Note
Community Fork Notice: This is a temporary fork of asg017/sqlite-vec
Created to merge pending upstream PRs and provide community support while the original author is unavailable.
Once development resumes on the original repository, users are encouraged to switch back.
All credit for the original implementation goes to Alex Garcia.
An extremely small, "fast enough" vector search SQLite extension that runs
anywhere! A successor to sqlite-vss
Important
sqlite-vec is a pre-v1, so expect breaking changes!
- Store and query float, int8, and binary vectors in
vec0virtual tables - Written in pure C, no dependencies, runs anywhere SQLite runs (Linux/MacOS/Windows, in the browser with WASM, Raspberry Pis, etc.)
- Store non-vector data in metadata, auxiliary, or partition key columns
sqlite-vec is a
Mozilla Builders project,
with additional sponsorship from
Fly.io ,
Turso,
SQLite Cloud, and
Shinkai.
See the Sponsors section for more details.
The original packages on PyPI, npm, RubyGems, and crates.io are maintained by the original author. For the latest features from this fork, see "Installing from This Fork" below.
| Language | Install | More Info | |
|---|---|---|---|
| Python | pip install sqlite-vec |
sqlite-vec with Python |
|
| Node.js | npm install sqlite-vec |
sqlite-vec with Node.js |
|
| Ruby | gem install sqlite-vec |
sqlite-vec with Ruby |
|
| Rust | cargo add sqlite-vec |
sqlite-vec with Rust |
|
| Datasette | datasette install datasette-sqlite-vec |
sqlite-vec with Datasette |
|
| rqlite | rqlited -extensions-path=sqlite-vec.tar.gz |
sqlite-vec with rqlite |
|
sqlite-utils |
sqlite-utils install sqlite-utils-sqlite-vec |
sqlite-vec with sqlite-utils |
Install directly from GitHub to get the latest features from this community fork.
| Language | Install Latest (main branch) | Install Specific Version |
|---|---|---|
| Go | go get github.com/vlasky/sqlite-vec/bindings/go/cgo@main |
go get github.com/vlasky/sqlite-vec/bindings/go/cgo@v0.2.0-alpha |
| Python | pip install git+https://github.com/vlasky/sqlite-vec.git |
pip install git+https://github.com/vlasky/sqlite-vec.git@v0.2.0-alpha |
| Rust | cargo add sqlite-vec --git https://github.com/vlasky/sqlite-vec |
cargo add sqlite-vec --git https://github.com/vlasky/sqlite-vec --tag v0.2.0-alpha |
| Node.js | npm install vlasky/sqlite-vec |
npm install vlasky/sqlite-vec#v0.2.0-alpha |
| Ruby | gem 'sqlite-vec', git: 'https://github.com/vlasky/sqlite-vec' |
gem 'sqlite-vec', git: 'https://github.com/vlasky/sqlite-vec', tag: 'v0.2.0-alpha' |
Python Note: Requires Python built with loadable extension support (--enable-loadable-sqlite-extensions). If you encounter an error about extension support not being available:
- Use
uvto create virtual environments (automatically uses system Python which typically has extension support) - Or use system Python instead of pyenv/custom builds
- Or rebuild your Python with
./configure --enable-loadable-sqlite-extensions
Available version tags: See Releases
For direct C usage or other languages:
git clone https://github.com/vlasky/sqlite-vec.git
cd sqlite-vec
./scripts/vendor.sh # Download vendored dependencies
make loadable # Builds dist/vec0.so (or .dylib/.dll)- Pre-built binaries via GitHub Releases
- Package registry publications (PyPI, npm, RubyGems, crates.io)
- Datasette/sqlite-utils plugins
For these, use the original packages until this fork's CI/CD is configured.
See the original documentation for detailed usage information.
See CHANGELOG.md for a complete list of improvements, bug fixes, and merged upstream PRs.
Vector types: sqlite-vec supports three vector types with different trade-offs:
-- Float vectors (32-bit floating point, most common)
CREATE VIRTUAL TABLE vec_floats USING vec0(embedding float[384]);
-- Int8 vectors (8-bit integers, smaller memory footprint)
CREATE VIRTUAL TABLE vec_int8 USING vec0(embedding int8[384]);
-- Binary vectors (1 bit per dimension, maximum compression)
CREATE VIRTUAL TABLE vec_binary USING vec0(embedding bit[384]);Usage example:
.load ./vec0
create virtual table vec_examples using vec0(
sample_embedding float[8]
);
-- vectors can be provided as JSON or in a compact binary format
insert into vec_examples(rowid, sample_embedding)
values
(1, '[0.279, -0.95, -0.45, -0.554, 0.473, 0.353, 0.784, -0.826]'),
(2, '[-0.156, -0.94, -0.563, 0.011, -0.947, -0.602, 0.3, 0.09]'),
(3, '[-0.559, 0.179, 0.619, -0.987, 0.612, 0.396, -0.319, -0.689]'),
(4, '[0.914, -0.327, -0.815, -0.807, 0.695, 0.207, 0.614, 0.459]'),
(5, '[0.072, 0.946, -0.243, 0.104, 0.659, 0.237, 0.723, 0.155]'),
(6, '[0.409, -0.908, -0.544, -0.421, -0.84, -0.534, -0.798, -0.444]'),
(7, '[0.271, -0.27, -0.26, -0.581, -0.466, 0.873, 0.296, 0.218]'),
(8, '[-0.658, 0.458, -0.673, -0.241, 0.979, 0.28, 0.114, 0.369]'),
(9, '[0.686, 0.552, -0.542, -0.936, -0.369, -0.465, -0.578, 0.886]'),
(10, '[0.753, -0.371, 0.311, -0.209, 0.829, -0.082, -0.47, -0.507]'),
(11, '[0.123, -0.475, 0.169, 0.796, -0.201, -0.561, 0.995, 0.019]'),
(12, '[-0.818, -0.906, -0.781, 0.255, 0.584, -0.156, -0.873, -0.237]'),
(13, '[0.992, 0.058, 0.942, 0.722, -0.977, 0.441, 0.363, 0.074]'),
(14, '[-0.466, 0.282, -0.777, -0.13, -0.093, 0.908, 0.752, -0.473]'),
(15, '[0.001, -0.643, 0.825, 0.741, -0.403, 0.278, 0.218, -0.694]'),
(16, '[0.525, 0.079, 0.557, 0.061, -0.999, -0.352, -0.961, 0.858]'),
(17, '[0.757, 0.663, -0.385, -0.884, 0.756, 0.894, -0.829, -0.028]'),
(18, '[-0.862, 0.521, 0.532, -0.743, -0.049, 0.1, -0.47, 0.745]'),
(19, '[-0.154, -0.576, 0.079, 0.46, -0.598, -0.377, 0.99, 0.3]'),
(20, '[-0.124, 0.035, -0.758, -0.551, -0.324, 0.177, -0.54, -0.56]');
-- Find 3 nearest neighbors using LIMIT
select
rowid,
distance
from vec_examples
where sample_embedding match '[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]'
order by distance
limit 3;
/*
┌───────┬──────────────────┐
│ rowid │ distance │
├───────┼──────────────────┤
│ 5 │ 1.16368770599365 │
│ 13 │ 1.75137972831726 │
│ 11 │ 1.83941268920898 │
└───────┴──────────────────┘
*/How vector search works: The MATCH operator finds vectors similar to your query vector. In the example above, sample_embedding MATCH '[0.5, ...]' searches for vectors closest to [0.5, ...] and returns them ordered by distance (smallest = most similar).
Note: All vector similarity queries require LIMIT or k = ? (where k is the number of nearest neighbors to return). This prevents accidentally returning too many results on large datasets, since finding all vectors within a distance threshold requires calculating distance to every vector in the table.
This fork adds several powerful features for production use:
Filter results by distance thresholds using >, >=, <, <= operators on the distance column:
-- KNN query with distance constraint
-- Requests k=10 neighbors, but only returns those with distance < 1.5
select rowid, distance
from vec_examples
where sample_embedding match '[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]'
and k = 10
and distance < 1.5
order by distance;
/*
┌───────┬──────────────────┐
│ rowid │ distance │
├───────┼──────────────────┤
│ 5 │ 1.16368770599365 │
└───────┴──────────────────┘
*/
-- KNN query with range constraint: find vectors in a specific distance range
select rowid, distance
from vec_examples
where sample_embedding match '[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]'
and k = 20
and distance between 1.5 and 2.0
order by distance;
/*
┌───────┬──────────────────┐
│ rowid │ distance │
├───────┼──────────────────┤
│ 13 │ 1.75137972831726 │
│ 11 │ 1.83941268920898 │
│ 7 │ 1.89339029788971 │
│ 8 │ 1.92658650875092 │
│ 10 │ 1.93983662128448 │
└───────┴──────────────────┘
*/Instead of using OFFSET (which is slow for large datasets), you can use the last result's distance value as a 'cursor' to fetch the next page. This is more efficient because you're filtering directly rather than skipping rows.
-- First page: get initial results
select rowid, distance
from vec_examples
where sample_embedding match '[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]'
and k = 3
order by distance;
/*
┌───────┬──────────────────┐
│ rowid │ distance │
├───────┼──────────────────┤
│ 5 │ 1.16368770599365 │
│ 13 │ 1.75137972831726 │
│ 11 │ 1.83941268920898 │
└───────┴──────────────────┘
*/
-- Next page: use last distance as cursor (distance > 1.83941268920898)
select rowid, distance
from vec_examples
where sample_embedding match '[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]'
and k = 3
and distance > 1.83941268920898
order by distance;
/*
┌───────┬──────────────────┐
│ rowid │ distance │
├───────┼──────────────────┤
│ 7 │ 1.89339029788971 │
│ 8 │ 1.92658650875092 │
│ 10 │ 1.93983662128448 │
└───────┴──────────────────┘
*/Reclaim disk space after deleting vectors:
-- Delete vectors
delete from vec_examples where rowid in (2, 4, 6, 8, 10);
-- Reclaim space by compacting shadow tables
insert into vec_examples(vec_examples) values('optimize');
-- Verify deletion
select count(*) from vec_examples; -- Returns 15Note
The sponsors listed below support the original asg017/sqlite-vec project by Alex Garcia, not this community fork.
Development of the original sqlite-vec is supported by multiple generous sponsors! Mozilla
is the main sponsor through the new Builders project.
sqlite-vec is also sponsored by the following companies:
As well as multiple individual supporters on Github sponsors!
If your company interested in sponsoring sqlite-vec development, send me an
email to get more info: https://alexgarcia.xyz
sqlite-ecosystem, Maybe more 3rd party SQLite extensions I've developedsqlite-rembed, Generate text embeddings from remote APIs like OpenAI/Nomic/Ollama, meant for testing and SQL scriptssqlite-lembed, Generate text embeddings locally from embedding models in the.ggufformat