ENABLE_PARKING_OVERRIDE_CONTROL // Default disabled.
Uncomment to enable

// #define DEACTIVATE_PARKING_UPON_INIT // Default disabled.
Uncomment to enable.

// This option will automatically disable the laser during a feed
hold by invoking a spindle stop
// override immediately after coming to a stop. However, this also
means that the laser still may
// be reenabled by disabling the spindle stop override, if needed.
This is purely a safety feature
// to ensure the laser doesn't inadvertently remain powered while at
a stop and cause a fire.
#define DISABLE_LASER_DURING_HOLD // Default enabled. Comment to
disable.

// Enables a piecewise linear model of the spindle PWM/speed output.
Requires a solution by the
// 'fit_nonlinear_spindle.py' script in the /doc/script folder of
the repo. See file comments
// on how to gather spindle data and run the script to generate a
solution.
// #define ENABLE_PIECEWISE_LINEAR_SPINDLE // Default disabled.
Uncomment to enable.

// N_PIECES, RPM_MAX, RPM_MIN, RPM_POINTxx, and RPM_LINE_XX
constants are all set and given by
// the 'fit_nonlinear_spindle.py' script solution. Used only when
ENABLE_PIECEWISE_LINEAR_SPINDLE
// is enabled. Make sure the constant values are exactly the same as
the script solution.
// NOTE: When N_PIECES < 4, unused RPM_LINE and RPM_POINT defines
are not required and omitted.
#define N_PIECES 4 // Integer (1-4). Number of piecewise lines used
in script solution.
#define RPM_MAX 11686.4 // Max RPM of model. $30 > RPM_MAX will be
limited to RPM_MAX.
#define RPM_MIN 202.5 // Min RPM of model. $31 < RPM_MIN will be
limited to RPM_MIN.
#define RPM_POINT12 6145.4 // Used N_PIECES >=2. Junction point
between lines 1 and 2.
#define RPM_POINT23 9627.8 // Used N_PIECES >=3. Junction point
between lines 2 and 3.
#define RPM_POINT34 10813.9 // Used N_PIECES = 4. Junction point
between lines 3 and 4.
#define RPM_LINE_A1 3.197101e-03 // Used N_PIECES >=1. A and B
constants of line 1.
#define RPM_LINE_B1 -3.526076e-1
#define RPM_LINE_A2 1.722950e-2 // Used N_PIECES >=2. A and B
constants of line 2.
#define RPM_LINE_B2 8.588176e+01
#define RPM_LINE_A3 5.901518e-02 // Used N_PIECES >=3. A and B
constants of line 3.
#define RPM_LINE_B3 4.881851e+02
#define RPM_LINE_A4 1.203413e-01 // Used N_PIECES = 4. A and B
constants of line 4.

#define RPM_LINE_B4 1.151360e+03

/*
--

 OEM Single File Configuration Option

 Instructions: Paste the cpu_map and default setting definitions
below without an enclosing
 #ifdef. Comment out the CPU_MAP_xxx and DEFAULT_xxx defines at
the top of this file, and
 the compiler will ignore the contents of defaults.h and cpu_map.h
and use the definitions
 below.
*/

// Paste CPU_MAP definitions here.

// Paste default settings definitions here.

#endif

