
1 

Table of Contents 

• Modifying the imported level 

• How to edit your tileset's collision shapes 

• Object layers: supported types 

• Custom properties 

‣ Add custom properties in Tiled 

‣ Read the metadata in Godot 

‣ Post-import script: modify the imported scene 

Modifying the imported level 

Do not modify the imported scene directly. Instead, instantiate it or create a new scene inherited 

from it. If you do modify the source scene, all your changes will be lost next time you reimport. 

How to edit your tileset's collision shapes 

Starting with Tiled 1.0, tileset files are separate from maps. To edit the tileset's collisions, open it, 

click a tile to select it, and click on the "Tile Collision Editor" icon in the toolbar above the 

viewport. 

 

Tile collision editor icon 

Draw collision shapes in the newly 

opened tab. To snap to the grid, 

check the corresponding option in 

the View menu -> Snapping -> Snap 

to Grid. 

Tip: you can copy and paste collision 

shapes between tiles. iIn the collision 

editor, press S to activate the "select 

object" tool, click the shape to select 

it, Ctrl C to copy and Ctrl V to paste 

it. 

Warning: Godot only supports 1 collision shape per tile. 

Object layers: supported types 

Any shape you draw in Tiled is called an "object". The addon treats them as collision shapes by 

default, but it can also turn them into navigation paths or light occluders in Godot. To do that, 

select the shape, and in the properties editor, fill one of 2 keywords in the "Type" field: 

1. navigation 

2. occluder 

Note this doesn't work with ellipses, as Godot doesn't support those shapes for navigation and 

light occluders. Also, if you use an object layer, you can't set its content as navigation. 



2 

Custom properties 

You might want to add interactive elements built in Godot to your Tiled levels automatically: 

doors, lamps, chests, etc. You cannot do this directly from Tiled. However, the addon supports 

Tiled's object layers and custom properties. Using the Post-import script feature, you can add 

objects to your scene based on that. Note that Godot doesn't support metadata at the tile level, so 

it will only work with objects (rectangles, polygons, etc.). 

Add custom properties in Tiled 

Once you have an object layer, create an object using the tools in the toolbar above the viewport, 

and select it with the select tool (S). To add a custom property to it, head to the properties tab on 

the left, and find the blue "+" icon at the bottom. 

 

Tiled's properties editor 

Name it as you'd like (you'll need the name to retrieve the 

property in GDscript), and give it a value if needed. Select 

multiple objects before you set a property to modify all 

selected objects. 

  



3 

Read the metadata in Godot 

When you import the TMX file, make sure that the "custom properties" option is on. It is by 

default. If it's off, you will not get any metadata. If you already imported the TMX file, it will 

update automatically once you reopen the level's scene. 

 

Import custom properties from Tiled 

 

The metadata is imported using the Object.set_meta() method, and serialized in the scene. It 

is only accessible from the code, using: 

Object.get_meta_list() # returns an array of strings 

Object.get_meta( String name ) # returns the custom property's value 

Object.has_meta( String name ) # returns true if the metadata exists 

 

For more information, check the Object class in the Godot reference. 

  

http://docs.godotengine.org/en/stable/classes/class_object.html


4 

Post-import script: modify the imported scene 

You can run any script with a post_import method. The plugin will pass it the imported scene, so 

you can append level elements built in Godot. 

Add a Godot node to the level. Use it to load level elements that were designed in Godot: 

extends Node 

 

var my_node = load("res://my_scene.tscn") 

func post_import(scene): 

  var new_node = my_node.instance() 

  # Set the node's owner to the current scene so it can be added to it from 

the editor 

  new_node.set_owner(scene) 

  scene.add_child(new_child) 

  return scene 

The scene tree's structure is like: 
root 

  > MainSceneNode 

    > TileLayer 

    > ObjectLayer 

      > Object1 

      > Object2 

To find the objects' metadata, we can either retrieve them by name, or traverse the node tree and 

go down 3 levels from the root. 

You can use Tiled's custom properties stores as metadata to know which scene to import. Preload 

the nodes to instantiate, traverse the scene tree, read the imported node's metadata and add new 

nodes based on that. Here's a basic example to show the logic: 

# Traverse the node tree 

var top_level_node = get_tree().get_root().get_child(0) 

 

for node in top_level_node.get_children(): 

    # To know the type of a node, check if it is an instance of a base class 

    # The addon imports tile layers as TileMap nodes and object layers as 

Node2D 

    if node is TileMap: 

        pass 

    elif node is Node2D: 

        for object in node.get_children(): 

            # Check if the node has a custom property named "type" 

            if object.has_meta("type"): 

                # If so, get the type value 

                var type = object.get_meta("type") 

                var node_to_clone = null 

                if type == "door": 

                    node_to_clone = Door 

                elif type == "lamp": 

                    node_to_clone = Lamp 

                if node_to_clone: 

                    var new_instance = node_to_clone.instance() 

                    # The reference to the scene is given by the post_import 

method 



5 

                    node_to_clone.set_pos(object.get_pos()) 

                    new_instance.set_owner(scene) 

                    # Add the node (Door or Lamp) and remove the object 

imported by the addon 

                    node.add_child(node_to_clone) 

                    object.queue_free() 


