
Void Handbook

27 July 2020

Contents
1 About 11

2 History 12

3 About this Handbook 13
3.1 Reading The Manuals . 13
3.2 Example Commands . 13

3.2.1 Placeholders . 13

4 InfraDocs 14

5 Installation 15
5.1 Base system requirements . 15
5.2 Downloading installation media . 15

5.2.1 Verifying images . 15
Verifying image integrity . 15

5.2.2 Verifying digital signature . 16

6 Live Installers 17
6.1 Installer images . 17

6.1.1 Base images . 17
6.1.2 Flavor images . 17

Comparison of flavor images . 17

7 Prepare Installation Media 19
7.1 Create a bootable USB drive or SD card on Linux 19

7.1.1 Identify the Device . 19
7.1.2 Write the live image . 19

7.2 Burning to a CD or DVD . 20

8 Partitioning notes 21
8.1 BIOS system notes . 21
8.2 UEFI system notes . 21
8.3 Swap partitions . 21
8.4 Boot partition (optional) . 21

1

8.5 Other partitions . 22

9 Installation Guide 23
9.1 Booting . 23
9.2 Keyboard . 23
9.3 Network . 23
9.4 Source . 23
9.5 Hostname . 23
9.6 Locale . 24
9.7 Timezone . 24
9.8 Root password . 24
9.9 User account . 24
9.10 Bootloader . 24
9.11 Partition . 24
9.12 Filesystems . 24
9.13 Review settings . 25
9.14 Install . 25
9.15 Post installation . 25

10 Advanced Installation Guides 26
10.1 Section Contents . 26

11 Installation via chroot (x86/x86_64) 27
11.1 Prepare Filesystems . 27

11.1.1 Create a New Root and Mount Filesystems 27
11.2 Base Installation . 28

11.2.1 The XBPS Method . 28
11.2.2 The ROOTFS Method . 28

11.3 Configuration . 28
11.3.1 Entering the Chroot . 29
11.3.2 Install base-system (ROOTFS method only) 29
11.3.3 Installation Configuration . 29
11.3.4 Set a Root Password . 29
11.3.5 Configure fstab . 30

11.4 Installing GRUB . 31
11.5 Finalization . 31

12 Full Disk Encryption 32

13 musl 37
13.1 Incompatible software . 37

13.1.1 glibc chroot . 37
PRoot . 37

14 Configuration 38

2

15 Firmware 39
15.1 Microcode . 39

15.1.1 Intel . 39
15.1.2 AMD . 39
15.1.3 Verification . 39

15.2 Removing firmware . 39

16 Locales 40
16.1 Enabling locales . 40
16.2 Setting the system locale . 40
16.3 Application locale . 40

17 Users and Groups 41
17.1 Default shell . 41
17.2 sudo . 41
17.3 Default Groups . 41

18 Services and Daemons - runit 43
18.1 Section Contents . 43
18.2 Service Directories . 43

18.2.1 Configuring Services . 43
18.2.2 Editing Services . 44

18.3 Managing Services . 44
18.3.1 Runsvdirs . 44

Booting A Different runsvdir . 44
18.3.2 Basic Usage . 44

Enabling Services . 45
Disabling Services . 45
Testing Services . 45

19 Per-User Services 46

20 Logging 47
20.1 Syslog . 47

20.1.1 Socklog . 47
20.1.2 Other syslog daemons . 47

21 rc.conf, rc.local and rc.shutdown 48
21.1 rc.conf . 48

21.1.1 KEYMAP . 48
21.1.2 HARDWARECLOCK . 48
21.1.3 FONT . 48

21.2 rc.local . 48
21.3 rc.shutdown . 48

22 Cron 49

3

23 Solid State Drives 50
23.1 Periodic TRIM with cron . 50
23.2 Continuous TRIM with fstab discard . 50
23.3 LVM . 50
23.4 LUKS . 51

23.4.1 Non-root devices . 51
23.4.2 Root devices . 51
23.4.3 Verifying configuration . 51

23.5 ZFS . 51
23.5.1 Periodic TRIM . 52
23.5.2 Autotrim . 52

24 Security 53
24.1 Section Contents . 53

25 Hashboot 54
25.1 Installation . 54
25.2 Configuration . 54

25.2.1 Flashrom . 54
25.3 Usage . 54

26 AppArmor 55

27 Date and Time 56
27.1 Timezone . 56
27.2 Hardware clock . 56
27.3 NTP . 56

27.3.1 NTP . 56
27.3.2 OpenNTPD . 56
27.3.3 Chrony . 57

28 Kernel 58
28.1 Kernel series . 58
28.2 Removing old kernels . 58
28.3 Kernel modules . 58

28.3.1 Loading kernel modules during boot 58
28.3.2 Blacklisting kernel modules . 59

Blacklisting modules in the initramfs 59
dracut . 59
mkinitcpio . 59

28.4 Kernel hooks . 59
28.4.1 Install hooks . 59
28.4.2 Remove hooks . 59

28.5 Dynamic Kernel Module Support (dkms) 60
28.6 cmdline . 60

28.6.1 GRUB . 60
28.6.2 dracut . 60

4

29 Power Management 61
29.1 acpid . 61
29.2 elogind . 61
29.3 Power Saving - tlp . 61

30 Network 62
30.1 Interface Names . 62
30.2 Static Configuration . 62
30.3 dhcpcd . 62
30.4 Wireless . 62

31 Firewalls 64
31.1 iptables . 64

31.1.1 Applying the rules at boot . 64
31.1.2 Applying the rules at runtime . 64

31.2 nftables . 65
31.2.1 Applying the rules at boot . 65
31.2.2 Applying the rules at runtime . 65

32 wpa_supplicant 66
32.1 WPA-PSK . 66
32.2 WPA-EAP . 66
32.3 WEP . 66

32.3.1 The wpa_supplicant service . 66
32.3.2 Using wpa_cli . 67

33 IWD 68
33.1 Installation . 68
33.2 Usage . 68
33.3 Configuration . 68

33.3.1 Daemon configuration . 68
33.3.2 Network configuration . 68

33.4 Troubleshooting . 68

34 NetworkManager 70
34.1 Starting NetworkManager . 70
34.2 Configuring NetworkManager . 70
34.3 Eduroam with NetworkManager . 70

34.3.1 Dependencies . 70
34.3.2 Installation . 70

35 ConnMan 71
35.1 Starting ConnMan . 71
35.2 Configuring ConnMan . 71
35.3 Preventing DNS overrides by ConnMan 71

5

36 Network Filesystems 72
36.1 NFS . 72

36.1.1 Mounting an NFS Share . 72
36.1.2 Setting up a server (NFSv4, Kerberos disabled) 72

37 Session and Seat Management 73
37.1 D-Bus . 73
37.2 elogind . 73

38 Graphical Session 74

39 Graphics Drivers 75
39.1 Section Contents . 75

40 Intel GPU 76
40.1 OpenGL . 76
40.2 Vulkan . 76
40.3 Video acceleration . 76
40.4 Troubleshooting . 76

41 NVIDIA Optimus 77
41.1 PRIME Render Offload . 78
41.2 Bumblebee . 78
41.3 Nouveau PRIME . 78

42 NVIDIA 79
42.1 nouveau (Open Source Driver) . 79
42.2 nvidia (Proprietary Driver) . 79
42.3 32-bit program support (glibc only) . 79
42.4 Reverting from nvidia to nouveau . 79

42.4.1 Uninstalling nvidia . 79
42.4.2 Keeping both drivers . 80

43 Xorg 81
43.1 Installation . 81
43.2 Video Drivers . 81

43.2.1 Open Source Drivers . 81
DDX . 81
Modesetting . 81

43.2.2 Proprietary Drivers . 81
43.3 Input Drivers . 81
43.4 Xorg Configuration . 82

43.4.1 Forcing the modesetting driver . 82
43.5 Starting X Sessions . 82

43.5.1 startx . 82
43.5.2 Display Managers . 82

6

44 Wayland 83
44.1 Installation . 83

44.1.1 Desktop Environments . 83
44.1.2 Standalone compositors . 83
44.1.3 Video drivers . 83
44.1.4 Native applications . 83

Web browsers . 84
Running X applications inside Wayland 84

44.2 Configuration . 84

45 Fonts 85

46 Icons 86
46.1 GTK . 86

47 GNOME 87
47.1 Pre-installation . 87
47.2 Installation . 87

48 KDE 88
48.1 Installation . 88

49 Multimedia 89
49.1 Audio setup . 89

50 ALSA 90
50.1 Configuration . 90
50.2 Dmix . 90

51 PulseAudio 91

52 sndio 92
52.1 Configuration . 92

52.1.1 Default device . 92
52.2 Volume control . 92
52.3 Application specific configurations . 92

52.3.1 Firefox . 92
52.3.2 mpv . 92
52.3.3 OpenAL . 93

53 Bluetooth 94
53.1 Installation . 94
53.2 Usage . 94
53.3 Configuration . 94

54 TeX Live 95
54.1 Configuring TeX Live . 95
54.2 Installing/Updating TeX packages . 95

7

55 External Applications 97
55.1 Programming Languages . 97
55.2 Restricted Packages . 97
55.3 Non-x86_64 Arch . 97
55.4 Flatpak . 97

55.4.1 Troubleshooting . 98
55.5 Octave Packages . 98
55.6 MATLAB . 98

56 Printing 99
56.1 Installing Printing Drivers . 99

56.1.1 Gutenprint drivers . 99
56.1.2 HP drivers . 99
56.1.3 Brother drivers . 99

56.2 Configuring a New Printer . 99
56.2.1 Web interface . 99
56.2.2 Command line . 99
56.2.3 Graphical interface . 100

56.3 Troubleshooting . 100
56.3.1 USB printer not shown . 100

57 Manual Pages 101

58 XBPS Package Manager 102
58.1 Updating . 102

58.1.1 Restarting Services . 102
58.1.2 Kernel Panic After Update . 103

58.2 Finding Files and Packages . 103
58.3 Verifying RSA keys . 104

59 Advanced Usage 105
59.1 Downgrading . 105

59.1.1 Via xdowngrade . 105
59.1.2 Via XBPS . 105

59.2 Holding packages . 105
59.3 Repository-locking packages . 106
59.4 Ignoring Packages . 106
59.5 Virtual Packages . 106

60 Repositories 107
60.1 The main repository . 107
60.2 Subrepositories . 107

60.2.1 nonfree . 107
60.2.2 multilib . 107
60.2.3 multilib/nonfree . 108
60.2.4 debug . 108

Finding debug dependencies . 108

8

61 Mirrors 109
61.1 Tier 1 mirrors . 109
61.2 Tier 2 mirrors . 109

61.2.1 Globally-available mirrors . 110
61.2.2 Region-locked mirrors . 110

61.3 Tor Mirrors . 110
61.4 Creating a mirror . 110

62 Changing Mirrors 112

63 Using Tor mirrors 113
63.1 Using XBPS with Tor . 113

63.1.1 Installing Tor . 113
63.1.2 Making XBPS connect via the SOCKS proxy 113
63.1.3 Using a hidden service mirror . 113
63.1.4 Security consideration . 114

64 Restricted Packages 115
64.1 Building manually . 115
64.2 Automated building . 115

65 Custom Repositories 116
65.1 Adding custom repositories . 116

66 Signing repositories 117

67 Troubleshooting XBPS 118
67.1 Section Contents . 118

68 Common Errors 119
68.1 Errors while updating or installing packages 119

68.1.1 "Operation not permitted" . 119
68.1.2 "Not Found" . 119
68.1.3 shlib errors . 119
68.1.4 repodata errors . 120

68.2 Broken systems . 120

69 Static XBPS 121
69.1 Obtaining static XBPS . 121
69.2 Using static XBPS . 121

70 Contributing 122
70.1 Section Contents . 122

71 Usage Statistics 123
71.1 Setting up PopCorn . 123

72 Contributing To The void-docs Project 124

9

73 Style Guide 125
73.1 General . 125
73.2 Formatting . 125
73.3 Commands . 125

73.3.1 Placeholders . 126
73.4 Links . 126

73.4.1 Internal links . 126
73.4.2 Man Page Links . 127
73.4.3 Auto Links . 127
73.4.4 Checking links . 127

73.5 Case . 127
73.6 Voice . 128
73.7 Notes . 128
73.8 Block quotes . 128

74 Submitting Changes 129
74.1 Requirements . 129
74.2 Forking . 129
74.3 Making changes . 129

10

1 About
Welcome to the Void Handbook! Please be sure to read the "About this Handbook"
section to learn how to use this documentation effectively.

Void is an independent, rolling release Linux distribution, developed from scratch
rather than as a fork, with a focus on stability over bleeding-edge. In addition, there are
several features that make Void unique:

• The XBPS package manager, which is extremely fast, developed in-house, and per-
forms checks when installing updates to ensure that libraries are not changed to
incompatible versions which can break dependencies.

• The musl libc, which focuses on standards compliance and correctness, has first class
support. This allows us to build certain components for musl systems statically,
which would not be practical on glibc systems.

• The LibreSSL fork is used instead of the mainline OpenSSL library. Developed as
part of the OpenBSD project, LibreSSL is dedicated to the security, quality, and
maintainability of this critical library.

• runit is used for init(8) and service supervision. This allows Void to support musl
as a second libc choice, which would not be possible with systemd. A side effect of
this decision is a core system with clean and efficient operation, and a small code
base.

Void is developed in the spare time of a handful of developers, and is generally considered
stable enough for daily use. We do this for fun and hope that our work will be useful to
others.

The name "Void" comes from the C literal void. It was chosen rather randomly, and
has no deeper meaning.

11

https://en.wikipedia.org/wiki/Rolling_release
https://en.wikipedia.org/wiki/Bleeding_edge_technology
https://github.com/void-linux/xbps
https://musl.libc.org/
https://www.libressl.org/
https://man.voidlinux.org/init.8
https://www.freedesktop.org/wiki/Software/systemd/

2 History
Knowledge of the ancients, grepped from the git logs themselves:

• Sep 26 2008: first git import of void-packages

• Aug 17 2009: first git import of xbps

• Mar 1 2013: first musl toolchains added

• Jul 14 2014: begin switching to LibreSSL

• Jul 28 2014: switch from systemd to runit

12

https://github.com/void-linux/void-packages
https://github.com/void-linux/xbps
https://www.musl-libc.org/
https://www.libressl.org/
http://smarden.org/runit/

3 About this Handbook
This handbook is not an extensive guide on how to use and configure common Linux
software. The purpose of this document is to explain how to install, configure, and
maintain Void Linux systems, and to highlight the differences between common Linux
distributions and Void.

To search for a particular term within the Handbook, select the ’magnifying glass’
icon, or press ’s’.

Those looking for tips and tricks on how to configure a Linux system in general should
consult upstream software documentation. Additionally, the Arch Wiki provides a fairly
comprehensive outline of common Linux software configuration, and a variety of internet
search engines are available for further assistance.

3.1 Reading The Manuals
While this handbook does not provide a large amount of copy and paste configuration
instructions, it does provide links to the man pages for the referenced software wherever
possible.

To learn how to use the man(1) man page viewer, run the command man man. It can
be configured by editing /etc/man.conf; read man.conf(5) for details.

Void uses the mandoc toolset for man pages. mandoc was formerly known as
"mdocml", and is provided by the mdocml package.

3.2 Example Commands
Examples in this guide may have snippets of commands to be run in your shell. When
you see these, any line beginning with $ is run as your normal user. Lines beginning with
are run as root. After either of these lines, there may be example output from the
command.

3.2.1 Placeholders

Some examples include text with placeholders. Placeholders indicate where you should
substitute the appropriate information. For example:

ln -s /etc/sv/<service_name > /var/service/

This means you need to substitute the text <service_name> with the actual service
name.

13

https://wiki.archlinux.org/
https://man.voidlinux.org/
https://man.voidlinux.org/man.1
https://man.voidlinux.org/man.conf.5
https://mandoc.bsd.lv/

4 InfraDocs
InfraDocs is the meta-manual for the Void project systems management.

14

https://infradocs.voidlinux.org/

5 Installation
This section includes general information about the process of installing Void. For specific
guides, see the "Advanced Installation" section.

5.1 Base system requirements
Void can be installed on very minimalist hardware, though we recommend the following
minimums for most installations:

Architecture CPU RAM Storage
x86_64-glibc x86_64 96MB 700MB
x86_64-musl x86_64 96MB 600MB
i686-glibc Pentium 4 (SSE2) 96MB 700MB

Note that flavor installations require more resources; how much more depends on the
flavor.

Void is not available for the i386, i486, or i586 architectures.
Before installing musl Void, please read the "musl" section of this Handbook, so that

you are aware of software incompatibilities.
It is highly recommended to have a network connection available during install to

download updates, but this is not required. ISO images contain installation data on-disk
and can be installed without network connectivity.

5.2 Downloading installation media
The most recent live images and rootfs tarballs can be downloaded
from https://alpha.de.repo.voidlinux.org/live/current/. They can also be
downloaded from other mirrors. Previous releases can be found under
https://alpha.de.repo.voidlinux.org/live/, organized by date.

5.2.1 Verifying images

Each image release’s directory contains two files used to verify the image(s) you download.
First, there is a sha256.txt file containing image checksums to verify the integrity of the
downloaded images. Second is the sha256.sig file, used to verify the authenticity of the
checksums.

It is necessary to verify both the image’s integrity and authenticity. It is, therefore,
recommended that you download both files.

Verifying image integrity You can verify the integrity of a downloaded file using
sha256sum(1) with the sha256.txt file downloaded above. The following command will
check the integrity of only the image(s) you have downloaded:

$ sha256sum -c --ignore -missing sha256.txt
void -live -x86_64 -musl -20170220. iso: OK

This verifies that the image is not corrupt.

15

https://alpha.de.repo.voidlinux.org/live/current/
https://alpha.de.repo.voidlinux.org/live/
https://man.voidlinux.org/sha256sum.1

5.2.2 Verifying digital signature

Prior to using any image you’re strongly encouraged to validate the signatures on the
image to ensure they haven’t been tampered with.

Current images are signed using a signify key that is specific to the release. If you’re
on Void already, you can obtain the keys from the void-release-keys package, which
will be downloaded using your existing XBPS trust relationship with your mirror. You
will also need a copy of signify(1); on Void this is provided by the outils package.

To obtain signify when using a Linux distribution or operating system other than
Void Linux:

• Install the signify package in Arch Linux and Arch-based distros.

• Install the signify-openbsd package in Debian and Debian-based distros.

• Install the package listed here for your distribution.

• Install signify-osx with homebrew in macOS.

If you can’t obtain signify for some reason (e.g. you are on Windows and can’t use
WSL or MinGW), you can use minisign(1) to verify the file.

If you are not currently using Void Linux, it will also be necessary to obtain the
appropriate signing key from our Git repository here.

Once you’ve obtained the key, you can verify your image with the sha256.sig file.
The following example demonstrates the verification of the GCP musl filesystem from the
20191109 release:

$ signify -C -p /etc/signify/void -release -20191109. pub -x
sha256.sig void -GCP -musl -PLATFORMFS -20191109. tar.xz

Signature Verified
void -GCP -musl -PLATFORMFS -20191109. tar.xz: OK

If the verification process does not produce the expected "OK" status, do not use it!
Please alert the Void Linux team of where you got the image and how you verified it, and
we will follow up on it.

For verification with minisign, it is necessary to rename the sha256.sig file to
sha256.txt.minisig and remove the first line from the .pub release key. The following
example demonstrates the verification of the sha256.txt file from the 20191109 release:

$ minisign -Vm sha256.txt -f -p void -release -20191109. pub
void -release -20191109. pub: Success

The same warning as above applies. If the verification process isn’t successful, do not
use the file - warn the Void Linux team about it.

16

https://man.voidlinux.org/signify.1
https://repology.org/project/signify-openbsd/versions
https://man.voidlinux.org/minisign.1
https://github.com/void-linux/void-packages/tree/master/srcpkgs/void-release-keys/files/

6 Live Installers
Void provides live installer images containing a base set of utilities, an installer program,
and package files to install a new Void system. These live images are also useful for
repairing a system that is not able to boot or function properly.

There are x86_64 images for both glibc and musl based systems. There are also
images for i686, but only glibc is supported for this architecture. Live installers are
not provided for other architectures. Users of other architectures will need to use rootfs
tarballs, or perform an installation manually.

6.1 Installer images
Void releases two types of images: base images and "flavor" images. Linux beginners are
encouraged to try one of the more full-featured flavor images, but more advanced users
may often prefer to start from a base image to install only the packages they need.

6.1.1 Base images

The base images provide only a minimal set of packages to install a usable Void system.
These base packages are only those needed to configure a new machine, update the system,
and install additional packages from repositories.

6.1.2 Flavor images

Each of the Void "flavor" images includes a full desktop environment, web browser, and
basic applications configured for that environment. The only difference from the base
images is the additional packages and services installed.

The install process for each of the flavor images is the same as the base images, except
that you must select the Local source when installing. If you select Network instead,
the installer will download and install the latest version of the base system, without any
additional packages included on the live image.

Comparison of flavor images Here’s a quick overview of the main components and
applications included with each flavor:

17

Enlightenment Cinnamon LXDE LXQT MATE XFCE
Window Man-
ager

Enlightenment
Window Man-
ager

Mutter (Muf-
fin)

Openbox Openbox Metacity
(Marco)

xfwm4

File Manager Enlightenment
File Manager

Nemo PCManFM PCManFM-Qt Caja Thunar

Web Browser Firefox ESR Firefox ESR Firefox ESR QupZilla Firefox ESR Firefox ESR
Terminal Terminology gnome-

terminal
LXTerminal QTerminal MATE termi-

nal
xfce4-Terminal

Document
Viewer

- - - - Atril
(PS/PDF)

-

Plain text
viewer

- - - - Pluma Mousepad

Image viewer - - GPicView LXImage Eye of MATE Ristretto
Archive un-
packer

- - - - Engrampa -

Other Mixer, EConn-
Man (connec-
tion manager),
Elementary
Test

- LXTask (task
manager),
MIME type
editor

Screen grabber Screen grab-
ber, file finder,
MATE color
picker, MATE
font viewer,
Disk usage
analyzer,
Power statis-
tics, System
monitor (task
manager), Dic-
tionary, Log
file viewer

Bulk rename,
Orage Glob-
altime, Orage
Calendar,
Task Manager,
Parole Media
Player, Audio
Mixer, MIME
type editor,
Application
finder

18

7 Prepare Installation Media
After downloading a live image, it must be written to bootable media, such as a USB
drive, SD card, or CD/DVD.

7.1 Create a bootable USB drive or SD card on Linux
7.1.1 Identify the Device

Before writing the image, identify the device you’ll write it to. You can do this using
fdisk(8). After connecting the storage device, identify the device path by running:

fdisk -l
Disk /dev/sda: 7.5 GiB , 8036286464 bytes , 15695872 sectors
Disk model: Your USB Device ’s Model
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

In the example above, the output shows the USB device as /dev/sda. On Linux, the
path to the device will typically be in the form of /dev/sdX (where X is a number) for
USB devices, /dev/mmcblkX for SD cards, or other variations depending on the device.
You can use the model and size (‘7.5GiB‘ above, after the path) to identify the device if
you’re not sure what path it will have.

Once you’ve identified the device you’ll use, ensure it’s not mounted by unmounting
it with umount(8):

umount /dev/sdX
umount: /dev/sdX: not mounted.

7.1.2 Write the live image

The dd(1) command can be used to copy a live image to a storage device. Using dd, write
the live image to the device:

Warning: this will destroy any data currently on the referenced device.

Exercise caution.

dd bs=4M if=/path/to/void -live -ARCH -DATE -VARIANT.iso of=/
dev/sdX

90+0 records in
90+0 records out
377487360 bytes (377 MB , 360 MiB) copied , 0.461442 s, 818 MB/

s

19

https://man.voidlinux.org/man8/fdisk.8
https://man.voidlinux.org/man8/umount.8
https://man.voidlinux.org/man1/dd.1

dd won’t print anything until it’s completed (or if it failed), so depending on the
device, this can take a few minutes or longer.

Finally, ensure all data is flushed before disconnecting the device:

$ sync

The number of records, amount copied, and rates will all vary depending on the device
and the live image you chose.

7.2 Burning to a CD or DVD
Any disk burning application should be capable of writing the .iso file to a CD or DVD.
The following free software applications are available (cross-platform support may vary):

• Brasero

• K3B

• Xfburn

Note: with a CD or DVD, live sessions will be less responsive than with a
USB

or hard drive.

20

https://wiki.gnome.org/Apps/Brasero/
https://userbase.kde.org/K3b
https://goodies.xfce.org/projects/applications/xfburn

8 Partitioning notes
Partitioning for a modern Linux distribution is generally very simple, however the in-
troduction of GPT and UEFI booting does bring new complexity to the process. When
creating your new partition table you will need a partition for the root filesystem, along
with a swap partition and possibly another partition or two to facilitate booting, if re-
quired.

Note that if the disk has already been initialized, the top of the cfdisk screen will
show the partition layout already present: Label: dos for the MBR scheme, Label:
gpt for the GPT scheme. If you just want to erase the partition table before starting
the installer, use wipefs(8). Otherwise, you can run cfdisk(8) manually with the -z
option to start with an uninitialized disk layout; cfdisk will prompt you for the label
type before continuing to the main screen.

The following sections will detail the options for partition configuration.

8.1 BIOS system notes
It is recommended that you create an MBR partition table if you are using a BIOS boot
system. This will limit the number of partitions you create to four. It is possible to install
a GPT partition table on a BIOS system, but grub will need a special partition to boot
properly.

8.2 UEFI system notes
UEFI users are recommended to create a GPT partition table. UEFI booting with grub
also requires a special partition of the type EFI System with a vfat filesystem mounted at
/boot/efi. A reasonable size for this partition could be between 200MB and 1GB. With
this partition setup during the live image installation, the installer should successfully set
up the bootloader automatically.

8.3 Swap partitions
A swap partition is not strictly required, but recommended for systems with low RAM.
If you want to use hibernation, you will need a swap partition. The following table has
recommendations for swap partition size.

System RAM Recommended swap space Swap space if using hibernation
< 2GB 2x the amount of RAM 3x the amount of RAM
2-8GB Equal to amount of RAM 2x the amount of RAM
8-64GB At least 4GB 1.5x the amount of RAM
64GB At least 4GB Hibernation not recommended

8.4 Boot partition (optional)
On most modern systems, a separate /boot partition is no longer necessary to boot
properly. If you choose to use one, note that Void does not remove old kernels after
updates by default and also that the kernel tends to increase in size with each new

21

version, so plan accordingly (e.g. /boot with one Linux 5.x x86_64 kernel and grub
occupies about 60MB).

8.5 Other partitions
It is fine to install your system with only a large root partition, but you may create other
partitions if you want. One helpful addition could be a separate partition for your /home
directory. This way if you need to reinstall Void (or another distribution) you can save
the data and configuration files in your home directory for your new system.

22

9 Installation Guide
Once you have downloaded a Void image to install and prepared your install media, you
are ready to install Void Linux.

Before you begin installation, you should determine whether your machine boots using
BIOS or UEFI. This will affect how you plan partitions. See Partitioning Notes for more
detail.

The following features are not supported by the installer script:

• LVM

• LUKS

• ZFS

9.1 Booting
Boot your machine from the install media you created. If you have enough RAM, there
is an option on the boot screen to load the entire image into ram, which will take some
time but speed up the rest of the install process.

Once the live image has booted, log in as root with password voidlinux and run:

void -installer

The following sections will detail each screen of the installer.

9.2 Keyboard
Select the keymap for your keyboard; standard "qwerty" keyboards will generally use the
"us" keymap.

9.3 Network
Select your primary network interface. If you do not choose to use DHCP, you will be
prompted to provide an IP address, gateway, and DNS servers.

If you intend to use a wireless connection during the installation, you may need
to configure it manually using wpa_supplicant and dhcpcd manually before running
void-installer.

9.4 Source
To install packages provided on the install image, select Local. Otherwise, you may select
Network to download the latest packages from the Void repository.

Warning!: If you are installing a desktop environment from a ”flavor” image, you
MUST choose Local for the source!

9.5 Hostname
Select a hostname for your computer (that is all lowercase, with no spaces.)

23

https://en.wikipedia.org/wiki/Logical_volume_management
https://en.wikipedia.org/wiki/Linux_Unified_Key_Setup
https://en.wikipedia.org/wiki/ZFS

9.6 Locale
Select your default locale settings. This option is for glibc only, as musl does not currently
support locales.

9.7 Timezone
Select your timezone based on standard timezone options.

9.8 Root password
Enter and confirm your root password for the new installation. The password will not
be shown on screen.

9.9 User account
Choose a login (default void) and a descriptive name for that login. Then enter and
confirm the password for the new user. You will then be prompted to verify the groups
for this new user. They are added to the wheel group by default and will have sudo
access.

9.10 Bootloader
Select the disk to install a bootloader on when Void is installed. You may select none to
skip this step and install a bootloader manually after completing the installation process.
If installing a bootloader, you will also be asked whether or not you want a graphical
terminal for the GRUB menu.

9.11 Partition
Next, you will need to partition your disks. Void does not provide a preset partition
scheme, so you will need to create your partitions manually with cfdisk(8). You will be
prompted with a list of disks. Select the disk you want to partition and the installer will
launch cfdisk for that disk. Remember you must write the partition table to the drive
before you exit the partition editor.

If using UEFI, it is recommended you select GPT for the partition table and create
a partition (typically between 200MB-1GB) of type EFI System, which will be mounted
at /boot/efi.

If using BIOS, it is recommended you select MBR for the partition table. Advanced
users may use GPT but will need to create a special BIOS partition for grub to boot.

See the Partitioning Notes for more details about partitioning your disk.

9.12 Filesystems
Create the filesystems for each partition you have created. For each partition you will
be prompted to choose a filesystem type, whether you want to create a new filesystem
on the partition, and a mount point, if applicable. When you are finished, select Done to
return to the main menu.

If using UEFI, create a vfat filesystem and mount it at /boot/efi.

24

https://man.voidlinux.org/cfdisk.8

9.13 Review settings
It is a good idea to review your settings before proceeding. Use the right arrow key to
select the settings button and hit <enter>. All your selections will be shown for review.

9.14 Install
Selecting Install from the menu will start the installer. The installer will create all
the filesystems selected, and install the base system packages. It will then generate an
initramfs and install a GRUB2 bootloader to the bootable partition.

These steps will all run automatically, and after the installation is completed success-
fully, you can reboot into your new Void Linux install!

9.15 Post installation
After booting into your Void installation for the first time, perform a system update.

25

10 Advanced Installation Guides
This section contains guides for more specific or complex use-cases.

10.1 Section Contents
• Installing Void via chroot (x86 or x86_64)

• Installing Void with Full Disk Encryption

26

11 Installation via chroot (x86/x86_64)
This guide details the process of manually installing Void via a chroot on an x86 or
x86_64 PC architecture. It is assumed that you have a familiarity with Linux, but not
necessarily with installing a Linux system via a chroot. This guide can be used to create
a a "typical" setup, using a single partition on a single SATA/IDE/USB disk. Each step
may be modified to create less typical setups, such as full disk encryption.

Void provides two options for bootstrapping the new installation. The XBPS
method uses the XBPS Package Manager running on a host operating system to in-
stall the base system. The ROOTFS method installs the base system by unpacking a
ROOTFS tarball.

The XBPS method requires that the host operating system have XBPS installed.
This may be an existing installation of Void, an official live image, or any Linux installation
running a statically linked XBPS.

The ROOTFS method requires only a host operating system that can enter a Linux
chroot and that has both tar(1) and xz(1) installed. This method may be preferable if
you wish to install Void using a different Linux distribution.

11.1 Prepare Filesystems
Partition your disks and format them using mke2fs(8), mkfs.xfs(8), mkfs.btrfs(8) or what-
ever tools are necessary for your filesystem(s) of choice.

mkfs.vfat(8) is also available to create FAT32 partitions. However, due to restrictions
associated with FAT filesystems, it should only be used when no other filesystem is suitable
(such as for the EFI System Partition).

cfdisk(8) and fdisk(8) are available on the live images for partitioning, but you may
wish to use gdisk(8) (from the package gptfdisk) or parted(8) instead.

For a UEFI booting system, make sure to create an EFI System Partition (ESP).
The ESP should have the partition type "EFI System" (code EF00) and be formatted as
FAT32 using mkfs.vfat(8).

If you’re unsure what partitions to create, create a 1GB partition of type "EFI System"
(code EF00), then create a second partition of type "Linux Filesystem" (code 8300) using
the remainder of the drive.

Format these partitions as FAT32 and ext4, respectively:

mkfs.vfat /dev/sda1
mkfs.ext4 /dev/sda2

11.1.1 Create a New Root and Mount Filesystems

This guide will assume the new root filesystem is mounted on /mnt. You may wish to
mount it elsewhere.

If using UEFI, mount the EFI System Partition as /mnt/boot/efi.
For example, if /dev/sda2 is to be mounted as / and dev/sda1 is the EFI System

Partition:

27

https://man.voidlinux.org/tar.1
https://man.voidlinux.org/xz.1
https://man.voidlinux.org/mke2fs.8
https://man.voidlinux.org/mkfs.xfs.8
https://man.voidlinux.org/mkfs.btrfs.8
https://man.voidlinux.org/mkfs.vfat.8
https://man.voidlinux.org/cfdisk.8
https://man.voidlinux.org/fdisk.8
https://man.voidlinux.org/gdisk.8
https://man.voidlinux.org/parted.8
https://man.voidlinux.org/mkfs.vfat.8

mount /dev/sda2 /mnt/
mkdir -p /mnt/boot/efi/
mount /dev/sda1 /mnt/boot/efi/

Initialize swap space, if desired, using mkswap(8).

11.2 Base Installation
Follow only one of the two following subsections.

11.2.1 The XBPS Method

Select a mirror and use the appropriate URL for the type of system you wish to install.
For simplicity, save this URL to a shell variable for later use, e.g.:

REPO=https :// alpha.de.repo.voidlinux.org/current

XBPS also needs to know what architecture is being installed. Available options are
x86_64, x86_64-musl and i686 for PC architecture computers. For example:

ARCH=x86_64

This architecture must be compatible with your current operating system, but does
not need to be the same. If your host is running an x86_64 operating system, any of the
three architectures can be installed (whether the host is musl or glibc), but an i686 host
can only install i686 distributions.

Use xbps-install(1) to bootstrap the installation by installing the base-system meta-
package:

XBPS_ARCH=$ARCH xbps -install -S -r /mnt -R "$REPO" base -
system

xbps-installmight ask you to verify the RSA keys for the packages you are installing.

11.2.2 The ROOTFS Method

Download a ROOTFS tarball matching your architecture.
Unpack the tarball into the newly configured filesystems:

tar xvf void -<...>-ROOTFS.tar.xz -C /mnt

11.3 Configuration
With the exception of the section "Install base-system (ROOTFS method only)", the
remainder of this guide is common to both the XBPS and ROOTFS installation methods.

28

https://man.voidlinux.org/mkswap.8
https://man.voidlinux.org/xbps-install.1
https://voidlinux.org/download/#download-installable-base-live-images-and-rootfs-tarballs

11.3.1 Entering the Chroot

Mount the pseudo-filesystems needed for a chroot:

mount --rbind /sys /mnt/sys && mount --make -rslave /mnt/sys
mount --rbind /dev /mnt/dev && mount --make -rslave /mnt/dev
mount --rbind /proc /mnt/proc && mount --make -rslave /mnt/

proc

Copy the DNS configuration into the new root so that XBPS can still download new
packages inside the chroot:

cp /etc/resolv.conf /mnt/etc/

Chroot into the new installation:

PS1=’(chroot) # ’ chroot /mnt/ /bin/bash

11.3.2 Install base-system (ROOTFS method only)

ROOTFS images generally contain out of date software, due to being a snapshot of the
time when they were built, and do not come with a complete base-system. Update the
package manager and install base-system:

xbps -install -Su xbps
xbps -install -u
xbps -install base -system
xbps -remove base -voidstrap

11.3.3 Installation Configuration

Specify the hostname in /etc/hostname. Go through the options in ‘/etc/rc.conf‘. If
installing a glibc distribution, edit /etc/default/libc-locales, uncommenting desired
locales.

nvi(1) is available in the chroot, but you may wish to install your preferred text editor
at this time.

For glibc builds, generate locale files with:

(chroot) # xbps -reconfigure -f glibc -locales

11.3.4 Set a Root Password

Configure at least one super user account. Other user accounts can be configured later,
but there should either be a root password, or a new user account with sudo(8) privileges.

To set a root password, run:

(chroot) # passwd

29

https://man.voidlinux.org/nvi.1
https://man.voidlinux.org/sudo.8

11.3.5 Configure fstab

The fstab(5) file can be automatically generated from currently mounted filesystems by
copying the file /proc/mounts:

(chroot) # cp /proc/mounts /etc/fstab

Remove lines in /etc/fstab that refer to proc, sys, devtmpfs and pts.
Replace references to /dev/sdXX, /dev/nvmeXnYpZ, etc. with their respective UUID,

which can be found by running blkid(8). Referring to filesystems by their UUID guaran-
tees they will be found even if they are assigned a different name at a later time. In some
situations, such as booting from USB, this is absolutely essential. In other situations,
disks will always have the same name unless drives are physically added or removed.
Therefore, this step may not be strictly necessary, but is almost always recommended.

Change the last zero of the entry for / to 1, and the last zero of every other line to 2.
These values configure the behaviour of fsck(8).

For example, the partition scheme used throughout previous examples yields the fol-
lowing fstab:

/dev/sda1 /boot/EFI vfat rw ,relatime ,[...] 0
0

/dev/sda2 / ext4 rw,relatime 0
0

The information from blkid results in the following /etc/fstab:

UUID =6914[...] /boot/EFI vfat rw ,relatime ,[...] 0
2

UUID=dc1b [...] / ext4 rw,relatime 0
1

Note: The output of /proc/mounts will have a single space between each field. The
columns are aligned here for readability.

Add an entry to mount /tmp in RAM:

tmpfs /tmp tmpfs defaults ,nosuid ,nodev 0
0

If using swap space, add an entry for any swap partitions:

UUID=1cb4 [...] swap swap rw,noatime ,discard 0
0

30

https://man.voidlinux.org/fstab.5
https://man.voidlinux.org/blkid.8
https://man.voidlinux.org/fsck.8

11.4 Installing GRUB
Use grub-install to install GRUB onto your boot disk.

On a BIOS computer, install the package grub, then run grub-install /dev/sdX,
where /dev/sdX is the drive (not partition) that you wish to install GRUB to. For
example:

(chroot) # xbps -install grub
(chroot) # grub -install /dev/sda

On a UEFI computer, install either grub-x86_64-efi or grub-i386-efi, depend-
ing on your architecture, then run grub-install, optionally specifying a bootloader label
(this label may be used by your computer’s firmware when manually selecting a boot de-
vice):

(chroot) # xbps -install grub -x86_64 -efi
(chroot) # grub -install --bootloader -id="Void"

If installing onto a removable disk (such as USB), add the option –removable to the
grub-install command.

11.5 Finalization
Use xbps-reconfigure(1) to ensure all installed packages are configured properly:

(chroot) # xbps -reconfigure -fa

This will make dracut(8) generate an initramfs, and will make GRUB generate a
working configuration.

At this point, the installation is complete. Exit the chroot and reboot your computer:

(chroot) # exit
shutdown -r now

After booting into your Void installation for the first time, perform a system update.

31

https://www.gnu.org/software/grub/manual/grub/html_node/Installing-GRUB-using-grub_002dinstall.html
https://man.voidlinux.org/xbps-reconfigure.1
https://man.voidlinux.org/dracut.8

12 Full Disk Encryption
Your drive’s block device and other information may be different, so make sure it is
correct.

Boot the live image and login.
Create a single physical partition on the disk using cfdisk, marking it bootable. For

an MBR system, the partition layout should look like the following.

fdisk -l /dev/sda
Disk /dev/sda: 48 GiB , 51539607552 bytes , 100663296 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x4d532059

Device Boot Start End Sectors Size Id Type
/dev/sda1 * 2048 100663295 100661248 48G 83 Linux

UEFI systems will need the disk to have a GPT disklabel and an EFI system partition.
The required size for this may vary depending on needs, but 100M should be enough for
most cases. For an EFI system, the partition layout should look like the following.

fdisk -l /dev/sda
Disk /dev/sda: 48 GiB , 51539607552 bytes , 100663296 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: EE4F2A1A -8E7F -48CA -B3D0 -BD7A01F6D8A0

Device Start End Sectors Size Type
/dev/sda1 2048 264191 262144 128M EFI System
/dev/sda2 264192 100663262 100399071 47.9G Linux filesystem

Configure the encrypted volume. cryptsetup defaults to LUKS2, yet grub currently
only has support for LUKS1, so it is critical to force LUKS1. Keep in mind this will be
/dev/sda2 on EFI systems.

cryptsetup luksFormat --type luks1 /dev/sda1

WARNING!
========
This will overwrite data on /dev/sda1 irrevocably.

Are you sure? (Type uppercase yes): YES
Enter passphrase:
Verify passphrase:

32

Once the volume is created, it needs to be opened. Replace voidvm with an appropriate
name. Again, this will be /dev/sda2 on EFI systems.

cryptsetup luksOpen /dev/sda1 voidvm
Enter passphrase for /dev/sda1:

Once the LUKS container is opened, create the LVM volume group using that parti-
tion.

vgcreate voidvm /dev/mapper/voidvm
Volume group "voidvm" successfully created

There should now be an empty volume group named voidvm.
Next, logical volumes need to be created for the volume group. For this example, I

chose 10G for /, 2G for swap, and will assign the rest to /home.

lvcreate --name root -L 10G voidvm
Logical volume "root" created.

lvcreate --name swap -L 2G voidvm
Logical volume "swap" created.

lvcreate --name home -l 100% FREE voidvm
Logical volume "home" created.

Next, create the filesystems. The example below uses XFS as a personal preference of
the author. Any filesystem supported by GRUB will work.

mkfs.xfs -L root /dev/voidvm/root
meta -data=/dev/voidvm/root isize =512 agcount=4,

agsize =655360 blks
...
mkfs.xfs -L home /dev/voidvm/home
meta -data=/dev/voidvm/home isize =512 agcount=4,

agsize =2359040 blks
...
mkswap /dev/voidvm/swap
Setting up swapspace version 1, size = 2 GiB (2147479552

bytes)

Next, setup the chroot and install the base system.

mount /dev/voidvm/root /mnt
for dir in dev proc sys run; do mkdir -p /mnt/$dir ; mount

--rbind /$dir /mnt/$dir ; mount --make -rslave /mnt/$dir ;
done

mkdir -p /mnt/home
mount /dev/voidvm/home /mnt/home

On a UEFI system, the EFI system partition also needs to be mounted.

33

https://www.gnu.org/software/grub/manual/grub/grub.html#Features

mkfs.vfat /dev/sda1
mkdir -p /mnt/boot/efi
mount /dev/sda1 /mnt/boot/efi

Before we enter the chroot to finish up configuration, we do the actual install.
xbps-install might ask you to verify the RSA keys for the packages you are installing.

xbps -install -Sy -R https :// alpha.de.repo.voidlinux.org/
current -r /mnt base -system lvm2 cryptsetup grub

[*] Updating ‘https :// alpha.de.repo.voidlinux.org/current/
x86_64 -repodata ’ ...

x86_64 -repodata: 1661KB [avg rate: 2257KB/s]
‘https :// alpha.de.repo.voidlinux.org/current ’ repository has

been RSA signed by "Void Linux"
Fingerprint: 60:ae:0c:d6:f0 :95:17:80: bc :93:46:7a:89:af:a3:2d
Do you want to import this public key? [Y/n] y
130 packages will be downloaded:
...

UEFI systems will have a slightly different package selection. The installation com-
mand for a UEFI system will be as follows.

xbps -install -Sy -R https :// alpha.de.repo.voidlinux.org/
current -r /mnt base -system cryptsetup grub -x86_64 -efi
lvm2

When it’s done, we can enter the chroot and finish up the configuration.

chroot /mnt
chown root:root /
chmod 755 /
passwd root
echo voidvm > /etc/hostname
echo "LANG=en_US.UTF -8" > /etc/locale.conf
echo "en_US.UTF -8 UTF -8" >> /etc/default/libc -locales
xbps -reconfigure -f glibc -locales

The next step is editing /etc/fstab, which will depend on how you configured and
named your filesystems. For this example, the file should look like this:

<file system > <dir > <type > <options > <dump >
<pass >

tmpfs /tmp tmpfs defaults ,nosuid ,nodev 0
0

/dev/voidvm/root / xfs defaults 0
0

/dev/voidvm/home /home xfs defaults 0
0

34

/dev/voidvm/swap swap swap defaults 0
0

UEFI systems will also have an entry for the EFI system partition.

/dev/sda1 /boot/efi vfat defaults 0
0

Next, configure GRUB to be able to unlock the filesystem. Add the following line to
/etc/default/grub:

GRUB_ENABLE_CRYPTODISK=y

Next, the kernel needs to be configured to find the encrypted device. First, find the
UUID of the device.

lsblk -l -o NAME ,UUID
NAME UUID
sda
sda1 135f3c06 -26a0 -437f-a05e -287 b036440a4
...

Edit the GRUB_CMDLINE_LINUX_DEFAULT= line in /etc/default/grub and add
rd.lvm.vg=voidvm rd.luks.uuid=<UUID> to it. Make sure the UUID matches the one
for the sda1 device found in the output of the lsblk command above.

And now to avoid having to enter the password twice on boot, a key will be configured
to automatically unlock the encrypted volume on boot. First, generate a random key.

dd bs=512 count=4 if=/dev/urandom of=/boot/volume.key
4+0 records in
4+0 records out
2048 bytes (2.0 kB, 2.0 KiB) copied , 0.000421265 s, 4.9 MB/s

Next, add the key to the encrypted volume.

cryptsetup luksAddKey /dev/sda1 /boot/volume.key
Enter any existing passphrase:

Change the permissions to protect generated the key.

chmod 000 /boot/volume.key
chmod -R g-rwx ,o-rwx /boot

This keyfile also needs to be added to /etc/crypttab. Again, this will be /dev/sda2
on EFI systems.

voidvm /dev/sda1 /boot/volume.key luks

35

And then the keyfile and crypttab need to be included in the initramfs. Create a
new file at /etc/dracut.conf.d/10-crypt.conf with the following line:

install_items +=" /boot/volume.key /etc/crypttab "

Next, install the boot loader to the disk.

grub -install /dev/sda

Ensure an initramfs is generated. Replace X.X in the following command line with the
installed kernel version.

xbps -reconfigure -f linuxX.X

Exit the chroot, unmount the filesystems, and reboot the system.

exit
umount -R /mnt
reboot

36

13 musl
musl is a libc implementation which strives to be lightweight, fast, simple, and correct.

Void officially supports musl by using it in its codebase for all target platforms (al-
though binary packages are not available for i686). Additionally, all compatible packages
in our official repositories are available with musl-linked binaries in addition to their glibc
counterparts.

Currently, there are nonfree and debug sub-repositories for musl, but no multilib sub-
repo.

13.1 Incompatible software
Musl practices very strict and minimal standard compliance. Many commonly used
platform-specific extensions are not present. Because of this, it is common for soft-
ware to need modification to compile and/or function properly. Void developers work to
patch such software and hopefully get portability/correctness changes accepted into the
upstream projects.

Proprietary software rarely supports non-glibc libc implementations, although some-
times these applications are available as flatpaks, which provide their own libc in the
image.

13.1.1 glibc chroot

Software requiring glibc can be run in a glibc chroot.
Create a directory that will contain the chroot, and install a base system in it via the

base-voidstrap package. If network access is required, copy /etc/resolv.conf into the
chroot; /etc/hosts may need to be copied as well.

Several directories then need to be mounted as follows:

mount -t proc none <chroot_dir >/proc
mount -t sysfs none <chroot_dir >/sys
mount --rbind /dev <chroot_dir >/dev
mount --rbind /run <chroot_dir >/run

Use chroot(1) to change to the new root, then run glibc programs as usual. Once
you’ve finished using it, unmount the chroot using umount(8).

PRoot An alternative to the above is proot(1), a user-space implementation of chroot,
mount –bind, and binfmt_misc. By installing the proot package, unprivileged users can
utilize a chroot environment.

37

https://musl.libc.org/
https://flatpak.org/
https://man.voidlinux.org/chroot.1
https://man.voidlinux.org/umount.8
https://man.voidlinux.org/proot.1

14 Configuration
This section and its subsections provide information about configuring your Void system.

38

15 Firmware
Void provides a number of firmware packages in the repositories. Some firmware is only
available if you have enabled the nonfree repository.

15.1 Microcode
Microcode is loaded onto the CPU or GPU at boot by the BIOS, but can be replaced
later by the OS itself. An update to microcode can allow a CPU’s or GPU’s behavior
to be modified to work around certain yet to be discovered bugs, without the need to
replace the hardware.

15.1.1 Intel

Install the Intel microcode package, intel-ucode. This package is in the nonfree repo,
which has to be enabled. After installing this package, it is necessary to regenerate
your initramfs. For subsequent updates, the microcode will be added to the initramfs
automatically.

15.1.2 AMD

Install the AMD package, linux-firmware-amd, which contains microcode for both AMD
CPUs and GPUs. AMD CPUs and GPUs will automatically load the microcode, no
further configuration required.

15.1.3 Verification

The /proc/cpuinfo file has some information under microcode that can be used to verify
the microcode update.

15.2 Removing firmware
By default, linuxX.Y packages and the base-system package install a number of firmware
packages. It is not necessary to remove unused firmware packages, but if you wish to do
so, you can configure XBPS to ignore those packages, then remove them.

39

16 Locales
For a list of currently enabled locales, run

$ locale -a

16.1 Enabling locales
To enable a certain locale, un-comment or add the relevant lines in
/etc/default/libc-locales and reconfigure the glibc-locales package.

16.2 Setting the system locale
Set LANG=xxxx in /etc/locale.conf.

16.3 Application locale
Some programs have their translations in a separate package that must be installed in or-
der to use them. You can search for the desired language (e.g. "german" or "portuguese")
in the package repositories and install the packages relevant to the applications you use.

40

17 Users and Groups
The useradd(8), userdel(8) and usermod(8) commands are used to add, delete and modify
users respectively. The passwd(1) command is used to change passwords.

The groupadd(8), groupdel(8) and groupmod(8) commands are used to add, delete
and modify groups respectively. The groups(1) command lists all groups a user belongs
to.

17.1 Default shell
The default shell for a user can be changed with chsh(1):

$ chsh -s <shell > <user_name >

<shell> must be the path to the shell as specified by /etc/shells or the output of
chsh -l, which provides a list of installed shells.

17.2 sudo
Note: sudo(8) is installed by default but

may not be configured. It is only necessary to configure sudo if you wish to

use it.

Use visudo(8) as root to edit the sudoers(5) file.
To create a superuser, uncomment the line

#%wheel ALL=(ALL) ALL

and add users to the wheel group.

17.3 Default Groups
Void Linux defines a number of groups by default.

41

https://man.voidlinux.org/useradd.8
https://man.voidlinux.org/userdel.8
https://man.voidlinux.org/usermod.8
https://man.voidlinux.org/passwd.1
https://man.voidlinux.org/groupadd.8
https://man.voidlinux.org/groupdel.8
https://man.voidlinux.org/groupmod.8
https://man.voidlinux.org/groups.1
https://man.voidlinux.org/chsh.1
https://man.voidlinux.org/sudo.8
https://man.voidlinux.org/visudo.8
https://man.voidlinux.org/sudoers.5

Group Description
root Complete access to the system.
bin Unused - present for historical reasons.
sys Unused - present for historical reasons.
kmem Ability to read from /dev/mem and /dev/port.
wheel Elevated privileges for specific system administration tasks.
tty Access to TTY-like devices:

/dev/tty*, /dev/pts*, /dev/vcs*.
tape Access to tape devices.
daemon System daemons that need to write to files on disk.
floppy Access to floppy drives.
disk Raw access to /dev/sd* and /dev/loop*.
lp Access to printers.
dialout Access to serial ports.
audio Access to audio devices.
video Access to video devices.
utmp Ability to write to /var/run/utmp, /var/log/wtmp

and /var/log/btmp.
adm Unused - present for historical reasons. This group was

traditionally used for system monitoring, such as viewing
files in /var/log.

cdrom Access to CD devices.
optical Access to DVD/CD-RW devices.
mail Used by some mail packages, e.g. dma.
storage Access to removable storage devices.
scanner Ability to access scanners.
network Unused - present for historical reasons.
kvm Ability to use KVM for virtual machines, e.g. via QEMU.
input Access to input devices: /dev/mouse*, /dev/event*.
nogroup System daemons that don’t need to own any files.
users Ordinary users.
xbuilder To use xbps-uchroot(1) with xbps-src.

42

18 Services and Daemons - runit
Void uses the runit(8) supervision suite to run system services and daemons.

Some advantages of using runit include:

• a small code base, making it easier to audit for bugs and security issues.

• each service is given a clean process state, regardless of how the service was started
or restarted: it will be started with the same environment, resource limits, open file
descriptors, and controlling terminals.

• a reliable logging facility for services, where the log service stays up as long as the
relevant service is running and possibly writing to the log.

18.1 Section Contents
• Per-User Services

• Logging

18.2 Service Directories
Each service managed by runit has an associated *service directory*.

A service directory requires only one file: an executable named run, which is expected
to exec a process in the foreground.

Optionally, a service directory may contain:

• an executable named check, which will be run to check whether the service is up
and available; it’s considered available if check exits with 0.

• an executable named finish, which will be run on shutdown/process stop.

• a conf file; this can contain environment variables to be sourced and referenced in
run.

• a directory named log; a pipe will be opened from the output of the run process in
the service directory to the input of the run process in the log directory.

When a new service is created, a supervise folder will be automatically created on the
first run.

18.2.1 Configuring Services

Most services can take configuration options set by a conf file in the service directory.
This allows service customization without modifying the service directory provided by
the relevant package.

Check the service file for how to pass configuration parameters. A few services have
a field like OPTS="–value ..." in their conf file.

To make more complex customizations, you should edit the service.

43

https://man.voidlinux.org/runit.8

18.2.2 Editing Services

To edit a service, first copy its service directory to a different directory name. Otherwise,
xbps-install(1) can overwrite the service directory. Then, edit the new service file as
needed. Finally, the old service should be stopped and disabled, and the new one should
be started.

18.3 Managing Services
18.3.1 Runsvdirs

A runsvdir is a directory in /etc/runit/runsvdir containing enabled services in the
form of symlinks to service directories. On a running system, the current runsvdir is
accessible via the /var/service symlink.

The runit-void package comes with two runsvdirs, single and default:

• single just runs sulogin(8) and the necessary steps to rescue your system.

• default is the default runsvdir on a running system, unless specified otherwise by
the kernel command line.

Additional runsvdirs can be created in /etc/runit/runsvdir/.
See runsvdir(8) and runsvchdir(8) for further information.

Booting A Different runsvdir To boot a runsvdir other than default, the name of
the desired runsvdir can be added to the kernel command-line. As an example, adding
single to the kernel command line will boot the single runsvdir.

18.3.2 Basic Usage

To start, stop, restart or get the status of a service:

sv up <services >
sv down <services >
sv restart <services >
sv status <services >

The <services> placeholder can be:

• Service names (service directory names) inside the /var/service directory.

• The full paths to the services.

For example, the following commands show the status of a specific service and of all
enabled services:

sv status dhcpcd
sv status /var/service /*

See sv(8) for further information.

44

https://man.voidlinux.org/xbps-install.1
https://man.voidlinux.org/sulogin.8
https://man.voidlinux.org/runsvdir.8
https://man.voidlinux.org/runsvchdir.8
https://man.voidlinux.org/sv.8

Enabling Services Void Linux provides service directories for most daemons in
/etc/sv/.

To enable a service on a booted system, create a symlink to the service directory in
/var/service:

ln -s /etc/sv/<service > /var/service/

If the system is not currently running, the service can be linked directly into the
default runsvdir:

ln -s /etc/sv/<service > /etc/runit/runsvdir/default/

This will automatically start the service. Once a service is linked it will always start
on boot and restart if it stops, unless administratively downed.

To prevent a service from starting at boot while allowing runit to manage it, create a
file named down in its service directory:

touch /etc/sv/<service >/down

The down file mechanism also makes it possible to disable services that are enabled by
default, such as the agetty(8) services for ttys 1 to 6. This way, package updates which
affect these services - in this case, the runit-void package - won’t re-enable them.

Disabling Services To disable a service, remove the symlink from the running
runsvdir:

rm /var/service/<service >

Or, for example, from the default runsvdir, if either the specific runsvdir, or the
system, is not currently running:

rm /etc/runit/runsvdir/default/<service >

Testing Services To check if a service is working correctly when started by the service
supervisor, run it once before fully enabling it:

touch /etc/sv/<service >/down
ln -s /etc/sv/<service > /var/service
sv once <service >

If everything works, remove the down file to enable the service.

45

https://man.voidlinux.org/agetty.8

19 Per-User Services
Sometimes it can be nice to have user-specific runit services. For example, you might
want to open an ssh tunnel as the current user, run a virtual machine, or regularly run
daemons on your behalf. The most common way to do this is to create a system-level
service that runs runsvdir(8) as your user, in order to start and monitor the services in a
personal services directory.

For example, you could create a service called /etc/sv/runsvdir-<username> with
the following run script:

#!/ bin/sh

export USER="<username >"
export HOME ="/ home/<username >"

groups ="$(id -Gn "$USER" | tr ’ ’ ’:’)"
svdir=" $HOME/service"

exec chpst -u "$USER:$groups" runsvdir "$svdir"

In this example chpst(8) is used to start a new runsvdir(8) process as the specified
user. chpst(8) does not read groups on its own, but expects the user to list all required
groups separated by a :. The id and tr pipe is used to create a list of all the user’s
groups in a way chpst(8) understands it. Note that we export $USER and $HOME because
some user services may not work without them.

The user can then create new services or symlinks to them in the
/home/<username>/service directory. To control the services using the sv(8) command,
the user can specify the services by path, or by name if the SVDIR environment variable
is set to the user’s services directory. This is shown in the following examples:

$ sv status ~/ service /*
run: /home/duncan/service/gpg -agent: (pid 901) 33102s
run: /home/duncan/service/ssh -agent: (pid 900) 33102s
$ SVDIR =~/ service sv restart gpg -agent
ok: run: gpg -agent: (pid 19818) 0s

46

https://man.voidlinux.org/runsvdir.8
https://man.voidlinux.org/chpst.8
https://man.voidlinux.org/runsvdir.8
https://man.voidlinux.org/chpst.8
https://man.voidlinux.org/chpst.8
https://man.voidlinux.org/sv.8

20 Logging

20.1 Syslog
The default installation comes with no syslog daemon. However, there are syslog imple-
mentations available in the Void repositories.

20.1.1 Socklog

socklog(8) is a syslog implementation from the author of runit(8). Use socklog if you’re
not sure which syslog implementation to use. To use it, install the socklog-void package,
and enable the socklog-unix and nanoklogd services.

The logs are saved in sub-directories of /var/log/socklog/, and svlogtail can be
used to help access them conveniently.

The ability to read logs is limited to root and users who are part of the socklog
group.

20.1.2 Other syslog daemons

The Void repositories also include packages for rsyslog and metalog.

47

https://man.voidlinux.org/socklog.8
https://man.voidlinux.org/runit.8

21 rc.conf, rc.local and rc.shutdown
The files /etc/rc.conf, /etc/rc.local and /etc/rc.shutdown can be used to configure
certain parts of your Void system. rc.conf is often configured by void-installer.

21.1 rc.conf
Sourced in runit stages 1 and 3. This file can be used to set variables, including the
following:

21.1.1 KEYMAP

Specifies which keymap to use for the Linux console. Available keymaps are listed in
/usr/share/kbd/keymaps. For example:

KEYMAP=fr

For further details, refer to loadkeys(1).

21.1.2 HARDWARECLOCK

Specifies whether the hardware clock is set to UTC or local time.
By default this is set to utc. However, Windows sets the hardware clock to local time,

so if you are dual-booting with Windows, you need to either configure Windows to use
UTC, or set this variable to localtime.

For further details, refer to hwclock(8).

21.1.3 FONT

Specifies which font to use for the Linux console. Available fonts are listed in
/usr/share/kbd/consolefonts. For example:

FONT=eurlatgr

For further details, refer to setfont(1).

21.2 rc.local
Sourced in runit stage 2. A shell script which can be used to specify configuration to be
done prior to login.

21.3 rc.shutdown
Sourced in runit stage 3. A shell script which can be used to specify tasks to be done
during shutdown.

48

https://man.voidlinux.org/loadkeys.1
https://man.voidlinux.org/hwclock.8
https://man.voidlinux.org/setfont.1

22 Cron
Void Linux comes without a default cron daemon, you can choose one of multiple cron
implementations, by installing the package and enabling the system service.

Available choices include cronie, dcron, fcron and more.
As alternative to the standard cron implementations you can use something like snooze

or runwhen which go hand in hand with service supervision.

49

https://github.com/cronie-crond/cronie/
http://www.jimpryor.net/linux/dcron.html
http://fcron.free.fr/
https://github.com/leahneukirchen/snooze
https://code.dogmap.org/runwhen/

23 Solid State Drives
Post installation, you will need to enable TRIM for solid state drives. You can check
which devices allow TRIM by running:

$ lsblk --discard

If the DISC-GRAN (discard granularity) and DISC-MAX (discard maximum bytes)
columns are non-zero, that means the block device has TRIM support. If your solid state
drive partition does not show TRIM support, please verify that you chose a file system
with TRIM support (ext4, Btrfs, F2FS, etc.). Note that F2FS requires kernel 4.19 or
above to support TRIM.

To run TRIM one-shot, you can run ‘fstrim(8)‘ manually. For example, if your /
directory is on an SSD:

fstrim /

To automate running TRIM, use cron or add the discard option to /etc/fstab.

23.1 Periodic TRIM with cron
Add the following lines to /etc/cron.daily/fstrim:

#!/ bin/sh

fstrim /

Finally, make the script executable:

chmod u+x /etc/cron.daily/fstrim

23.2 Continuous TRIM with fstab discard
Note: You can use either continuous or periodic TRIM, but usage of continuous TRIM is
discouraged if you have an SSD that doesn’t handle NCQ correctly. Refer to the blacklist.

Edit /etc/fstab and add the discard option to block devices that need TRIM.
For example, if /dev/sda1 was an SSD partition, formatted as ext4, and mounted at

/:

/dev/sda1 / ext4 defaults ,discard 0 1

23.3 LVM
To enable TRIM for LVM’s commands (‘lvremove‘, lvreduce, etc.), open
/etc/lvm/lvm.conf, uncomment the issue_discards option, and set it to 1:

issue_discards =1

50

https://man.voidlinux.org/fstrim.8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/ata/libata-core.c#n4522

23.4 LUKS
Warning: Before enabling discard for your LUKS partition, please be aware of the
security implications).

To open an encrypted LUKS device and allow discards to pass through, open the
device with the –allow-discards option:

cryptsetup luksOpen --allow -discards /dev/sdaX luks

23.4.1 Non-root devices

Edit /etc/crypttab and set the discard option for devices on the SSD. For example,
if you have a LUKS device with the name externaldrive1, device /dev/sdb2, and
password none:

externaldrive1 /dev/sdb2 none luks ,discard

23.4.2 Root devices

If your root device is on LUKS, add rd.luks.allow-discards to
CMDLINE_LINUX_DEFAULT. In the case of GRUB, edit /etc/default/grub:

GRUB_CMDLINE_LINUX_DEFAULT ="rd.luks.allow -discards"

23.4.3 Verifying configuration

To verify that you have configured TRIM correctly for LUKS, run:

dmsetup table /dev/mapper/crypt_dev --showkeys

If this command output contains the string allow_discards, you have successfully
enabled TRIM on your LUKS device.

23.5 ZFS
Before running trim on a ZFS pool, ensure that all devices in the pool support it:

zpool get all | grep trim

If the pool allows autotrim (set off by default), you can trim the pool periodically
or automatically. To one-shot trim yourpoolname:

zpool trim yourpoolname

51

https://wiki.archlinux.org/index.php/Dm-crypt/Specialties#Discard/TRIM_support_for_solid_state_drives_(SSD

23.5.1 Periodic TRIM

Add the following lines to /etc/cron.daily/ztrim:

#!/ bin/sh
zpool trim yourpoolname

Finally, make the script executable:

chmod u+x /etc/cron.daily/ztrim

23.5.2 Autotrim

To set autotrim for yourpoolname, run:

zpool set autotrim=on yourpoolname

52

24 Security
There are several ways you can make your installation more secure. This section explores
some of them.

24.1 Section Contents
• AppArmor

• Hashboot

53

25 Hashboot
hashboot hashes all files in /boot and the MBR to check them during early boot. It
is intended for when the root partition is encrypted but not the boot partition. The
checksums and a backup of the contents of /boot are stored in /var/lib/hashboot by
default. If a checksum doesn’t match, there is the option to restore the file from backup.

If there is a core- or libreboot BIOS, hashboot can also check the BIOS for modifica-
tions.

25.1 Installation
Install the hashboot package. To verify the BIOS, flashrom needs to be installed as well.

25.2 Configuration
After installation it is important to run

hashboot index

to create the configuration file and generate the index of the chosen options.
If this is not run after installation, next boot will stop with an emergency shell.
Possible options as KEY=VALUE in /etc/hashboot.cfg:

• SAVEDIR The checksums and the backup are stored here.

• CKMODES 001=MBR, 010=files, 100=BIOS. (e.g. 101 to verify MBR and BIOS)

• MBR_DEVICE Device with the MBR on it.

• PROGRAMMER Use this programmer instead of "internal". Will be passed to flashrom.

25.2.1 Flashrom

For a special programmer for flashrom (e.g. internal:laptop=force_I_want_a_brick),
the following must be set in /etc/hashboot.cfg:

PROGRAMMER =" internal:laptop=force_I_want_a_brick"

25.3 Usage
• Run hashboot index to generate checksums and a backup for /boot and MBR

• Run hashboot check to check /boot and MBR

• Run hashboot recover to replace corrupted files with the backup

54

26 AppArmor
AppArmor is a mandatory access control mechanism (like SELinux). It can constrain
programs based on pre-defined or generated policy definitions.

Void ships with some default profiles for several services, such as dhcpcd and
wpa_supplicant. Container runtimes such as LXC and podman integrate with AppAr-
mor for better security for container payloads.

To use AppArmor on a system, one must:

1. Install the apparmor package.

2. Set the APPARMOR variable in /etc/default/apparmor to enforce or complain.

3. Set apparmor=1 security=apparmor on the kernel commandline.

To accomplish the third step, consult the documentation on how to modify the kernel
cmdline.

55

27 Date and Time
To view your system’s current date and time information, as well as make direct changes
to it, use date(1).

27.1 Timezone
The default system timezone can be set by linking the timezone file to /etc/localtime:

ln -sf /usr/share/zoneinfo/<timezone > /etc/localtime

To change the timezone on a per user basis, the TZ variable can be exported from your
shell’s profile:

export TZ=<timezone >

27.2 Hardware clock
By default, the hardware clock in Void is stored as UTC. Windows does not use UTC
by default, and if you are dual-booting, this will conflict with Void. You can either
change Windows to use UTC, or change Void Linux to use localtime by setting the
HARDWARECLOCK variable in /etc/rc.conf:

export HARDWARECLOCK=localtime

For more details, see hwclock(8).

27.3 NTP
To maintain accuracy of your system’s clock, you can use the Network Time Protocol
(NTP).

Void provides packages for three NTP daemons: NTP, OpenNTPD and Chrony.
Once you have installed an NTP daemon, you can enable the service.

27.3.1 NTP

NTP is the official reference implementation of the Network Time Protocol.
The ntp package provides NTP and the isc-ntpd service.
For further information, visit the NTP site.

27.3.2 OpenNTPD

OpenNTPD focuses on providing a secure, lean NTP implementation which "just works"
with reasonable accuracy for a majority of use-cases.

The openntpd package provides OpenNTPD and the openntpd service.
For further information, visit the OpenNTPD site.

56

https://man.voidlinux.org/date.1
https://man.voidlinux.org/hwclock.8
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://www.ntp.org/
http://www.openntpd.org/

27.3.3 Chrony

Chrony is designed to work well in a variety of conditions; it can synchronize faster and
with greater accuracy than NTP.

The chrony package provides Chrony and the chronyd service.
The Chrony site provides a brief overview of its advantages over NTP, as well as a

detailed feature comparison between Chrony, NTP and OpenNTPD.

57

https://chrony.tuxfamily.org/faq.html#_how_does_code_chrony_code_compare_to_code_ntpd_code
https://chrony.tuxfamily.org/comparison.html
https://chrony.tuxfamily.org/comparison.html

28 Kernel

28.1 Kernel series
Void Linux provides many kernel series in the default repository. These are named
linuxX.Y: for example, linux4.19. You can query for all available kernel series by
running:

$ xbps -query --regex -Rs ’^linux [0 -9.]+ -[0 -9._]+’

The linux meta package, installed by default, depends on one of the kernel packages,
usually the package containing the latest mainline kernel that works with all DKMS
modules. Newer kernels might be available in the repository, but are not necessarily
considered stable enough to be the default; use these at your own risk. If you wish to use
a more recent kernel and have DKMS modules that you need to build, install the relevant
linuxX.Y-headers package, then use xbps-reconfigure(1) to reconfigure the linuxX.Y
package you installed. This will build the DKMS modules.

28.2 Removing old kernels
When updating the kernel, old versions are left behind in case it is necessary to roll
back to an older version. Over time, old kernel versions can accumulate, consuming disk
space and increasing the time taken by dkms module updates. Furthermore, if /boot is a
separate partition and fills up with old kernels, updating can fail or result in incomplete
initramfs filesystems to be generated and result in kernel panics if they are being booted.
Thus, it may be advisable to clean old kernels from time to time.

Removing old kernels is done using the vkpurge(8) utility. vkpurge comes pre-installed
on every Void Linux system. This utility runs the necessary hooks when removing old
kernels. Note that vkpurge does not remove kernel *packages*, only particular *kernels*.

28.3 Kernel modules
Kernel modules are typically drivers for devices or filesystems.

28.3.1 Loading kernel modules during boot

Normally the kernel automatically loads required modules, but sometimes it may be
necessary to explicitly specify modules to be loaded during boot.

To load kernel modules during boot, a .conf file like
/etc/modules-load.d/virtio.conf needs to be created with the contents:

load virtio -net
virtio -net

58

https://man.voidlinux.org/xbps-reconfigure.1
https://man.voidlinux.org/vkpurge.8

28.3.2 Blacklisting kernel modules

Blacklisting kernel modules is a method for preventing modules from being loaded by the
kernel. There are two different methods for blacklisting kernel modules, one for modules
loaded by the initramfs and one for modules loaded after the initramfs process is done.
Modules loaded by the initramfs have to be blacklisted in the initramfs configuration.

To blacklist modules loaded after the initramfs process, create a .conf file, like
/etc/modprobe.d/radeon.conf, with the contents:

blacklist radeon

Blacklisting modules in the initramfs After making the necessary changes to the
configuration files, the initramfs needs to be regenerated for the changes to take effect on
the next boot.

dracut Dracut can be configured to not include kernel modules through a configu-
ration file. To blacklist modules from being included in a dracut initramfs, create a .conf
file, like /etc/dracut.conf.d/radeon.conf, with the contents:

omit_drivers +=" radeon "

mkinitcpio To blacklist modules from being included in a mkinitcpio initramfs a
.conf file needs to be created like /etc/modprobe.d/radeon.conf with the contents:

blacklist radeon

28.4 Kernel hooks
Void Linux provides directories for kernel hooks in
/etc/kernel.d/pre-install,post-install,pre-remove,post-remove.

These hooks are used to update the boot menus for bootloaders like grub, gummiboot
and lilo.

28.4.1 Install hooks

The pre,post-install hooks are executed by xbps-reconfigure(1) when configuring a
Linux kernel, such as building its initramfs. This happens when a kernel series is installed
for the first time or updated, but can also be run manually:

xbps -reconfigure --force linuxX.Y

If run manually, they serve to apply initramfs configuration changes to the next boot.

28.4.2 Remove hooks

The pre,post-remove hooks are executed by vkpurge(8) when removing old kernels.

59

https://man.voidlinux.org/xbps-reconfigure.1
https://man.voidlinux.org/vkpurge.8

28.5 Dynamic Kernel Module Support (dkms)
There are kernel modules that are not part of the Linux source tree that are built at install
time using dkms and kernel hooks. The available modules can be listed by searching for
dkms in the package repositories.

28.6 cmdline
28.6.1 GRUB

Kernel command line arguments can be added through the GRUB bootloader by edit-
ing /etc/default/grub, changing the GRUB_CMDLINE_LINUX_DEFAULT variable and then
running update-grub.

28.6.2 dracut

Dracut can be configured to add additional command line arguments to the kernel through
a configuration file. The documentation for dracut’s configuration files can be found in
dracut.conf(5). To apply these changes, it is necessary to regenerate the initramfs.

60

https://man.voidlinux.org/dracut.conf.5

29 Power Management

29.1 acpid
The acpid service for acpid(8) is installed and, if Void was installed from a live im-
age using the local source, will be enabled by default. ACPI events are handled by
/etc/acpi/handler.sh, which uses zzz(8) for suspend-to-RAM events.

29.2 elogind
The elogind service is provided by the elogind package. By default, elogind(8) listens
for, and processes, ACPI events related to lid-switch activation and the *power*, *sus-
pend* and *hibernate* keys. This will conflict with the acpid service if it is installed and
enabled. Either disable acpid when enabling elogind, or configure elogind to ignore
ACPI events in logind.conf(5). There are several configuration options, all starting with
the keyword Handle, that should be set to ignore to avoid interfering with acpid.

29.3 Power Saving - tlp
Laptop battery life can be extended by using tlp(8). To use it, install the tlp package,
and enable the tlp service. Refer to the TLP documentation for details.

61

https://man.voidlinux.org/acpid.8
https://man.voidlinux.org/zzz.8
https://man.voidlinux.org/elogind.8
https://man.voidlinux.org/logind.conf.5
https://man.voidlinux.org/tlp.8
https://linrunner.de/tlp/

30 Network
Network configuration in Void Linux can be done in several ways. The default installation
comes with the dhcpcd(8) service enabled.

30.1 Interface Names
Newer versions of udev(7) no longer use the traditional Linux naming scheme for interfaces
(‘eth0‘, eth0, wlan0, ...).

This behavior can be reverted by adding net.ifnames=0 to the kernel cmdline.

30.2 Static Configuration
A simple way to configure a static network at boot is to add the necessary ip(8) commands
to the /etc/rc.local file:

ip link set dev eth0 up
ip addr add 192.168.1.2/24 brd + dev eth0
ip route add default via 192.168.1.1

30.3 dhcpcd
To run dhcpcd(8) on all interfaces, enable the dhcpcd service.

To run dhcpcd only on a specific interface, copy the dhcpcd-eth0 service and modify
it to match your interface:

$ ip link show
1: lo: <LOOPBACK ,UP,LOWER_UP > mtu 65536 qdisc noqueue state

UNKNOWN mode DEFAULT group default qlen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: enp3s0: <BROADCAST ,MULTICAST ,UP ,LOWER_UP > mtu 1500 qdisc
pfifo_fast state UP mode DEFAULT group default qlen 1000

link/ether ff:ff:ff:ff:ff:ff brd ff:ff:ff:f
cp -R /etc/sv/dhcpcd -eth0 /etc/sv/dhcpcd -enp3s0
sed -i ’s/eth0/enp3s0/’ /etc/sv/dhcpcd -enp3s0/run
ln -s /etc/sv/dhcpcd -enp3s0 /var/service/

For more information on configuring dhcpcd, refer to dhcpcd.conf(5)

30.4 Wireless
Before using wireless networking, use rfkill(8) to check whether the relevant interfaces are
soft- or hard-blocked.

Void provides several ways to connect to wireless networks:

• wpa_supplicant

• iwd

62

https://man.voidlinux.org/dhcpcd.8
https://man.voidlinux.org/udev.7
https://man.voidlinux.org/ip.8
https://man.voidlinux.org/dhcpcd.8
https://man.voidlinux.org/dhcpcd.conf.5
https://man.voidlinux.org/rfkill.8

• NetworkManager

• ConnMan

63

31 Firewalls

31.1 iptables
By default, the iptables package is installed on the base system. It provides ipta-
bles(8)/ip6tables(8). The related services use the /etc/iptables/iptables.rules and
/etc/iptables/ip6tables.rules ruleset files, which must be created by the system
administrator.

Two example rulesets are provided in the /etc/iptables directory: empty.rules and
simple_firewall.rules.

31.1.1 Applying the rules at boot

To apply iptables rules at runit stage 1, install the runit-iptables package. This adds
a core-service which restores the iptables.rules and ip6tables.rules rulesets.

Alternatively, to apply these rules at stage 2, add the following to /etc/rc.local:

if [-e /etc/iptables/iptables.rules]; then
iptables -restore /etc/iptables/iptables.rules

fi

if [-e /etc/iptables/ip6tables.rules]; then
ip6tables -restore /etc/iptables/ip6tables.rules

fi

After rebooting, check the active firewall rules:

iptables -L
ip6tables -L

31.1.2 Applying the rules at runtime

iptables comes with two runit services, iptables and ip6tables, to quickly flush or
restore the iptables.rules and ip6tables.rules rulesets. Once these services are
enabled, you can flush the rulesets by downing the relevant service, e.g.:

sv down iptables

and restore them by upping the relevant service, e.g.:

sv up ip6tables

64

https://man.voidlinux.org/iptables.8
https://man.voidlinux.org/iptables.8

31.2 nftables
nftables replaces iptables, ip6tables, arptables and ebtables (collectively referred
to as xtables). The nftables wiki describes the main differences from the iptables
toolset.

To use nftables, install the nftables package, which provides nft(8). It also provides
iptables-translate(8)/ip6tables-translate(8) and iptables-restore-translate(8)/ip6tables-
restore-translate(8), which convert iptables rules to nftables rules.

31.2.1 Applying the rules at boot

To apply nftables rules at runit stage 1, install the runit-nftables package. This adds
a core-service which restores the ruleset in /etc/nftables.conf.

31.2.2 Applying the rules at runtime

The nftables package provides the nftables service, which uses rules from
/etc/nftables.conf. To load the rules, run:

sv up nftables

To flush the rules, run:

sv down nftables

65

https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://wiki.nftables.org/wiki-nftables/index.php/Main_differences_with_iptables
https://man.voidlinux.org/nft.8
https://man.voidlinux.org/iptables-translate.8
https://man.voidlinux.org/iptables-restore-translate.8
https://man.voidlinux.org/iptables-restore-translate.8

32 wpa_supplicant
The wpa_supplicant package is installed by default on the base system. It includes
utilities to configure wireless interfaces and handle wireless security protocols. To use
wpa_supplicant, you will need to enable the wpa_supplicant service.

wpa_supplicant(8) is a daemon that manages wireless interfaces
based on wpa_supplicant.conf(5) configuration files. An extensive
overview of configuration options, including examples, can be found in
/usr/share/examples/wpa_supplicant/wpa_supplicant.conf.

wpa_passphrase(8) helps create pre-shared keys for use in configuration files.
wpa_cli(8) provides a CLI for managing the wpa_supplicant daemon.

32.1 WPA-PSK
To use WPA-PSK, generate a pre-shared key with wpa_passphrase(8) and append the
output to the relevant wpa_supplicant.conf file:

wpa_passphrase <MYSSID > <passphrase > >> /etc/wpa_supplicant
/wpa_supplicant -<device_name >.conf

32.2 WPA-EAP
WPA-EAP is often used for institutional logins, notably eduroam. This does not use
PSK, but a password hash can be generated like this:

$ echo -n <passphrase > | iconv -t utf16le | openssl md4

32.3 WEP
For WEP configuration, add the following lines to your device’s wpa-supplicant.conf:

network ={
ssid=" MYSSID"
key_mgmt=NONE
wep_key0 ="YOUR AP WEP KEY"
wep_tx_keyidx =0
auth_alg=SHARED

}

32.3.1 The wpa_supplicant service

The wpa_supplicant service checks the following options in
/etc/sv/wpa_supplicant/conf:

• OPTS: Options to be passed to the service. Overrides any other options.

66

https://man.voidlinux.org/wpa_supplicant.8
https://man.voidlinux.org/wpa_supplicant.conf.5
https://man.voidlinux.org/wpa_passphrase.8
https://man.voidlinux.org/wpa_cli.8
https://man.voidlinux.org/wpa_passphrase.8

• CONF_FILE: Path to file to be used for configuration. Defaults to
/etc/wpa_supplicant/wpa_supplicant.conf.

• WPA_INTERFACE: Interface to be matched. May contain a wildcard; defaults to all
interfaces.

• DRIVER: Driver to use. See wpa_supplicant -h for available drivers.

If no conf file is found, the service searches for the following files in
/etc/wpa_supplicant:

• wpa_supplicant-<interface>.conf: If found, these files are bound to the named
interface.

• wpa_supplicant.conf: If found, this file is loaded and binds to all other interfaces
found.

Once you are satisfied with your configuration, enable the wpa_supplicant service.

32.3.2 Using wpa_cli

When using wpa_cli to manage wpa_supplicant from the command line, be sure to
specify which network interface to use via the -i option, e.g.:

wpa_cli -i wlp2s0

Not doing so can result in various wpa_cli commands (for example, scan and
scan_results) not producing the expected output.

67

33 IWD
IWD (iNet Wireless Daemon) is a wireless daemon for Linux that aims to replace WPA
supplicant.

33.1 Installation
Install the iwd package and enable the dbus and iwd services.

33.2 Usage
The command-line client iwctl(1) can be used to add, remove, and configure network
connections. Commands can be passed as arguments; when run without arguments, it
provides an interactive session. To list available commands, run iwctl help, or run
iwctl and enter help at the interactive prompt.

By default, only the root user and those in the wheel group have permission to operate
iwctl.

33.3 Configuration
Configuration options and examples are described below. Consult the relevant manual
pages and the upstream documentation for further information.

33.3.1 Daemon configuration

The main configuration file is located in /etc/iwd/main.conf. If it does not exist, you
may create it. It is documented in iwd.config(5).

33.3.2 Network configuration

Network configuration, including examples, is documented in iwd.network(5). IWD stores
information on known networks, and reads information on pre-provisioned networks from
network configuration files located in /var/lib/iwd; IWD monitors the directory for
changes. Network configuration filenames consist of the encoding of the SSID followed by
.open, .psk, or .8021x as determined by the security type.

As an example, a basic configuration file for a WPA2/PSK secured network would be
called <ssid>.psk, and it would contain the plain text password:

[Security]
Passphrase=<password >

33.4 Troubleshooting
By default, IWD will create and destroy the wireless interfaces (e.g. wlan0) that it
manages. This can interfere with udevd, which may attempt to rename the interface
using its rules for persistent network interface names. The following messages may be
printed to your screen as a symptom of this interference:

68

https://iwd.wiki.kernel.org/
https://man.voidlinux.org/iwctl.1
https://iwd.wiki.kernel.org/networkconfigurationsettings
https://man.voidlinux.org/iwd.config.5
https://man.voidlinux.org/iwd.network.5

[39.441723] udevd [1100]: Error changing net interface name
wlan0 to wlp59s0: Device or resource busy

[39.442472] udevd [1100]: could not rename interface ’3’
from ’wlan0 ’ to ’wlp59s0 ’: Device or resource busy

A simple fix is to prevent IWD from manipulating the network interfaces in this way by
adding UseDefaultInterface=true to the [General] section of /etc/iwd/main.conf.

An alternative approach is to disable the use of persistent network interface
names by udevd. This may be accomplished either by adding net.ifnames=0
to your kernel cmdline or by creating a symbolic link to /dev/null at
/etc/udev/rules.d/80-net-name-slot.rules to mask the renaming rule. This alter-
native approach will affect the naming of all network devices.

69

34 NetworkManager
NetworkManager(8) is a daemon that manages Ethernet, Wi-Fi, and mobile broadband
network connections. Install the NetworkManager package for the basic NetworkManager
utilities.

34.1 Starting NetworkManager
Before enabling the NetworkManager daemon, disable any other network management
services, such as dhcpcd, wpa_supplicant, or wicd. These services all control network
interface configuration, and will interfere with NetworkManager.

Also ensure that the dbus service is enabled and running. NetworkManager uses dbus
to expose networking information and a control interface to clients, and will fail to start
without it.

Finally, enable the NetworkManager service.

34.2 Configuring NetworkManager
Users of NetworkManager must belong to the network group.

The NetworkManager package includes a command line tool, nmcli(1), and a text-
based user interface, nmtui(1), to control network settings.

There are many other front-ends to NetworkManager, including nm-applet for system
trays, nm-plasma for KDE Plasma, and a built-in network configuration tool in GNOME.

34.3 Eduroam with NetworkManager
Eduroam is a roaming service providing international, secure Internet access at universi-
ties and other academic institutions. More information can be found here.

34.3.1 Dependencies

Install the python3-dbus package.

34.3.2 Installation

Download the correct eduroam_cat installer for your institution from here and execute
it. It will provide a user interface guiding you through the process.

70

https://man.voidlinux.org/NetworkManager.8
https://man.voidlinux.org/nmcli.1
https://man.voidlinux.org/nmtui.1
https://www.eduroam.org/
https://cat.eduroam.org/

35 ConnMan
ConnMan(8) is a daemon that manages network connections, is designed to be slim and
to use as few resources as possible. The connman package contains the basic utilities to
run ConnMan.

35.1 Starting ConnMan
To enable the ConnMan daemon, first disable any other network managing services like
dhcpcd, wpa_supplicant, or wicd. These services all control network interface configura-
tion, and interfere with each other.

Finally, enable the connmand service.

35.2 Configuring ConnMan
The connman package includes a command line tool, connmanctl(1) to control network
settings. If you do not provide any commands, connmanctl starts as an interactive shell.

There are many other front-ends to ConnMan, including connman-ui for system trays,
connman-gtk for GTK, cmst for QT and connman-ncurses for ncurses based UI.

35.3 Preventing DNS overrides by ConnMan
Create /etc/sv/connmand/conf with the following content:

OPTS="--nodnsproxy"

71

https://man.voidlinux.org/connman.8
https://man.voidlinux.org/connmanctl.1

36 Network Filesystems

36.1 NFS
36.1.1 Mounting an NFS Share

To mount an NFS share, start by installing the nfs-utils and sv-netmount packages.
Before mounting an NFS share, enable the statd, rpcbind, and netmount services.

If the server supports nfs4, the statd service isn’t necessary.
To mount an NFS share:

mount -t <mount_type > <host >:/ path/to/sourcedir /path/to/
destdir

<mount_type> should be nfs4 if the server supports it, or nfs otherwise. <host> can
be either the hostname or IP address of the server.

Mounting options can be found in mount.nfs(8), while unmounting options can be
found in umount.nfs(8).

For example, to connect /volume on a server at 192.168.1.99 to an existing
/mnt/volume directory on your local system:

mount -t nfs 192.168.1.99:/ volume /mnt/volume

To have the directory mounted when the system boots, add an entry to fstab(5):

192.168.1.99:/ volume /mnt/volume nfs rw,hard ,intr 0 0

Refer to nfs(5) for information about the available mounting options.

36.1.2 Setting up a server (NFSv4, Kerberos disabled)

To run an NFS server, start by installing the nfs-utils package.
Edit /etc/exports to add a shared volume:

/storage/foo *. local(rw,no_subtree_check ,no_root_squash)

This line exports the /storage/foo directory to any host in the local domain, with
read/write access. For information about the no_subtree_check and no_root_squash
options, and available options more generally, refer to exports(5).

Finally, enable the rpcbind, statd, and nfs-server services.
This will start your NFS server. To check if the shares are working, use the show-

mount(8) utility to check the NFS server status:

showmount -e localhost

You can use nfs.conf(5) to configure your server.

72

https://man.voidlinux.org/mount.nfs.8
https://man.voidlinux.org/umount.nfs.8
https://man.voidlinux.org/fstab.5
https://man.voidlinux.org/nfs.5
https://man.voidlinux.org/exports.5
https://man.voidlinux.org/showmount.8
https://man.voidlinux.org/showmount.8
https://man.voidlinux.org/nfs.conf.5

37 Session and Seat Management
Session and seat management is not necessary for every setup, but it can be used to safely
create temporary runtime directories, provide access to hardware devices and multi-seat
capabilities, and control system shutdown.

37.1 D-Bus
D-Bus is an IPC (inter-process communication) mechanism used by userspace software
in Linux. D-Bus can provide a system bus and/or a session bus, the latter being specific
to a user session.

• To provide a system bus, you should enable the dbus service. This might require a
system reboot to work properly.

• To provide a session bus, you can start a given program (usually a window man-
ager or interactive shell) with dbus-run-session(1). Most desktop environments, if
launched through an adequate display manager, will launch a D-Bus session them-
selves.

Note that some software assumes the presence of a system bus, while other software
assumes the presence of a session bus.

37.2 elogind
elogind(8) manages user logins and system power, as a standalone version of
systemd-logind. elogind provides necessary features for most desktop environments
and Wayland compositors. It can also be one of the mechanisms for rootless Xorg.

Please read the "Power Management" section for things to consider before installing
elogind.

To make use of its features, install the elogind package and make sure the system
D-Bus is enabled. You might need to log out and in again.

If you’re having any issues with elogind, enable its service, as waiting for a D-Bus
activation can lead to issues.

There is an alternative D-Bus configuration which takes advantage of elogind for fea-
tures such as seat detection. It requires installing the dbus-elogind, dbus-elogind-libs
and dbus-elogind-x11 packages.

73

https://man.voidlinux.org/dbus-run-session.1
https://man.voidlinux.org/elogind.8

38 Graphical Session
In order to configure a graphical session, you need:

• Graphics drivers

• A basis for your graphical session: Xorg or Wayland

You may also need:

• Session management tools

74

39 Graphics Drivers
This section covers basic graphics setup depending on the hardware configuration of your
system.

39.1 Section Contents
• Intel GPU

• NVIDIA Optimus

• NVIDIA

75

40 Intel GPU
Intel GPU support requires the linux-firmware-intel package. If you have installed
the linux or linux-lts packages, it will be installed as a dependency. If you installed a
version-specific kernel package (e.g., linux5.4), it may be necessary to manually install
linux-firmware-intel.

40.1 OpenGL
Install the Mesa DRI package, mesa-dri.

Note: This is already included in the xorg meta-package, but it is needed

when installing xorg via xorg-minimal or for running a Wayland compositor.

40.2 Vulkan
Install the Khronos Vulkan Loader and the Mesa Intel Vulkan driver packages, respectively
vulkan-loader and mesa-vulkan-intel.

40.3 Video acceleration
Install the intel-video-accel meta-package:

This will install all the Intel VA-API drivers. intel-media-driver will be used
by default, but this choice can be overridden at runtime via the environment variable
LIBVA_DRIVER_NAME:

Driver Package Supported GPU Gen Explicit selection
libva-intel-driver up to Coffee Lake LIBVA_DRIVER_NAME=i965
intel-media-driver from Broadwell LIBVA_DRIVER_NAME=iHD

40.4 Troubleshooting
The kernels packaged by Void are configured with CONFIG_INTEL_IOMMU_DEFAULT_ON=y,
which can lead to issues with their graphics drivers, as reported by the kernel documen-
tation. To fix this, it is necessary to disable IOMMU for the integrated GPU. This can be
done by adding intel_iommu=igfx_off to your kernel cmdline. This problem is expected
to happen on the Broadwell generation of internal GPUs. If you have another internal
GPU and your issues are fixed by this kernel option, you should file a bug reporting the
problem to kernel developers.

76

https://www.kernel.org/doc/html/latest/x86/intel-iommu.html#graphics-problems
https://www.kernel.org/doc/html/latest/x86/intel-iommu.html#graphics-problems

41 NVIDIA Optimus
NVIDIA Optimus refers to a dual graphics configuration found on laptops consisting of
an Intel integrated GPU and a discrete NVIDIA GPU.

There are different methods to take advantage of the NVIDIA GPU, which depend
on the driver version supported by your hardware.

In order to determine the correct driver to install, it is not enough to look at the
"Supported Products" list on NVIDIA’s website, because they are not guaranteed to
work in an Optimus configuration. So the only way is to try installing the latest nvidia,
rebooting, and looking at the kernel log. If your device is not supported, you will see a
message like this:

NVRM: The NVIDIA GPU xxxx:xx:xx.x (PCI ID: xxxx:xxxx)
NVRM: installed in this system is not supported by the xxx.xx
NVRM: NVIDIA Linux driver release. Please see ’Appendix
NVRM: A - Supported NVIDIA GPU Products ’ in this release ’s
NVRM: README , available on the Linux driver download page
NVRM: at www.nvidia.com.

which means you have to uninstall nvidia and install the legacy nvidia390.
A summary of the methods supported by Void, which are mutually exclusive:
PRIME Render Offload

• only available on nvidia

• allows to switch to the NVIDIA GPU on a per-application basis

• more flexible but power saving capabilities depend on the hardware (pre-Turing
devices are not shut down completely)

Offloading Graphics Display with RandR 1.4

• available on nvidia and nvidia390

• allows to choose which GPU to use at the start of the X session

• less flexible, but allows the user to completely shut down the NVIDIA GPU when
not in use, thus saving power

Bumblebee

• available on nvidia and nvidia390

• allows to switch to the NVIDIA GPU on a per-application basis

• unofficial method, offers poor performance

Nouveau PRIME

• uses the open source driver nouveau

• allows to switch to the NVIDIA GPU on a per-application basis

• nouveau is a reverse-engineered driver and offers poor performance

You can check the currently used GPU by searching for renderer string in the output
of the glxinfo command. It is necessary to install the glxinfo package for this.

77

41.1 PRIME Render Offload
In this method, GPU switching is done by setting environment variables when executing
the application to be rendered on the NVIDIA GPU. The wrapper script prime-run is
available from the nvidia package, and can be used as shown below:

$ prime -run <application >

For more information, see NVIDIA’s README

41.2 Bumblebee
Enable the bumblebeed service and add the user to the bumblebee group. This requires
a re-login to take effect.

Run the application to be rendered on the NVIDIA GPU with optirun:

$ optirun <application >

41.3 Nouveau PRIME
This method uses the open source nouveau driver. If the NVIDIA drivers are installed,
it is necessary to configure the system to use nouveau.

Set DRI_PRIME=1 to run an application on the NVIDIA GPU:

$ DRI_PRIME =1 <application >

78

https://download.nvidia.com/XFree86/Linux-x86_64/440.44/README/primerenderoffload.html

42 NVIDIA

42.1 nouveau (Open Source Driver)
This driver is developed mostly by the community, with little input from Nvidia, and is
not as performant as the proprietary driver. It is required in order to run most Wayland
compositors.

Install the mesa-dri driver or the xf86-video-nouveau driver.
Xorg can make use of either of the above mentioned drivers. The latter is older, more

stable and generally the recommended option. However, for newer devices you might get
better performance by using the mesa-dri provided driver.

Note: xf86-video-nouveau is already included in the xorg meta-package, but is
needed when installing via xorg-minimal.

For using Wayland, users should install the mesa-dri provided driver.

42.2 nvidia (Proprietary Driver)
The proprietary drivers are available in the nonfree repository.

Check if your graphics card belongs to the legacy branch. If it does not, install
the nvidia package. Otherwise you should install the appropriate legacy driver, either
nvidia390 or nvidia340.

Brand Type Model Driver Package
NVIDIA Proprietary 500+ nvidia
NVIDIA Proprietary 300/400 Series nvidia390
NVIDIA Proprietary GeForce8/9 + 100/200/300 Series nvidia340

The proprietary driver integrates in the kernel through DKMS.
This driver offers better performance and power handling, and is recommended where

performance is needed.

42.3 32-bit program support (glibc only)
In order to run 32-bit programs with driver support, you need to install additional pack-
ages.

If using the nouveau driver, install the mesa-dri-32bit package.
If using the nvidia driver, install the nvidia<x>-libs-32bit package. <x> represents

the legacy driver version (340 or 390) or can be left empty for the main driver.

42.4 Reverting from nvidia to nouveau
42.4.1 Uninstalling nvidia

In order to revert to the nouveau driver, install the ‘nouveau‘ driver (if it was not installed
already), then remove the nvidia, nvidia390 or nvidia340 package, as appropriate.

If you were using the nvidia340 driver, you will need to install the libglvnd package
after removing the nvidia340 package.

79

https://www.nvidia.com/en-us/drivers/unix/legacy-gpu/

42.4.2 Keeping both drivers

It is possible to use the nouveau driver while still having the nvidia driver installed. To do
so, remove the blacklisting of nouveau in /etc/modprobe.d/nouveau_blacklist.conf,
/usr/lib/modprobe.d/nvidia.conf, or /usr/lib/modprobe.d/nvidia-dkms.conf by
commenting it out:

#blacklist nouveau

For Xorg, specify that it should load the nouveau driver rather than the nvidia
driver by creating the file /etc/X11/xorg.conf.d/20-nouveau.conf with the following
content:

Section "Device"
Identifier "Nvidia card"
Driver "nouveau"

EndSection

You may need to reboot your system for these changes to take effect.

80

43 Xorg
This section details the manual installation and configuration of the Xorg display server
and common related services and utilities. If you would just like to install a full desktop
environment, it is recommended to try one of the flavor images

43.1 Installation
Void provides a comprehensive xorg package which installs the server and all of the free
video drivers, input drivers, fonts, and base applications. This package is a safe option,
and should be adequate for most systems which don’t require proprietary video drivers.

If you would like to select only the packages you need, the xorg-minimal package
contains the base xorg server *only*. If you install only xorg-minimal, you will likely
need to install a font package (like xorg-fonts), a terminal emulator (like xterm), and a
window manager to have a usable graphics system.

43.2 Video Drivers
Void provides both open-source and proprietary (non-free) video drivers.

43.2.1 Open Source Drivers

Xorg can use two categories of open source drivers: DDX or modesetting.

DDX The DDX drivers are installed with the xorg package by default, or may be
installed individually if the xorg-minimal package was installed. They are provided by
the xf86-video-* packages.

For advanced configuration, see the man page corresponding to the vendor name, like
intel(4).

Modesetting Modesetting requires the mesa-dri package, and no additional vendor-
specific driver package.

Xorg defaults to DDX drivers if they are present, so in this case modesetting must be
explicitly selected: see Forcing the modesetting driver.

For advanced configuration, see modesetting(4).

43.2.2 Proprietary Drivers

Void also provides proprietary NVIDIA drivers, which are available in the nonfree repos-
itory.

43.3 Input Drivers
A number of input drivers are available for Xorg. If xorg-minimal was installed and a
device is not responding, or behaving unexpectedly, a different driver may correct the
issue. These drivers can grab everything from power buttons to mice and keyboards.
They are provided by the xf86-input-* packages.

81

https://man.voidlinux.org/intel.4
https://man.voidlinux.org/modesetting.4

43.4 Xorg Configuration
Although Xorg normally auto-detects drivers and configuration is not needed,
a config for a specific keyboard driver may look something like a file
/etc/X11/xorg.conf.d/30-keyboard.conf with the contents:

Section "InputClass"
Identifier "keyboard -all"
Driver "evdev"
MatchIsKeyboard "on"

EndSection

43.4.1 Forcing the modesetting driver

Create the file /etc/X11/xorg.conf.d/10-modesetting.conf:

Section "Device"
Identifier "GPU0"
Driver "modesetting"

EndSection

and restart Xorg. Verify that the configuration has been picked up with:

$ grep -m1 ’(II) modeset ([0 -9]+):’ /var/log/Xorg .0.log

If there is a match, modesetting is being used.

43.5 Starting X Sessions
43.5.1 startx

The xinit package provides the startx(1) script as a frontend to xinit(1), which can be
used to start X sessions from the console. For example, to use i3, edit /̃.xinitrc to
contain:

exec /bin/i3

Then call startx to start an i3 session.
If a D-Bus session bus is required, you can manually start one.

43.5.2 Display Managers

Display managers (DMs) provide a graphical login UI. A number of DMs are available
in the Void repositories, including gdm (the GNOME DM), sddm (the KDE DM) and
lightdm. When setting up a display manager, be sure to test the service before enabling
it.

82

https://man.voidlinux.org/startx.1
https://man.voidlinux.org/xinit.1

44 Wayland
This section details the manual installation and configuration of Wayland compositors
and related services and utilities.

44.1 Installation
Unlike Xorg, Wayland implementations combine the display server, the window manager
and the compositor in a single application.

44.1.1 Desktop Environments

GNOME, KDE Plasma and Enlightenment have Wayland sessions. GNOME uses its
Wayland session by default. When using these desktop environments, applications built
with GTK+ will automatically choose the Wayland backend, while Qt5 and EFL appli-
cations might require setting some environment variables if used outside KDE or Enlight-
enment, respectively.

44.1.2 Standalone compositors

Void Linux currently packages the following Wayland compositors:

• Weston: reference compositor for Wayland

• Sway: an i3-compatible Wayland compositor

• Wayfire: 3D Wayland compositor

• Hikari: a stacking compositor with some tiling features

• Cage: a Wayland kiosk

44.1.3 Video drivers

Both GNOME and KDE Plasma have EGLStreams backends for Wayland, which means
they can use the proprietary NVIDIA drivers. Most other Wayland compositors require
drivers that implement the GBM interface. The main driver for this purpose is provided
by the mesa-dri package. The "Graphics Drivers" section has more details regarding
setting up graphics in different systems.

44.1.4 Native applications

Qt5-based applications require installing the qt5-wayland package and setting the en-
vironment variable QT_QPA_PLATFORM=wayland-egl to enable their Wayland backend.
Some KDE specific applications also require installing the kwayland package. EFL-based
applications require setting the environment variable ELM_DISPLAY=wl, and can have is-
sues without it, due to not supporting XWayland properly. GTK+-based applications
should use the Wayland backend automatically. Information about other toolkits can be
found in the Wayland documentation.

Media applications, such as mpv(1), vlc(1) and imv work natively on Wayland.

83

https://wayland.freedesktop.org/qt5.html
https://wayland.freedesktop.org/efl.html
https://wiki.gnome.org/Initiatives/Wayland/GTK%2B
https://wayland.freedesktop.org/toolkits.html
https://man.voidlinux.org/mpv.1
https://man.voidlinux.org/vlc.1

Web browsers Mozilla Firefox ships with a Wayland backend which is disabled
by default. To enable the Wayland backend, either set the environment variable
MOZ_ENABLE_WAYLAND=1 before running firefox or use the provided firefox-wayland
script.

Browsers based on GTK+ or Qt5, such as Midori and qutebrowser(1), should work
on Wayland natively.

Running X applications inside Wayland If an application doesn’t support Way-
land, it can still be used in a Wayland context. XWayland is an X server that bridges this
gap for most Wayland compositors, and is installed as a dependency for most of them. Its
package is xorg-server-xwayland. For Weston, the correct package is weston-xwayland.

44.2 Configuration
The Wayland API uses the XDG_RUNTIME_DIR environment variable to determine the
directory for the Wayland socket.

Install elogind as your session manager to automatically setup XDG_RUNTIME_DIR.
Alternatively, manually set the environment variable through the shell. Make sure to

create a dedicated user directory and set its permissions to 700. A good default location
is /run/user/$(id -u).

It is also possible that some applications use the XDG_SESSION_TYPE environment
variable in some way, which requires that you set it to wayland.

84

https://man.voidlinux.org/qutebrowser.1

45 Fonts
To customize font display in your graphical session, you can use configurations provided in
/usr/share/fontconfig/conf.avail/. To do so, create a symlink to the relevant .conf
file in /etc/fonts/conf.d/, then use xbps-reconfigure(1) to reconfigure the fontconfig
package.

For example, to disable use of bitmap fonts:

ln -s /usr/share/fontconfig/conf.avail/70-no -bitmaps.conf /
etc/fonts/conf.d/

xbps -reconfigure -f fontconfig

85

https://man.voidlinux.org/xbps-reconfigure.1

46 Icons

46.1 GTK
By default, GTK-based applications try to use the Adwaita icon theme for ap-
plication icons. Consequently, installation of the gtk+3 package will also install
the adwaita-icon-theme package. If you wish to use a different theme, install
the relevant package, then specify the theme in /etc/gtk-3.0/settings.ini or
/̃.config/gtk-3.0/settings.ini. adwaita-icon-theme can be removed after ignor-
ing the package.

For information about how to specify a different GTK icon theme in settings.ini,
refer to the GtkSettings documentation, in particular the "gtk-icon-theme-name" prop-
erty.

86

https://developer.gnome.org/gtk3/stable/GtkSettings.html#GtkSettings.properties
https://developer.gnome.org/gtk3/stable/GtkSettings.html#GtkSettings--gtk-icon-theme-name

47 GNOME

47.1 Pre-installation
Install the dbus package, ensure the dbus service is enabled, and reboot for the changes
to take effect.

47.2 Installation
Install the gnome package for a GNOME environment which includes GNOME applica-
tions.

A minimal GNOME environment can be created by installing the mesa-dri,
gnome-session, gdm and adwaita-icon-theme packages. (Note, however, that not all
GNOME features may be present or functional.)

The gdm package provides the gdm service for the GNOME Display Manager; test the
service before enabling it. GDM defaults to providing a Wayland session via the mutter
window manager, but an X session can be chosen instead.

If you wish to start an X-based GNOME session from the console, use startx to run
gnome-session.

GNOME applications can be installed via the gnome-apps package.
If you require ZeroConf support, install the avahi package and enable the

avahi-daemon service.

87

http://www.zeroconf.org/

48 KDE

48.1 Installation
Install the kde5 package, and optionally, the kde5-baseapps package.

To use the "Networks" widget, enable the dbus and NetworkManager services.
Installing the kde5 package also installs the sddm package, which provides the sddm

service for the Simple Desktop Display Manager; test the service before enabling it. If
you are not intending to run SDDM via a remote X server, you will need to install either
the xorg-minimal package or the xorg package. By default, SDDM will start an X-based
Plasma session, but you can request a Wayland-based Plasma session instead.

If you wish to start an X-based session from the console, use startx to run
startplasma-x11. For a Wayland-based session, run startplasma-wayland directly.

88

49 Multimedia

49.1 Audio setup
To setup audio on your Void Linux system you have to decide if you want to use PulseAu-
dio or just ALSA.

Some applications require PulseAudio, especially closed source programs.

89

50 ALSA
To use ALSA, install the alsa-utils package and make sure your user is a member of
the audio group.

The alsa-utils package provides the alsa service. When enabled, this service saves
and restores the state of ALSA (e.g. volume) at shutdown and boot, respectively.

To allow use of software requiring PulseAudio, install the apulse package. apulse
provides part of the PulseAudio interface expected by applications, translating calls to
that interface into calls to ALSA. For details about using apulse, consult the project
README.

50.1 Configuration
The default sound card can be specified via ALSA configuration files or via kernel module
options.

To obtain information about the order of loaded sound card modules:

$ cat /proc/asound/modules
0 snd_hda_intel
1 snd_hda_intel
2 snd_usb_audio

To set a different card as the default, edit /etc/asound.conf or the per-user config-
uration file /̃.asoundrc:

defaults.ctl.card 2;
defaults.pcm.card 2;

or specify sound card module order in /etc/modprobe.d/alsa.conf:

options snd_usb_audio index =0

50.2 Dmix
The dmix ALSA plugin allows playing sound from multiple sources. dmix is enabled by
default for soundcards which do not support hardware mixing. To enable it for digital
output, edit /etc/asound.conf:

pcm.dsp {
type plug
slave.pcm "dmix"

}

90

https://github.com/i-rinat/apulse/blob/master/README.md
https://github.com/i-rinat/apulse/blob/master/README.md

51 PulseAudio
Depending on which applications you use, you might need to provide PulseAudio with a
D-BUS session bus (e.g. via dbus-run-session) or a D-BUS system bus (via the dbus
service).

For applications which use ALSA directly and don’t support PulseAudio, the
alsa-plugins-pulseaudio package can make them use PulseAudio through ALSA.

The PulseAudio package comes with a service file, which is not necessary in most
setups - the PulseAudio maintainers discourage using a system-wide setup. Instead,
PulseAudio will automatically start when needed.

There are several methods of allowing PulseAudio to access to audio devices. The
simplest one is to add your user to the audio group. Alternatively, you can use a session
manager, like elogind.

91

https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/User/SystemWide/

52 sndio
Install the sndio package and enable the sndiod(8) service.

52.1 Configuration
The service can be configured by adding sndiod(8) flags to the OPTS variable in the service
configuration file (‘/etc/sv/sndiod/conf‘).

52.1.1 Default device

sndiod(8) uses the first ALSA device by default. To use another ALSA device for sndio’s
default device snd/0 add the flags to use specific devices to the service configuration file.

echo ’OPTS="-f rsnd/Speaker"’ >/etc/sv/sndiod/conf

Use the -f flag to chooses a device by its ALSA device index or its ALSA device name.

52.2 Volume control
The master and per application volume controls are controlled with MIDI messages by
hardware or software.

aucatctl(1) is a tool specific to sndio to send MIDI control messages to the sndiod(8)
daemon. It can be found in the aucatctl package.

52.3 Application specific configurations
52.3.1 Firefox

Firefox is built with sndio support and should work out of the box since version 71 if
libsndio is installed and the snd/0 device is available.

The following about:config changes are required for versions prior to 71 and should
be removed when using version 71 or later:

media.cubeb.backend;sndio
media.cubeb.sandbox;false
security.sandbox.content.read_path_whitelist ;/home/<username

>/. sndio/cookie
security.sandbox.content.write_path_whitelist ;/home/<username

>/. sndio/cookie

52.3.2 mpv

MPV comes with sndio support, but to prevent it from using ALSA over sndio if the
ALSA device is available, set the –ao=sndio command line option. You can also add
the option to mpv’s configuration file: /̃.config/mpv/mpv.conf should contain a line
specifying ao=sndio.

92

https://man.voidlinux.org/sndiod.8
https://man.voidlinux.org/sndiod.8
https://man.voidlinux.org/sndiod.8
https://man.voidlinux.org/aucatctl.1
https://man.voidlinux.org/sndiod.8

52.3.3 OpenAL

libopenal comes with sndio support, but prioritizes ALSA over sndio by default.
You can configure this behaviour per user in /̃.alsoftrc or system wide in
/etc/openal/alsoft.conf by adding the following lines:

[general]
drivers = sndio

93

53 Bluetooth
Ensure the Bluetooth controller is not blocked. Use rfkill to check whether there are
any blocks and to remove soft blocks. If there is a hard block, there is likely either a
physical hardware switch or an option in the BIOS to enable the Bluetooth controller.

$ rfkill
ID TYPE DEVICE SOFT HARD
0 wlan phy0 unblocked unblocked
1 bluetooth hci0 blocked unblocked

rfkill unblock bluetooth

53.1 Installation
Install the bluez package and enable the bluetoothd and dbus services. Then, add your
user to the bluetooth group and restart the dbus service, or simply reboot the system.
Note that restarting the dbus service may kill processes making use of it.

Note: To use an audio device such as a wireless speaker or headset, ALSA
users

need to install the bluez-alsa package, while

PulseAudio users do not need any additional software.

53.2 Usage
Manage Bluetooth connections and controllers using bluetoothctl, which provides a
command line interface and also accepts commands on standard input.

Consult the Arch Wiki for an example of how to pair a device.

53.3 Configuration
The main configuration file is /etc/bluetooth/main.conf.

94

https://wiki.archlinux.org/index.php/Bluetooth#Pairing

54 TeX Live
In Void, the texlive-bin package provides a basic TeX installation, including the tlmgr
program. Use tlmgr to install TeX packages and package collections from CTAN mirrors.
Install the gnupg package to allow tlmgr to verify TeX packages.

The texlive-bin package contains the latest TeX Live version; however, earlier ver-
sions, such as texlive2018-bin, are also available.

54.1 Configuring TeX Live
After installing TeX Live, update the value of PATH:

$ source /etc/profile

Check that /opt/texlive/<year>/bin/x86_64-linux (or
/opt/texlive/<year>/bin/i386-linux) is in your PATH:

$ echo $PATH

If required, change the global default paper size:

tlmgr paper <letter|a4 >

54.2 Installing/Updating TeX packages
To install all available packages:

tlmgr install scheme -full

To install specific packages, you can install the collection(s) including them. To list
the available collections:

$ tlmgr info collections

To see the list of files owned by a collection:

$ tlmgr info --list collection -<name >

To install the collection:

tlmgr install collection -<name >

To install a standalone package, first check if the package exists:

$ tlmgr search --global <package >

and then install it:

95

tlmgr install <package >

To find the package providing a particular file (for example, a font):

$ tlmgr search --file <filename > --global

To remove a package or a collection:

tlmgr remove <package >

To update installed packages:

tlmgr update --all

For a full description, check:
https://www.tug.org/texlive/doc/tlmgr.html

96

https://www.tug.org/texlive/doc/tlmgr.html

55 External Applications

55.1 Programming Languages
The Void repositories have a number of Python and Lua packages. If possible, install
packages from the Void repositories or consider packaging the library or application you
need. Packaging your application allows for easier system maintenance and can bene-
fit other Void Linux users, so consider making a pull request for it. The contribution
instructions can be found here.

To keep packages smaller, Void has separate devel packages for header files and de-
velopment tools. If you install a library or application via a language’s package manager
(e.g. pip, gem), or compile one from source, you may need to install the programming
language’s -devel package. This is specially relevant for musl libc users, due to pre-built
binaries usually targeting glibc instead.

Language Package Manager Void Package
Python3 pip, anaconda, virtualenv, etc python3-devel
Python2 pip, anaconda, virtualenv, etc python2-devel
Ruby gem ruby-devel
lua luarocks lua-devel

55.2 Restricted Packages
Some packages have legal restrictions on their distribution (e.g. Discord), may be too
large, or have another condition that makes it difficult for Void to distribute. These
packages have build templates, but the packages themselves are not built or distributed.
As such, they must be built locally. For more information see the page on restricted
packages.

55.3 Non-x86_64 Arch
The Void build system runs on x86_64 servers, both for compiling and cross compiling
packages. However, some packages (e.g. libreoffice) do not support cross-compilation.
These packages have to be built locally on a computer running the same architecture and
libc as the system on which the package is to be used. To learn how to build packages,
refer to the README for the void-packages repository.

55.4 Flatpak
Flatpak is another method for installing external proprietary applications on Linux. For
information on using Flatpak with Void Linux, see the official Flatpak documentation.

Flatpak’s sandboxing will not necessarily protect you from any security and/or

privacy-violating features of proprietary software.

97

https://github.com/void-linux/void-packages/blob/master/CONTRIBUTING.md
https://github.com/void-linux/void-packages/blob/master/README.md
https://flatpak.org/setup/Void%20Linux/

55.4.1 Troubleshooting

Some apps may not function properly (e.g. not being able to access the host system’s files).
Some of these issues can be fixed by installing one or more of the xdg-desktop-portal,
xdg-desktop-portal-gtk, xdg-user-dirs, xdg-user-dirs-gtk or xdg-utils pack-
ages.

Some Flatpaks require D-Bus and/or Pulseaudio.

55.5 Octave Packages
Some Octave packages require external dependencies to compile and run. For example,
to build the control package, you must install the openblas-devel, libgomp-devel,
libgfortran-devel, gcc-fortran, and gcc packages.

55.6 MATLAB
To use MATLAB’s help browser, live scripts, add-on installer, and simulink, install the
libselinux package.

98

56 Printing
CUPS (Common Unix Printing System) is the supported mechanism for connecting to
printers on Void Linux.

As prerequisites, install the cups package and enable the cupsd service. Wait until
the service is marked available.

56.1 Installing Printing Drivers
If the printer is being accessed over the network and supports PostScript or PCL, CUPS
alone should be sufficient. However, additional driver packages are necessary for local
printer support. The cups-filters package provides driver support for CUPS.

Depending on the hardware in question, additional drivers may be necessary.
Some CUPS drivers contain proprietary or binary-only extensions. These are available

only in the nonfree repository, and sometimes only for specific architectures.

56.1.1 Gutenprint drivers

Gutenprint provides support for many printers. These drivers are contained in the
gutenprint package.

56.1.2 HP drivers

Printers from Hewlett-Packard require the hplip package.
Running the following command will guide you through the driver installation process.

The default configuration selections it suggests are typically sufficient.

hp -setup -i

56.1.3 Brother drivers

For Brother printer support, install the foomatic drivers, which are contained in the
foomatic-db and foomatic-db-nonfree packages.

56.2 Configuring a New Printer
CUPS provides a web interface and command line tools that can be used to configure
printers. Additionally, various native GUI options are available and may be better suited,
depending on the use-case.

56.2.1 Web interface

To configure the printer using the CUPS web interface, navigate to http://localhost:631
in a browser. Under the "Administration" tab, select "Printers > Add Printer".

56.2.2 Command line

The lpadmin(8) tool may be used to configure a printer using the command line.

99

http://localhost:631
https://man.voidlinux.org/lpadmin.8

56.2.3 Graphical interface

The system-config-printer package offers simple and robust configuration of new print-
ers. Install and invoke it:

system -config -printer

Normally this tool requires root privileges. However, if you are using Poli-
cyKit, you can install the cups-pk-helper package to allow unprivileged users to use
system-config-printer.

While system-config-printer is shown here, your desktop environment may have a
native printer dialog, which may be found by consulting the documentation for your DE.

56.3 Troubleshooting
56.3.1 USB printer not shown

The device URI can be found manually by running:

/usr/lib/cups/backend/usb

100

57 Manual Pages
Void packages come with manual pages and the default installation includes the mandoc
manpage toolset.

The man(1) command can be used to show manual pages.

$ man 1 chroot

The mandoc toolset contains apropos(1), which can be used to search for manual pages.
apropos uses a database that can be updated and generated with the makewhatis(8)
command.

makewhatis -a
$ apropos chroot
chroot (1) - run command or interactive shell with special

root directory
xbps -uchroot (1) - XBPS utility to chroot and bind mount with

Linux namespaces
xbps -uchroot (1) - XBPS utility to chroot and bind mount with

Linux namespaces
xbps -uunshare (1) - XBPS utility to chroot and bind mount with

Linux user namespaces
xbps -uunshare (1) - XBPS utility to chroot and bind mount with

Linux user namespaces
chroot (2) - change root directory

man-pages-devel and man-pages-posix are extra packages which are not installed
by default. They contain development and POSIX manuals, respectively.

101

https://mandoc.bsd.lv/
https://man.voidlinux.org/man.1
https://man.voidlinux.org/apropos.1
https://man.voidlinux.org/makewhatis.8

58 XBPS Package Manager
The X Binary Package System (XBPS) is a fast package manager that has been designed
and implemented from scratch. XBPS is managed by the Void Linux team and developed
at https://github.com/void-linux/xbps.

Most general package management is done with the following commands:

• xbps-query(1) searches for and displays information about packages installed locally,
or, if used with the -R flag, packages contained in repositories.

• xbps-install(1) installs and updates packages, and syncs repository indexes.

• xbps-remove(1) removes installed packages, and can also remove orphaned packages
and cached package files.

• xbps-reconfigure(1) runs the configuration steps for installed packages, and can be
used to reconfigure certain packages after changes in their configuration files. The
latter usually requires the –force flag.

• xbps-alternatives(1) lists or sets the alternatives provided by installed packages.
Alternatives is a system which allows multiple packages to provide common func-
tionality through otherwise conflicting files, by creating symlinks from the common
paths to package-specific versions that are selected by the user.

• xbps-pkgdb(1) can report and fix issues in the package database, as well as modify
it.

• xbps-rindex(1) manages local binary package repositories.

Most questions can be answered by consulting the man pages for these tools, together
with the xbps.d(5) man page.

To learn how to build packages from source, refer to the README for the void-
packages repository.

58.1 Updating
Like any other system, it is important to keep Void up-to-date. Use xbps-install(1) to
update:

xbps -install -Su

XBPS must use a separate transaction to update itself. If your update includes the
xbps package, you will need to run the above command a second time to apply the rest
of the updates.

58.1.1 Restarting Services

XBPS does not restart services when they are updated. This task is left to the adminis-
trator, so they can orchestrate maintenance windows, ensure reasonable backup capacity,
and generally be present for service upgrades.

To find processes running different versions than are present on disk, use the
xcheckrestart tool provided by the xtools package:

102

https://github.com/void-linux/xbps
https://man.voidlinux.org/xbps-query.1
https://man.voidlinux.org/xbps-install.1
https://man.voidlinux.org/xbps-remove.1
https://man.voidlinux.org/xbps-reconfigure.1
https://man.voidlinux.org/xbps-alternatives.1
https://man.voidlinux.org/xbps-pkgdb.1
https://man.voidlinux.org/xbps-rindex.1
https://man.voidlinux.org/xbps.d.5
https://github.com/void-linux/void-packages/blob/master/README.md
https://github.com/void-linux/void-packages/blob/master/README.md
https://man.voidlinux.org/xbps-install.1

$ xcheckrestart
11339 /opt/google/chrome/chrome (deleted) (google -chrome)

xcheckrestart will print out the PID, path to the executable, status of the path that
was launched (almost always deleted) and the process name. xcheckrestart can and
should be run as an unprivileged user.

58.1.2 Kernel Panic After Update

If you get a kernel panic after an update, it is likely your system ran out of space in
/boot. Refer to "Removing old kernels" for further information.

58.2 Finding Files and Packages
If you can’t find a file or program you expected to find after installing a package, you can
use xbps-query(1) to list the files provided by that package:

$ xbps -query -f <package_name >

The xtools package contains the xlocate(1) utility. xlocate works like locate(1), but
for files in the Void package repositories:

$ xlocate -S
Fetching objects: 11688 , done.
From https :// alpha.de.repo.voidlinux.org/xlocate/xlocate
+ e122c3634 ... a2659176f master -> master (forced update

)
$ xlocate xlocate
xtools -0.59 _1 /usr/bin/xlocate
xtools -0.59 _1 /usr/share/man/man1/xlocate .1 -> /usr/share/

man/man1/xtools .1

It is also possible to use xbps-query(1) to find files, though this is strongly discouraged:

$ xbps -query -Ro /usr/bin/xlocate
xtools -0.46 _1: /usr/bin/xlocate (regular file)

This requires xbps-query to download parts of every package to find the file. xlocate,
however, queries a locally cached index of all files, so no network access is required.

To get a list of all installed packages, without their version:

$ xbps -query -l | awk ’{ print $2 }’ | xargs -n1 xbps -uhelper
getpkgname

103

https://man.voidlinux.org/xbps-query.1
https://man.voidlinux.org/xlocate.1
https://man.voidlinux.org/locate.1
https://man.voidlinux.org/xbps-query.1

58.3 Verifying RSA keys
If you are installing Void for the first time or the Void RSA key has changed, you may
get a message from xbps-install claiming:

<REPO > repository has been RSA signed by <RSA -FINGERPRINT >

To verify the signature, ensure the <RSA-FINGERPRINT>matches one of the fingerprints
in both void-packages and void-mklive.

104

https://github.com/void-linux/void-packages/tree/master/common/repo-keys
https://github.com/void-linux/void-mklive/tree/master/keys

59 Advanced Usage

59.1 Downgrading
XBPS allows you to downgrade a package to a specific package version.

59.1.1 Via xdowngrade

The easiest way to downgrade is to use xdowngrade from the xtools package, specifying
the package version to which you wish to downgrade:

xdowngrade /var/cache/xbps/pkg -1.0_1.xbps

59.1.2 Via XBPS

XBPS can be used to downgrade to a package version that is no longer available in the
repository index.

If the package version had been installed previously, it will be available in
/var/cache/xbps/. If not, it will need to be obtained from elsewhere; for the pur-
poses of this example, it will be assumed that the package version has been added to
/var/cache/xbps/.

First add the package version to your local repository:

xbps -rindex -a /var/cache/xbps/pkg -1.0_1.xbps

Then downgrade with xbps-install:

xbps -install -R /var/cache/xbps/ -f pkg -1.0_1

The -f flag is necessary to force downgrade/re-installation of an already installed
package.

59.2 Holding packages
To prevent a package from being updated during a system update, use xbps-pkgdb(1):

xbps -pkgdb -m hold <package >

The hold can be removed with:

xbps -pkgdb -m unhold <package >

105

https://man.voidlinux.org/xbps-pkgdb.1

59.3 Repository-locking packages
If you’ve used xbps-src to build and install a package from a customized template, or
with custom build options, you may wish to prevent system updates from replacing that
package with a non-customized version. To ensure that a package is only updated from
the same repository used to install it, you can *repolock* it via xbps-pkgdb(1):

xbps -pkgdb -m repolock <package >

To remove the repolock:

xbps -pkgdb -m repounlock <package >

59.4 Ignoring Packages
Sometimes you may wish to remove a package whose functionality is being provided by
another package, but will be unable to do so due to dependency issues. For example,
you may wish to use doas(1) instead of sudo(8), but will be unable to remove the sudo
package due to it being a dependency of the base-system package. To remove it, you
will need to *ignore* the sudo package.

To ignore a package, add an appropriate ignorepkg entry in an xbps.d(5) configuration
file. For example:

ignorepkg=sudo

You will then be able to remove the sudo package using xbps-remove(1).

59.5 Virtual Packages
Virtual packages can be created with xbps.d(5) virtualpkg entries. Any request to the
virtual package will be resolved to the real package. For example, to create a linux virtual
package which will resolve to the linux5.6 package, create an xbps.d configuration file
with the contents:

virtualpkg=linux:linux5 .6

106

https://man.voidlinux.org/xbps-pkgdb.1
https://man.voidlinux.org/doas.1
https://man.voidlinux.org/sudo.8
https://man.voidlinux.org/xbps.d.5
https://man.voidlinux.org/xbps-remove.1
https://man.voidlinux.org/xbps.d.5

60 Repositories
Repositories are the heart of the XBPS package system. Repositories can be local or
remote. A repository contains binary package files, which may have signatures, and a
data file named $ARCH-repodata (e.g. x86_64-repodata), which may also be signed.

Note that, while local repositories do not require signatures, remote repositories
must be signed.

60.1 The main repository
The locations of the main repository in relation to a base mirror URL are:

• glibc: /current

• musl: /current/musl

• aarch64 and aarch64-musl: /current/aarch64

60.2 Subrepositories
In addition to the main repository, which is enabled upon installation, Void provides other
official repositories maintained by the Void project, but not enabled by default:

• nonfree: contains software packages with non-free licenses

• multilib: contains 32-bit libraries for 64-bit systems (glibc only)

• multilib/nonfree: contains non-free multilib packages

• debug: contains debugging symbols for packages

These repositories can be enabled via the installation of the relevant package. These
packages only install a repository configuration file in /usr/share/xbps.d.

60.2.1 nonfree

Void has a nonfree repository for packages that don’t have free licenses. It can enabled
by installing the void-repo-nonfree package.

Packages can end up in the nonfree repository for a number of reasons:

• Non-free licensed software with released source-code.

• Software released only as redistributable binary packages.

• Patented technology, which may or may not have an (otherwise) open implementa-
tion.

60.2.2 multilib

The multilib repository provides 32-bit packages as a compatibility layer inside a 64-bit
system. It can be enabled by installing the void-repo-multilib package.

These repositories are only available for x86_64 systems running the glibc C library.

107

60.2.3 multilib/nonfree

The multilib/nonfree repository provides additional 32-bit packages which have non-
free licenses. It can be enabled by installing the void-repo-multilib-nonfree package.

60.2.4 debug

Void Linux packages come without debugging symbols. If you want to debug software or
look at a core dump you will need the debugging symbols. These packages are contained
in the debug repository. It can be enabled by installing the void-repo-debug package.

Once enabled, symbols may be obtained for <package> by installing <package>-dbg.

Finding debug dependencies The xtools package contains the xdbg utility to re-
trieve a list of debug packages, including dependencies, for a package:

$ xdbg bash
bash -dbg
glibc -dbg
xbps -install -S $(xdbg bash)

108

61 Mirrors
Void Linux maintains mirrors in several geographic regions for you to use. A fresh install
will default to using the master mirror in Europe, but you may also select a different
mirror manually.

61.1 Tier 1 mirrors
Tier 1 mirrors are maintained by the Void Linux Infrastructure Team. These mirrors
sync directly from the build-master and will always have the latest packages available.

Repository Location
https://alpha.de.repo.voidlinux.org/ EU: Finland
https://mirrors.servercentral.com/voidlinux/ USA: Chicago
https://alpha.us.repo.voidlinux.org/ USA: Kansas City
https://mirror.clarkson.edu/voidlinux/ USA: New York

61.2 Tier 2 mirrors
Tier 2 mirrors sync from a nearby Tier 1 mirror when possible. These mirrors are not
managed by Void and do not have any guarantees of freshness or completeness of packages,
nor are they required to sync every available architecture or sub-repository.

109

https://alpha.de.repo.voidlinux.org/
https://mirrors.servercentral.com/voidlinux/
https://alpha.us.repo.voidlinux.org/
https://mirror.clarkson.edu/voidlinux/

61.2.1 Globally-available mirrors

Repository Location
https://mirror.ps.kz/voidlinux/ Asia: Almaty, KZ
https://mirrors.bfsu.edu.cn/voidlinux/ Asia: China
https://mirrors.cnnic.cn/voidlinux/ Asia: China
https://mirrors.tuna.tsinghua.edu.cn/voidlinux/ Asia: China
https://mirror.maakpain.kro.kr/void/ Asia: Seoul, SK
https://void.webconverger.org/ Asia: Singapore
https://mirror.aarnet.edu.au/pub/voidlinux/ AU: Canberra
https://ftp.swin.edu.au/voidlinux/ AU: Melbourne
https://void.cijber.net/ EU: Amsterdam, NL
http://dk.archive.ubuntu.com/voidlinux/ EU: Denmark
http://ftp.dk.xemacs.org/voidlinux/ EU: Denmark
https://mirrors.dotsrc.org/voidlinux/ EU: Denmark
https://quantum-mirror.hu/mirrors/pub/voidlinux/ EU: Hungary
https://mirror.i-novus.ru/mirrors/voidlinux/ EU: Ireland
http://ftp.debian.ru/mirrors/voidlinux/ EU: Russia
https://mirror.yandex.ru/mirrors/voidlinux/ EU: Russia
https://cdimage.debian.org/mirror/voidlinux/ EU: Sweden
https://ftp.acc.umu.se/mirror/voidlinux/ EU: Sweden
https://ftp.gnome.org/mirror/voidlinux/ EU: Sweden
https://ftp.lysator.liu.se/pub/voidlinux/ EU: Sweden
https://ftp.sunet.se/mirror/voidlinux/ EU: Sweden

61.2.2 Region-locked mirrors

Repository Location
https://mirrors.hushan.tech:44300/voidlinux Asia: China

61.3 Tor Mirrors
Void Linux is also mirrored on the Tor network. See Using Tor Mirrors for more infor-
mation.

61.4 Creating a mirror
If you’d like to set up a mirror, and are confident you can keep it reasonably up-to-date,
follow one of the many guides available for mirroring with rsync(1), then submit a pull
request to the void-docs repository to add your mirror to the appropriate mirror table on
this page.

A full mirror requires around 1TB of storage. It is also possible to mirror only part of
the repositories. Excluding debug packages is one way of decreasing the load on the Tier
1 mirrors, with low impact on users.

110

https://mirror.ps.kz/voidlinux/
https://mirrors.bfsu.edu.cn/voidlinux/
https://mirrors.cnnic.cn/voidlinux/
https://mirrors.tuna.tsinghua.edu.cn/voidlinux/
https://mirror.maakpain.kro.kr/void/
https://void.webconverger.org/
https://mirror.aarnet.edu.au/pub/voidlinux/
https://ftp.swin.edu.au/voidlinux/
https://void.cijber.net/
http://dk.archive.ubuntu.com/voidlinux/
http://ftp.dk.xemacs.org/voidlinux/
https://mirrors.dotsrc.org/voidlinux/
https://quantum-mirror.hu/mirrors/pub/voidlinux/
https://mirror.i-novus.ru/mirrors/voidlinux/
http://ftp.debian.ru/mirrors/voidlinux/
https://mirror.yandex.ru/mirrors/voidlinux/
https://cdimage.debian.org/mirror/voidlinux/
https://ftp.acc.umu.se/mirror/voidlinux/
https://ftp.gnome.org/mirror/voidlinux/
https://ftp.lysator.liu.se/pub/voidlinux/
https://ftp.sunet.se/mirror/voidlinux/
https://mirrors.hushan.tech:44300/voidlinux
https://man.voidlinux.org/rsync.1
https://github.com/void-linux/void-docs

Please keep in mind that we pay bandwidth for all data sent out from the Tier 1
mirrors. You can respect this by only mirroring if your use case for your mirror will offset
the network throughput consumed by your mirror syncing.

111

62 Changing Mirrors
Each repository has a file defining the URL for the mirror used. For official repositories,
these files are installed by the package manager in /usr/share/xbps.d, but if duplicate
files are found in /etc/xbps.d, those values are used instead.

To modify mirror URLs cleanly, copy all the repository configuration files to
/etc/xbps.d and change the URLs in each copied repository file.

mkdir -p /etc/xbps.d
cp /usr/share/xbps.d/*-repository -*. conf /etc/xbps.d/
sed -i ’s|https :// alpha.de.repo.voidlinux.org|<repository >|

g’ /etc/xbps.d/*-repository -*. conf

After changing the URLs, you must synchronize xbps with the new mirrors:

xbps -install -S

You should see the new repository URLs while synchronizing. You can also use
xbps-query to verify the repository URLs, but only after they have been synchronized:

$ xbps -query -L
9970 https :// alpha.de.repo.voidlinux.org/current (RSA signed

)
27 https :// alpha.de.repo.voidlinux.org/current/multilib/

nonfree (RSA signed)
4230 https :// alpha.de.repo.voidlinux.org/current/multilib (

RSA signed)
47 https :// alpha.de.repo.voidlinux.org/current/nonfree (

RSA signed)
5368 https :// alpha.de.repo.voidlinux.org/current/debug (RSA

signed)

Remember that repositories added afterwards will also need to be changed, or they
will use the default mirror.

112

63 Using Tor mirrors
Tor is an anonymizing software that bounces traffic via computers all around the world.
It can provide access to regular sites on the internet or to hidden sites only available on
the network.

The following Void Linux Mirrors are available on the Tor Network:

Repository Location
http://lysator7eknrfl47rlyxvgeamrv7ucefgrrlhk7rouv3sna25asetwid.onion/pub/voidlinux/ EU: Sweden

63.1 Using XBPS with Tor
XBPS can be made to connect to mirrors using Tor. These mirrors can be normal
mirrors, via exit relays, or, for potentially greater anonymity, hidden service mirrors on
the network.

XBPS respects the SOCKS_PROXY environment variable, which makes it easy to use via
Tor.

63.1.1 Installing Tor

Tor is contained in the tor package.
After having installed Tor, you can start it as your own user:

$ tor

or enable its system service.
By default, Tor will act as a client and open a SOCKS5 proxy on TCP port 9050 on

localhost.

63.1.2 Making XBPS connect via the SOCKS proxy

XBPS reads the SOCKS_PROXY environment variable and will use any proxy specified in
it. By simply setting the variable to the address and port of the proxy opened by the Tor
client, all XBPS’s connections will go over the Tor network.

An example upgrading your system over Tor:

export SOCKS_PROXY =" socks5 ://127.0.0.1:9050"
xbps -install -Su

63.1.3 Using a hidden service mirror

To use a hidden service mirror, the default mirrors need to be overwritten with config-
uration files pointing to .onion-addresses that are used internally on the Tor network.
XBPS allows overriding repository addresses under /etc/xbps.d.

Copy your repository files from /usr/share/xbps.d to /etc/xbps.d and replace the
addresses with that of an onion service (Lysator’s onion used as an example):

113

http://lysator7eknrfl47rlyxvgeamrv7ucefgrrlhk7rouv3sna25asetwid.onion/pub/voidlinux/

mkdir -p /etc/xbps.d
cp /usr/share/xbps.d/*-repository -*. conf /etc/xbps.d/
sed -i ’s|https :// alpha.de.repo.voidlinux.org|http ://

lysator7eknrfl47rlyxvgeamrv7ucefgrrlhk7rouv3sna25asetwid.
onion/pub/voidlinux|g’ /etc/xbps.d/*-repository -*. conf

Tor provides layered end-to-end encryption so HTTPS is not necessary.
When installing packages, with SOCKS_PROXY set like the earlier example, XBPS should

indicate that it is synchronizing the repositories from the onion address specified in the
override:

xbps -install -S
[*] Updating ‘http ://

lysator7eknrfl47rlyxvgeamrv7ucefgrrlhk7rouv3sna25asetwid.
onion/pub/voidlinux/current/aarch64/nonfree/aarch64 -
repodata ’ ...

aarch64 -repodata: 4030B [avg rate: 54KB/s]
[*] Updating ‘http ://

lysator7eknrfl47rlyxvgeamrv7ucefgrrlhk7rouv3sna25asetwid.
onion/pub/voidlinux/current/aarch64/aarch64 -repodata ’ ...

aarch64 -repodata: 1441KB [avg rate: 773KB/s]

63.1.4 Security consideration

It is advisable to set SOCKS_PROXY automatically in your environment if you are using an
onion. If the setting is missing, a DNS query for the name of the hidden service will leak
to the configured DNS server.

To automatically set the environment variable, add it to a file in /etc/profile.d:

cat - <<EOF > /etc/profile.d/socksproxy.sh
#!/ bin/sh
export SOCKS_PROXY =" socks5 ://127.0.0.1:9050"
EOF

114

64 Restricted Packages
Void offers some packages that are officially maintained, but not distributed. These
packages are marked as restricted and must be built from their void-packages template
locally.

Packages can be restricted from distribution by either the upstream author or Void.
Void reserves the right to restrict distribution of any package for effectively any reason,
massive size being the most common. Another common reason is restrictive licensing that
does not allow third-party redistribution of source or binary packages.

64.1 Building manually
You can use xbps-src in the void-packages repository to build the restricted packages
from templates. For instructions on building packages from templates, refer to the void-
packages documentation, and the "Quick start" section in particular .

Remember that the building of restricted packages must be enabled explicitly by
setting XBPS_ALLOW_RESTRICTED=yes in your xbps-src configuration (in the etc/conf
file in the repository.)

64.2 Automated building
There is also a tool, xbps-mini-builder which automates the process of building a list of
packages. The script can be called periodically and will only rebuild packages if their
templates have changed.

115

https://github.com/void-linux/void-packages
https://github.com/void-linux/void-packages
https://github.com/void-linux/void-packages
https://github.com/void-linux/void-packages
https://github.com/void-linux/void-packages#quick-start
https://github.com/the-maldridge/xbps-mini-builder

65 Custom Repositories
Void supports user-created repositories, both local and remote. This is only recommended
for serving custom packages created personally, or packages from another trusted source.
The Void project does not support *any* third-party package repositories - the use of
third-party software packages poses very serious security concerns, and risks serious dam-
age your system.

65.1 Adding custom repositories
To add a custom repository, create a file in /etc/xbps.d, with the contents:

repository=<URL >

where <URL> is either a local directory or a URL to a remote repository.
For example, to define a remote repository:

echo ’repository=http ://my.domain.com/repo ’ > /etc/xbps.d/
my -remote -repo.conf

Remote repositories need to be signed. xbps-install(1) refuses to install packages from
remote repositories if they are not signed.

To define a local repository:

echo ’repository =/path/to/repo ’ > /etc/xbps.d/my-local -repo
.conf

116

https://man.voidlinux.org/xbps-install.1

66 Signing repositories
Remote repositories must be signed. Local repositories do not need to be signed.

The xbps-rindex(1) tool is used to sign repositories.
The private key for signing packages needs to be a PEM-encoded RSA key. The key

can be generated with either ssh-keygen(1) or openssl(1):

$ ssh -keygen -t rsa -m PEM -f private.pem

$ openssl genrsa -out private.pem

Once the key is generated, the public part of the private key has to be added to the
repository metadata. This step is required only once.

$ xbps -rindex --privkey private.pem --sign --signedby "I’m
Groot" /path/to/repository/dir

Then sign one or more packages with the following command:

$ xbps -rindex --privkey private.pem --sign -pkg /path/to/
repository/dir /*. xbps

Note that future packages will not be automatically signed.

117

https://man.voidlinux.org/xbps-rindex.1
https://man.voidlinux.org/ssh-keygen.1
https://man.voidlinux.org/openssl.1

67 Troubleshooting XBPS
Sometimes the package manager gets in a weird spot and can’t fix itself without help.
This section documents important fixes and things that can go wrong when working with
XBPS.

67.1 Section Contents
• Common Errors

• Static XBPS

118

68 Common Errors

68.1 Errors while updating or installing packages
If there are any errors while updating or installing a new package, make sure that you
are using the latest version of the remote repository index. Running xbps-install(1) with
the -S option will guarantee that.

68.1.1 "Operation not permitted"

An "Operation not permitted" error, such as:

ERROR: [reposync] failed to fetch file https :// alpha.de.repo.
voidlinux.org/current/nonfree/x86_64 -repodata ’: Operation
not permitted

can be caused by your system’s date and/or time being incorrect. Ensure your date
and time are correct.

68.1.2 "Not Found"

A "Not Found" error, such as:

ERROR: [reposync] failed to fetch file ‘https :// alpha.de.repo
.voidlinux.org/current/musl/x86_64 -repodata ’: Not Found

usually means your XBPS configuration is pointing to the wrong repositories for your
system. Confirm that your xbps.d(5) files refer to the correct repositories.

68.1.3 shlib errors

An "unresolvable shlib" error, such as:

libllvm8 -8.0.1 _2: broken , unresolvable shlib ’libffi.so.6’

is probably due to orphan packages, already removed from the Void repos, still being
installed on your system. This can be solved by running xbps-remove(1) with the -o
option, which removes orphan packages.

If you get an error message saying:

Transaction aborted due to unresolved shlibs

the repositories are in the staging state, which can happen due to large builds. The
solution is to wait for the builds to finish. You can view the builds’ progress in the
Buildbot’s Waterfall Display.

119

https://man.voidlinux.org/xbps-install.1
https://man.voidlinux.org/xbps.d.5
https://man.voidlinux.org/xbps-remove.1
https://build.voidlinux.org/waterfall

68.1.4 repodata errors

In March 2020, the compression format used for the repository data (repodata) was
changed from gzip to zstd. If XBPS wasn’t updated to version 0.54 (released June 2019)
or newer, it is not possible to update the system with it. Unfortunately, there isn’t an
error message for this case, but it can be detected by running xbps-install with the
-Sd flags. The debug message for this error is shown below.

[DEBUG] [repo] ‘//var/db/xbps/
https___alpha_de_repo_voidlinux_org_current/x86_64 -
repodata ’ failed to open repodata archive Invalid or
incomplete multibyte or wide character

In this situation, it is necessary to follow the steps in xbps-static.

68.2 Broken systems
If your system is for some reason broken and can’t perform updates or package instal-
lations, using a statically linked version of xbps to update and install packages can help
you avoid reinstalling the whole system.

120

69 Static XBPS
In rare cases, it is possible to break the system sufficiently that XBPS can no longer
function. This usually happens while trying to do unsupported things with libc, but can
also happen when an update contains a corrupt glibc archive or otherwise fails to unpack
and configure fully.

Another issue that can present itself is in systems with a XBPS version before 0.54
(released June 2019). These systems will be impossible to update from the official repos-
itories using the regular update procedure, due a change in the compression format used
for repository data, which was made in March 2020.

In these cases it is possible to recover your system with a separate, statically compiled
copy of XBPS.

69.1 Obtaining static XBPS
Statically compiled versions of XBPS are available in all mirrors in the static/ directory.
The link below points to the static copies on the primary mirror in Germany:

https://alpha.de.repo.voidlinux.org/static
Download and unpack the latest version, or the version that matches the broken copy

on your system (with a preference for the latest copy).

69.2 Using static XBPS
The tools in the static set are identical to the normal ones found on most systems. The
only distinction is that these tools are statically linked to the musl C library, and should
work on systems where nothing else does. In systems where the platform can no longer
boot, it is recommended to chroot in with Void installation media and use the static tools
from there, as it is unlikely that even a shell will work correctly on the target system.
When using static XBPS with glibc installation, environmental variable XBPS_ARCH need
to be set.

121

https://alpha.de.repo.voidlinux.org/static

70 Contributing
There’s more to running a distribution than just writing code. This section explains how
to be an active part of Void.

Please also visit the Void Web site for further information about how to participate,
including our communication channels and how to contribute to the Void package repos-
itory.

70.1 Section Contents
• Usage Statistics

• Contributing To The void-docs Project

122

https://voidlinux.org/contribute/

71 Usage Statistics
If you would like to contribute usage reports, the PopCorn program reports installation
statistics back to the Void project. These statistics are purely opt-in, the reporting
programs are *not* installed by default on any void systems.

PopCorn only reports which packages are installed, their version, and the host CPU
architecture (the output of xuname.) This does not report which services are enabled, or
any other personal information. Individual systems are tracked persistently by a random
(client generated) UUID, to ensure that each system is only counted once in each 24-hour
sampling period.

The data collected by *PopCorn* is available to view at http://popcorn.voidlinux.org

71.1 Setting up PopCorn
First, install the PopCorn package. Then, enable the popcorn service, which will attempt
to report statistics once per day.

123

https://github.com/the-maldridge/popcorn
http://popcorn.voidlinux.org

72 Contributing To The void-docs Project
The sources for this handbook are hosted in the void-docs repository on GitHub. If you
would like to make a contribution, please read about the purpose of the Handbook, follow
our style guide and submit a pull request.

124

https://github.com/void-linux/void-docs
https://github.com

73 Style Guide
This style guide outlines the standards for contributing to the void-docs project. The
manual on https://docs.voidlinux.org is generated from an mdBook stored in the void-
docs repository.

73.1 General
Although there will always be cases where command listings are appropriate, the contents
of the Handbook should be written in American English (or the relevant language in the
case of translations of the Handbook).

Outside of the ’installation’ sections, step-by-step instructions containing ’magic’ com-
mands for copying-and-pasting are strongly discouraged. Users are expected to read the
canonical documentation (e.g. man pages) for individual programs to understand how to
use them, rather than relying on copying-and-pasting.

Command code-blocks should not be used to describe routine tasks documented else-
where in this Handbook. For example, when writing documentation for the foo package,
do not provide a command code-block stating that one should install it via xbps-install
foo. Similarly, do not provide code blocks describing how to enable the foo service.

73.2 Formatting
For markdown formatting, the void-docs project uses the Versioned Markdown format,
and enforces use of the auto-formatter vmdfmt, which works very similarly to gofmt.
Most valid markdown is accepted by the formatter. The output format is described in
the project’s README.

After installing the vmdfmt package, you can format a file by running:

vmdfmt -w <filepath >

To format the entire *mdbook* from the repository root, outputting a list of files
modified, run:

vmdfmt -w -l <filepath >

vmdfmt is used by the void-docs repository’s check.sh script, which must be run
locally before submitting a pull request.

73.3 Commands
Command code-blocks should start with a # or $ character, indicating whether the com-
mand should be run as root or a regular user, respectively.

For example:

vi /etc/fstab

and not:

125

https://github.com/void-linux/void-docs/
https://docs.voidlinux.org
https://rust-lang.github.io/mdBook/
https://github.com/void-linux/void-docs/
https://github.com/void-linux/void-docs/
https://github.com/void-linux/void-docs/
https://github.com/bobertlo/vmd
https://github.com/bobertlo/vmd/blob/master/README.md

$ sudo vi /etc/fstab

and also not:

vi /etc/fstab

Command code-blocks should be introduced with a colon (’:’), i.e.:

For example:

$ ls -l

73.3.1 Placeholders

Placeholders indicate where the user should substitute the appropriate information. They
should use angle brackets (‘<‘ and >) and contain only lower-case text, with words sepa-
rated by underscores. For example:

ln -s /etc/sv/<service_name > /var/service/

and not:

ln -s /etc/sv/[SERVICENAME] /var/service/

73.4 Links
Link text should not include sentence-level punctuation. For example:

[Visit this site](https :// example.org).

and not:

[Visit this site .](https :// example.org)

73.4.1 Internal links

Links to other sections of the Handbook must be relative. For example:

[example](./ example.md#heading -text)

and not:

[example](example.md#heading -text)

When referring literally to a Handbook section, the section title should be placed in
double-quotes. Otherwise, double-quotes are not required. For example:

126

For more information , please read the "[Power Management](./
power -management.md)" section.

and

Void provides facilities to assist with [power management](./
power -management.md).

73.4.2 Man Page Links

The first reference to a command or man page must be a link to the relevant man page
on https://man.voidlinux.org/.

The link text must contain the title section number in parenthesis, and contain no
formatting. For example: man(1), not ‘man(1)‘.

73.4.3 Auto Links

Auto links (links with the same title as URL) should use the following notation:

<https ://www.example.com/>

They should not be formatted like this:

https :// www.example.com/

73.4.4 Checking links

If you’re including new links (either internal or external) in the docs or changing the
current file structure, you should make use of the mdbook-linkcheck package:

$ mdbook -linkcheck -s

This will verify all the references, and warn you if there are any issues. If any link
you’re using is correct but generating errors for some reason, you can add its domain to
the exclude list in book.toml, under the [mdbook.linkcheck] key. mdbook-linkcheck
is used by the void-docs repository’s check.sh script, which must be run locally before
submitting a pull request.

73.5 Case
Filenames and directories should use kebab case when splitting words. For example the
filename should be post-install.md not postinstall.md.

Words that are part of trademarks or well known package names are exempt from this
rule. Examples include PulseAudio and NetworkManager which are well known by their
squashed names.

127

https://man.voidlinux.org/man.1
https://man.voidlinux.org/man.1
https://en.wikipedia.org/wiki/Kebab_case

73.6 Voice
Prefer the active imperative voice when writing documentation. Consider the following
examples:

Now we need to install the CUPS drivers and configure them.

This version is conversational and friendlier, but contains unnecessary language that
may not be as clear to an ESL reader.

Install and configure the CUPS drivers, then configure them as shown.

This version contains a clear command to act, and a follow up that shows what will
be done next. It is clear both to native English speakers, ESL readers, and to translators.

73.7 Notes
Notes should only be used sparingly, and for non-critical information. They should begin
with "Note: ", and not be block-quoted with >. For example, the Markdown should look
like:

Note: You can also use program X for this purpose.

and not:

> You can also use program X for this purpose.

73.8 Block quotes
Block quotes (i.e. >) should only be used to quote text from an external source.

128

74 Submitting Changes
Proposed changes should be submitted as pull requests to the void-docs repository on
GitHub. Please note that, unlike a wiki, submissions will be reviewed before they are
merged. If any changes are required they will need to be made before the pull request is
accepted. This process is in place to ensure the quality and standards of the Handbook
are sustained.

74.1 Requirements
To clone the repository and push changes, git(1) is required. It can be installed via the
git package.

Building the Handbook locally requires mdBook, which can be installed via the mdBook
package.

74.2 Forking
To fork the repository a GitHub account is needed. Once you have an account, follow
GitHub’s guide on setting up a fork.

Clone the repository onto your computer, enter it, and create a new branch:

$ git clone https :// github.com/<your_username >/void -docs.git
$ cd void -docs
$ git checkout -b <branch_name >

You can then edit the repository files as appropriate.

74.3 Making changes
To serve the docs locally and view your changes, run mdbook serve from the root of the
repository.

Once you are satisfied with your changes, run the check.sh script provided in the
repository root. This will run the vmdfmt command, which will wrap the text appropri-
ately, and the mdbook-linkcheck command, which will check for broken links. Address
any issues raised by check.sh.

Once check.sh runs without errors, push your changes to your forked repository:

$ git add <edited_file(s)>
$ git commit -m "<commit_message >"
$ git push --set -upstream origin <branch_name >

The commit message should be in the form <filename>:
<description_of_changes>.

Pull requests should only contain a single commit. If a change is made after the initial
commit, git add the changed files and then run git commit –amend. The updated
commit will need to be force-pushed: git push –force.

If multiple commits are made they will need to be squashed into a single commit with
git rebase -i HEADX̃, where X is the number of commits that need to be squashed. An

129

https://github.com/void-linux/void-docs
https://github.com/
https://man.voidlinux.org/git.1
https://rust-lang.github.io/mdBook/
https://github.com/join
https://help.github.com/en/articles/fork-a-repo

editor will appear to choose which commits to squash. A second editor will appear to
choose the commit message. See git-rebase(1) for more information. The updated commit
will need to be force-pushed: git push –force.

130

https://man.voidlinux.org/git-rebase.1

	About
	History
	About this Handbook
	Reading The Manuals
	Example Commands
	Placeholders

	InfraDocs
	Installation
	Base system requirements
	Downloading installation media
	Verifying images
	Verifying image integrity

	Verifying digital signature

	Live Installers
	Installer images
	Base images
	Flavor images
	Comparison of flavor images

	Prepare Installation Media
	Create a bootable USB drive or SD card on Linux
	Identify the Device
	Write the live image

	Burning to a CD or DVD

	Partitioning notes
	BIOS system notes
	UEFI system notes
	Swap partitions
	Boot partition (optional)
	Other partitions

	Installation Guide
	Booting
	Keyboard
	Network
	Source
	Hostname
	Locale
	Timezone
	Root password
	User account
	Bootloader
	Partition
	Filesystems
	Review settings
	Install
	Post installation

	Advanced Installation Guides
	Section Contents

	Installation via chroot (x86/x86_64)
	Prepare Filesystems
	Create a New Root and Mount Filesystems

	Base Installation
	The XBPS Method
	The ROOTFS Method

	Configuration
	Entering the Chroot
	Install base-system (ROOTFS method only)
	Installation Configuration
	Set a Root Password
	Configure fstab

	Installing GRUB
	Finalization

	Full Disk Encryption
	musl
	Incompatible software
	glibc chroot
	PRoot

	Configuration
	Firmware
	Microcode
	Intel
	AMD
	Verification

	Removing firmware

	Locales
	Enabling locales
	Setting the system locale
	Application locale

	Users and Groups
	Default shell
	sudo
	Default Groups

	Services and Daemons - runit
	Section Contents
	Service Directories
	Configuring Services
	Editing Services

	Managing Services
	Runsvdirs
	Booting A Different runsvdir

	Basic Usage
	Enabling Services
	Disabling Services
	Testing Services

	Per-User Services
	Logging
	Syslog
	Socklog
	Other syslog daemons

	rc.conf, rc.local and rc.shutdown
	rc.conf
	KEYMAP
	HARDWARECLOCK
	FONT

	rc.local
	rc.shutdown

	Cron
	Solid State Drives
	Periodic TRIM with cron
	Continuous TRIM with fstab discard
	LVM
	LUKS
	Non-root devices
	Root devices
	Verifying configuration

	ZFS
	Periodic TRIM
	Autotrim

	Security
	Section Contents

	Hashboot
	Installation
	Configuration
	Flashrom

	Usage

	AppArmor
	Date and Time
	Timezone
	Hardware clock
	NTP
	NTP
	OpenNTPD
	Chrony

	Kernel
	Kernel series
	Removing old kernels
	Kernel modules
	Loading kernel modules during boot
	Blacklisting kernel modules
	Blacklisting modules in the initramfs
	dracut
	mkinitcpio

	Kernel hooks
	Install hooks
	Remove hooks

	Dynamic Kernel Module Support (dkms)
	cmdline
	GRUB
	dracut

	Power Management
	acpid
	elogind
	Power Saving - tlp

	Network
	Interface Names
	Static Configuration
	dhcpcd
	Wireless

	Firewalls
	iptables
	Applying the rules at boot
	Applying the rules at runtime

	nftables
	Applying the rules at boot
	Applying the rules at runtime

	wpa_supplicant
	WPA-PSK
	WPA-EAP
	WEP
	The wpa_supplicant service
	Using wpa_cli

	IWD
	Installation
	Usage
	Configuration
	Daemon configuration
	Network configuration

	Troubleshooting

	NetworkManager
	Starting NetworkManager
	Configuring NetworkManager
	Eduroam with NetworkManager
	Dependencies
	Installation

	ConnMan
	Starting ConnMan
	Configuring ConnMan
	Preventing DNS overrides by ConnMan

	Network Filesystems
	NFS
	Mounting an NFS Share
	Setting up a server (NFSv4, Kerberos disabled)

	Session and Seat Management
	D-Bus
	elogind

	Graphical Session
	Graphics Drivers
	Section Contents

	Intel GPU
	OpenGL
	Vulkan
	Video acceleration
	Troubleshooting

	NVIDIA Optimus
	PRIME Render Offload
	Bumblebee
	Nouveau PRIME

	NVIDIA
	nouveau (Open Source Driver)
	nvidia (Proprietary Driver)
	32-bit program support (glibc only)
	Reverting from nvidia to nouveau
	Uninstalling nvidia
	Keeping both drivers

	Xorg
	Installation
	Video Drivers
	Open Source Drivers
	DDX
	Modesetting

	Proprietary Drivers

	Input Drivers
	Xorg Configuration
	Forcing the modesetting driver

	Starting X Sessions
	startx
	Display Managers

	Wayland
	Installation
	Desktop Environments
	Standalone compositors
	Video drivers
	Native applications
	Web browsers
	Running X applications inside Wayland

	Configuration

	Fonts
	Icons
	GTK

	GNOME
	Pre-installation
	Installation

	KDE
	Installation

	Multimedia
	Audio setup

	ALSA
	Configuration
	Dmix

	PulseAudio
	sndio
	Configuration
	Default device

	Volume control
	Application specific configurations
	Firefox
	mpv
	OpenAL

	Bluetooth
	Installation
	Usage
	Configuration

	TeX Live
	Configuring TeX Live
	Installing/Updating TeX packages

	External Applications
	Programming Languages
	Restricted Packages
	Non-x86_64 Arch
	Flatpak
	Troubleshooting

	Octave Packages
	MATLAB

	Printing
	Installing Printing Drivers
	Gutenprint drivers
	HP drivers
	Brother drivers

	Configuring a New Printer
	Web interface
	Command line
	Graphical interface

	Troubleshooting
	USB printer not shown

	Manual Pages
	XBPS Package Manager
	Updating
	Restarting Services
	Kernel Panic After Update

	Finding Files and Packages
	Verifying RSA keys

	Advanced Usage
	Downgrading
	Via xdowngrade
	Via XBPS

	Holding packages
	Repository-locking packages
	Ignoring Packages
	Virtual Packages

	Repositories
	The main repository
	Subrepositories
	nonfree
	multilib
	multilib/nonfree
	debug
	Finding debug dependencies

	Mirrors
	Tier 1 mirrors
	Tier 2 mirrors
	Globally-available mirrors
	Region-locked mirrors

	Tor Mirrors
	Creating a mirror

	Changing Mirrors
	Using Tor mirrors
	Using XBPS with Tor
	Installing Tor
	Making XBPS connect via the SOCKS proxy
	Using a hidden service mirror
	Security consideration

	Restricted Packages
	Building manually
	Automated building

	Custom Repositories
	Adding custom repositories

	Signing repositories
	Troubleshooting XBPS
	Section Contents

	Common Errors
	Errors while updating or installing packages
	"Operation not permitted"
	"Not Found"
	shlib errors
	repodata errors

	Broken systems

	Static XBPS
	Obtaining static XBPS
	Using static XBPS

	Contributing
	Section Contents

	Usage Statistics
	Setting up PopCorn

	Contributing To The void-docs Project
	Style Guide
	General
	Formatting
	Commands
	Placeholders

	Links
	Internal links
	Man Page Links
	Auto Links
	Checking links

	Case
	Voice
	Notes
	Block quotes

	Submitting Changes
	Requirements
	Forking
	Making changes

