
Extending the linux slabinfo Volatility plugin

Fulvio Di Girolamo - Angelo Russi
Eurecom

July 22, 2021

1 The Project

The objective of our project was the extension of the linux slabinfo plugin of the Volatility
Framework in order to provide statistics about the slab allocator for Linux systems using
either SLOB or SLUB.

Due to its simplicity we started out by developing the functionality for SLOB analy-
sis, using dumps and profiles for systems running version 5.7.2 of the Linux kernel, then
we focused on SLUB. In this second phase of our work we found ourselves forced to test
our code with dumps and profiles from a much older version of the kernel (3.5.7), because
when using more recent versions the Volatility profile we extracted from the system did
not contain the definition of some vital data structures such as either kmem cache or
kmem cache node.

We think it is also worth mentioning that due to a general lack of documentation for
both SLOB and SLUB as well as for the API of Volatility we had to do our best to extract
information directly from their source codes, which may have been the cause of at least
some of the difficulties we encountered during the execution of the project.

The following sections present a more thorough description of how the plugin works
and the problems we encountered during development.

The code for the plugin can be found at our fork of the official Volatility repository.

2 linux slabinfo for SLOB

When using the plugin with a dump from a system using the SLOB allocator, some options
can be specified by the user:

• -p, –page size: specify the page size of the system, used to determine the size of a
single SLOB UNIT (the metric for object sizes and offsets in the allocator)

• -L, –dump free list: specify the linked list (free slob (s)mall, free slob (m)edium,
free slob (l)arge, (a)ll) whose free objects should be dumped to a file

1

https://github.com/Yp3rion/volatility


• -D, –dump file: specify the path of the file which will contain the dump (must be used
together with -L)

The output of the plugin contains various information. In particular, for each of the three
linked lists, it outputs the total number of free objects in the pages of the list, divided in 4
bins of equal size depending on the maximum size accepted in the list (256 B for the ”small”
list, 1024 B for ”medium” and the page size for ”large”); for each of the lists, it also outputs
some general statistics:

• The total free space in the list

• The mean size of free objects in the list

• The number of pages in the list

An example output of the plugin is in Figure 1.

Figure 1: The output of linux slabinfo for SLOB

Concerning the file dump, its format is the following:

• Although a page could be in more than one free list and contain free objects of various
sizes, only objects of the correct size according to the considered free list are actually
dumped

2



• For each free object being dumped, the file contains a human-readable header with
information about the object address and size, followed by the binary dump of the
object itself

Notice that in order to extract this information from the dump, we needed to use the API
of Volatility to parse the objects of type page inside each linked list and then for each page
walk through its list of free objects (the first of which is pointed by the freelist member of
the struct).

3 linux slabinfo for SLUB

Running the plugin with dumps from systems using the SLUB allocator requires no options
to be specified and provides an output with the same format as the output of sudo cat
/proc/slabinfo on a live system.

In this case, due to the structure of the SLUB allocator extracting all the necessary
information from the dump requires multiple steps:

• Retrieving all the objects of type kmem cache from the slab caches list

• For each cache, extract the object of type kmem cache node pointed by the member
node of the kmem cache struct

• The member partial of kmem cache node should point to a linked list of page objects,
each of which should contain a pointer to the first of its free objects. Therefore,
extracting the pages in this list should allow to walk through their free objects and
count them as for the SLOB allocator.

Notice that at first we also tried to take into account the content of objects of type
kmem cache cpu (pointed by the member cpu slab of kmem cache), but we had to abandon
this idea as it being a per-cpu variable made it hard to identify those structures within
the dump. From the limited documentation available we also inferred that the information
contained in kmem cache cpu is somewhat redundant with the information contained in
kmem cache node, therefore we assumed it was not necessary to put more effort in this
direction.

Unfortunately, apart from being forced to use older kernel versions to test our code
as mentioned above, we encountered some difficulties with correctly parsing the objects
of type page which are supposedly contained in the linked list pointed by partial. Al-
though most of the information could be successfully extracted from the kmem cache and
kmem cache node structures, this prevented us from being able to count the free objects in
each cache, which we would have used to derive the number of active objects when different
from the total number of objects.

It is worth mentioning that in order to understand the root cause of this problem we
tried to simplify the system from which we extracted the dumps and profiles; in particular,

3



we tried to analyze dumps from monocore systems with slab merging disabled, for both 32
and 64 bit architectures, with no success. An hypotesis we made is that partial may point
not to the page objects themselves but to their lru member of type list head, but due to
time constraints we were not able to verify it and had no choice but presenting the product
as-is.

4


	 The Project 
	linux_slabinfo for SLOB
	linux_slabinfo for SLUB

