
Table of Contents

 Run in Google Colab View source on GitHub Download notebook

ZERO-SHOT IMAGE CLASSIFICATION WITH MULTIMODAL MODELS AND FIFTYONE
Traditionally, computer vision models are trained to predict a fixed set of categories. For image classification, for instance, many standard models are trained on the ImageNet dataset, which contains 1,000 categories. All images must
be assigned to one of these 1,000 categories, and the model is trained to predict the correct category for each image.

For object detection, many popular models like YOLOv5, YOLOv8, and YOLO-NAS are trained on the MS COCO dataset, which contains 80 categories. In other words, the model is trained to detect objects in any of these categories, and
ignore all other objects.

Thanks to the recent advances in multimodal models, it is now possible to perform zero-shot learning, which allows us to predict categories that were not seen during training. This can be especially useful when:

We want to roughly pre-label images with a new set of categories

Obtaining labeled data for all categories is impractical or impossible.

The categories are changing over time, and we want to predict new categories without retraining the model.

In this walkthrough, you will learn how to apply and evaluate zero-shot image classification models to your data with FiftyOne, Hugging Face Transformers , and OpenCLIP !

It covers the following:

Loading zero-shot image classification models from Hugging Face and OpenCLIP with the FiftyOne Model Zoo

Using the models to predict categories for images in your dataset

Evaluating the predictions with FiftyOne

We are going to illustrate how to work with many multimodal models:

OpenAI CLIP

AltCLIP

ALIGN

CLIPA

SigLIP

MetaCLIP

EVA-CLIP

Data Filtering Network (DFN)

For a breakdown of what each model brings to the table, check out our 🕶 comprehensive collection of Awesome CLIP Papers .

Setup
For this walkthrough, we will use the Caltech-256 dataset , which contains 30,607 images across 257 categories. We will use 1000 randomly selected images from the dataset for demonstration purposes. The zero-shot models were
not explicitly trained on the Caltech-256 dataset, so we will use this as a test of the models’ zero-shot capabilities. Of course, you can use any dataset you like!

💡 Your results may depend on how similar your dataset is to the training data of the zero-shot models.

Before we start, let’s install the required packages:

Now let’s import the relevant modules and load the dataset:

pip install -U torch torchvision fiftyone transformers timm open_clip_torch

import fiftyone as fo
import fiftyone.zoo as foz
import fiftyone.brain as fob
from fiftyone import ViewField as F

dataset = foz.load_zoo_dataset(
 "caltech256",
 max_samples=1000,
 shuffle=True,
 persistent=True
)
dataset.name = "CLIP-Comparison"

session = fo.launch_app(dataset)

Docs GitHub Schedule a workshopProducts Learn Company Star 6,466

https://colab.research.google.com/github/voxel51/fiftyone/blob/v0.24.0/docs/source/tutorials/zero_shot_classification.ipynb
https://github.com/voxel51/fiftyone/blob/v0.24.0/docs/source/tutorials/zero_shot_classification.ipynb
https://gitcdn.link/cdn/voxel51/fiftyone/v0.24.0/docs/source/tutorials/zero_shot_classification.ipynb
https://docs.voxel51.com/integrations/huggingface.html
https://docs.voxel51.com/integrations/openclip.html
https://docs.voxel51.com/user_guide/model_zoo/index.html
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2211.06679v2
https://arxiv.org/abs/2102.05918
https://arxiv.org/abs/2305.07017
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2309.16671
https://arxiv.org/abs/2303.15389v1
https://arxiv.org/abs/2309.17425
https://github.com/jacobmarks/awesome-clip-papers?tab=readme-ov-file
https://docs.voxel51.com/user_guide/dataset_zoo/datasets.html#caltech-256
https://voxel51.com/
https://voxel51.com/
https://docs.voxel51.com/
https://github.com/voxel51/fiftyone
https://voxel51.com/schedule-teams-workshop/
https://github.com/voxel51/fiftyone
https://github.com/voxel51/fiftyone/stargazers

Here, we are using the shuffle=True option to randomly select 1000 images from the dataset, and are persisting the dataset to disk so that we can use it in future sessions. We also change the name of the dataset to reflect the
experiment we are running.

Finally, let’s use the dataset’s distinct() method to get a list of the distinct categories in the dataset, which we will give to the zero-shot models to predict:

Zero-Shot Image Classification with the FiftyOne Zero-Shot Prediction Plugin
In a moment, we’ll switch gears to a more explicit demonstration of how to load and apply zero-shot models in FiftyOne. This programmatic approach is useful for more advanced use cases, and illustrates how to use the models in a
more flexible manner.

For simpler scenarios, check out the FiftyOne Zero-Shot Prediction Plugin , which provides a convenient graphical interface for applying zero-shot models to your dataset. The plugin supports all of the models we are going to use in
this walkthrough, and is a great way to quickly experiment with zero-shot models in FiftyOne. In addition to classificaion, the plugin also supports zero-shot object detection, instance segmentation, and semantic segmentation.

If you have the FiftyOne Plugin Utils Plugin installed, you can install the Zero-Shot Prediction Plugin from the FiftyOne App:

If not, you can install the plugin from the command line:

Once the plugin is installed, you can run zero-shot models from the FiftyOne App by pressing the backtick key (‘`’) to open the command palette, selecting zero-shot-predict or zero-shot-classify from the dropdown, and following
the prompts:

classes = dataset.distinct("ground_truth.label")

fiftyone plugins download https://github.com/jacobmarks/zero-shot-prediction-plugin

https://github.com/jacobmarks/zero-shot-prediction-plugin
https://github.com/voxel51/fiftyone-plugins

Zero-Shot Image Classification with the FiftyOne Model Zoo
In this section, we will show how to explicitly load and apply a variety of zero-shot classification models to your dataset with FiftyOne. Our models will come from three places:

1. OpenAI’s CLIP model, which is natively supported by FiftyOne

2. OpenCLIP , which is a collection of open-source CLIP-style models

3. Hugging Face’s Transformers library , which provides a wide variety of zero-shot models
All of these models can be loaded from the FiftyOne Model Zoo via the load_zoo_model() function, although the arguments you pass to the function will depend on the model you are loading!

Basic Recipe for Loading a Zero-Shot Model

Regardless of the model you are loading, the basic recipe for loading a zero-shot model is as follows:

The zoo model name is the name under which the model is registered in the FiftyOne Model Zoo.

"clip-vit-base32-torch" specifies the natively supported CLIP model, CLIP-ViT-B/32

"open-clip-torch" specifies that you want to load a specific model (architecture and pretrained checkpoint) from the OpenCLIP library. You can then specify the architecture with clip_model="<clip-architecture>" and the

checkpoint with pretrained="<checkpoint-name>" . We will see examples of this in a moment. For a list of allowed architecture-checkpoint pairs, check out this results table from the OpenCLIP documentation. The name column

contains the value for clip_model .

"zero-shot-classification-transformer-torch" specifies that you want to a zero-shot image classification model from the Hugging Face Transformers library. You can then specify the model via the name_or_path argument,

which should be the repository name or model identifier of the model you want to load. Again, we will see examples of this in a moment.

💡 While we won’t be exploring this degree of freedom, all of these models accept a text_prompt keyword argument, which allows you to override the prompt template used to embed the class names. Zero-shot classification results
can vary based on this text!

Once we have our model loaded (and classes set), we can use it like any other image classification model in FiftyOne by calling the dataset’s apply_model() method:

For efficiency, we will also set our default batch size to 32, which will speed up the predictions:

Zero-Shot Image Classification with OpenAI CLIP

Starting off with the natively supported CLIP model, we can load and apply it to our dataset as follows:

If we would like, after adding our predictions in the specified field, we can add some high-level information detailing what the field contains:

model = foz.load_zoo_model(
 "<zoo-model-name>",
 classes=classes,
 **kwargs
)

dataset.apply_model(
 model,
 label_field="<where-to-store-predictions>",
)

fo.config.default_batch_size = 32

clip = foz.load_zoo_model(
 "clip-vit-base32-torch",
 classes=classes,
)

dataset.apply_model(clip, label_field="clip")

https://github.com/openai/CLIP
https://github.com/mlfoundations/open_clip
https://huggingface.co/docs/transformers/index
https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_results.csv

To see the FiftyOne App, open a tab in your browser and navigate to http://localhost:5151 !

We will then see this information when we hover over the “clip” field in the FiftyOne App. This can be useful if you want to use shorthand field names, or if you want to provide additional context to other users of the dataset.

For the rest of the tutorial, we will omit this step for brevity, but you can add this information to any field in your dataset!

Zero-Shot Image Classification with OpenCLIP

To make life interesting, we will be running inference with 5 different OpenCLIP models:

CLIPA

Data Filtering Network (DFN)

EVA-CLIP

MetaCLIP

SigLIP

To reduce the repetition, we’re just going to create a dictionary for the clip_model and pretrained arguments, and then loop through the dictionary to load and apply the models to our dataset:

Zero-Shot Image Classification with Hugging Face Transformers

Finally, we will load and apply zero-shot image classification model sfrom the Hugging Face Transformers library. Once again, we will loop through a dictionary of model names and apply the models to our dataset:

Evaluating Zero-Shot Image Classification Predictions with FiftyOne

Using FiftyOne’s Evaluation API

Now that we have applied all of our zero-shot models to our dataset, we can evaluate the predictions with FiftyOne! As a first step, let’s use FiftyOne’s Evaluation API to assign True/False labels to the predictions based on whether
they match the ground truth labels.

First, we will use the dataset’s schema to get a list of all of the fields that contain predictions:

Then, we will loop through these prediction fields and apply the dataset’s evaluate_classifications() method to each one, evaluating against the ground_truth field:

We can then easily filter the dataset based on which models predicted the ground truth labels correctly, either programmatically in Python, or in the FiftyOne App. For example, here is how we could specify the view into the dataset
containing all samples where SigLIP predicted the ground truth label correctly and CLIP did not:

field = dataset.get_field("clip")
field.description = "OpenAI CLIP predictions"
field.info = {"clip_model": "CLIP-ViT-B-32"}
field.save()

session = fo.launch_app(dataset, auto=False)

open_clip_args = {
 "clipa": {
 "clip_model": 'hf-hub:UCSC-VLAA/ViT-L-14-CLIPA-datacomp1B',
 "pretrained": '',
 },
 "dfn": {
 "clip_model": 'ViT-B-16',
 "pretrained": 'dfn2b',
 },
 "eva02_clip": {
 "clip_model": 'EVA02-B-16',
 "pretrained": 'merged2b_s8b_b131k',
 },
 "metaclip": {
 "clip_model": 'ViT-B-32-quickgelu',
 "pretrained": 'metaclip_400m',
 },
 "siglip": {
 "clip_model": 'hf-hub:timm/ViT-B-16-SigLIP',
 "pretrained": '',
 },
 }

for name, args in open_clip_args.items():
 clip_model = args["clip_model"]
 pretrained = args["pretrained"]
 model = foz.load_zoo_model(
 "open-clip-torch",
 clip_model=clip_model,
 pretrained=pretrained,
 classes=classes,
)

 dataset.apply_model(model, label_field=name)

transformer_model_repo_ids = {
 "altclip": "BAAI/AltCLIP",
 "align": "kakaobrain/align-base"
}

for name, repo_id in transformer_model_repo_ids.items():
 model = foz.load_zoo_model(
 "zero-shot-classification-transformer-torch",
 name_or_path=repo_id,
 classes=classes,
)

 dataset.apply_model(model, label_field=name)

classification_fields = sorted(list(
 dataset.get_field_schema(
 ftype=fo.EmbeddedDocumentField, embedded_doc_type=fo.Classification
).keys())
)

prediction_fields = [f for f in classification_fields if f != "ground_truth"]

for pf in prediction_fields:
 eval_key = f"{pf}_eval"
 dataset.evaluate_classifications(
 pf,
 gt_field="ground_truth",
 eval_key=eval_key,
)

https://docs.voxel51.com/user_guide/evaluation.html

Here is how we would accomplish the same thing in the FiftyOne App:

High-Level Insights using Aggregations

With the predictions evaluated, we can use FiftyOne’s aggregation capabilities to get high-level insights into the performance of the zero-shot models.

This will allow us to answer questions like:

Which model was “correct” most often?

What models were most or least confident in their predictions?

For the first question, we can use the count_values() aggregation on the evaluation fields for our predictions, which will give us a count of the number of times each model was correct or incorrect. As an example:

Looping over our prediction fields and turning these raw counts into percentages, we can get a high-level view of the performance of our models:

At least on this dataset, it looks like the DFN model was the clear winner, with the highest percentage of correct predictions. The other strong performers were CLIPA and AltCLIP.

To answer the second question, we can use the mean() aggregation to get the average confidence of each model’s predictions. This will give us a sense of how confident each model was in its predictions:

For the most part, mean model confidence seems pretty strongly correlated with model accuracy. The DFN model, which was the most accurate, also had the highest mean confidence!

Advanced Insights using ViewExpressions

These high-level insights are useful, but as always, they only tell part of the story. To get a more nuanced understanding of the performance of our zero-shot models — and how the models interface with our data — we can use FiftyOne’s
ViewExpressions to construct rich views of our data.

One thing we might want to see is where all of the models were correct or incorrect. To probe these questions, we can construct a list with one ViewExpression for each model, and then use the any() and all() methods:

dataset = fo.load_dataset("CLIP-Comparison")

siglip_not_clip_view = dataset.match((F("siglip_eval") == True) & (F("clip_eval") == False))

num_siglip_not_clip = len(siglip_not_clip_view)
print(f"There were {num_siglip_not_clip} samples where the SigLIP model predicted correctly and the CLIP model did not.")

There were 57 samples where the SigLIP model predicted correctly and the CLIP model did not.

dataset.count_values(f"clip_eval")

{False: 197, True: 803}

for pf in prediction_fields:
 eval_results = dataset.count_values(f"{pf}_eval")
 percent_correct = eval_results.get(True, 0) / sum(eval_results.values())
 print(f"{pf}: {percent_correct:.1%} correct")

align: 83.7% correct
altclip: 87.6% correct
clip: 80.3% correct
clipa: 88.9% correct
dfn: 91.0% correct
eva02_clip: 85.6% correct
metaclip: 84.3% correct
siglip: 64.9% correct

for pf in prediction_fields:
 mean_conf = dataset.mean(F(f"{pf}.confidence"))
 print(f"Mean confidence for {pf}: {mean_conf:.3f}")

Mean confidence for align: 0.774
Mean confidence for altclip: 0.883
Mean confidence for clip: 0.770
Mean confidence for clipa: 0.912
Mean confidence for dfn: 0.926
Mean confidence for eva02_clip: 0.843
Mean confidence for metaclip: 0.824
Mean confidence for siglip: 0.673

exprs = [F(f"{pf}_eval") == True for pf in prediction_fields]

https://docs.voxel51.com/user_guide/using_aggregations.html?highlight=aggregation
https://docs.voxel51.com/user_guide/using_views.html#filtering

First, let’s see how many samples every model got correct:

The fact that about half of the time, all of the models are “correct” and in agreement is good validation of both our data quality and the capabilities of our zero-shot models!

How about when all of the models are incorrect?

The samples where all of the models are supposedly incorrect are interesting and merit further investigation. It could be that the ground truth labels are incorrect, or that the images are ambiguous and difficult to classify. It could also
be that the zero-shot models are not well-suited to the dataset, or that the models are not well-suited to the task. In any case, these samples are worth a closer look!

Looking at some of these samples in the FiftyOne App, we can see that some of the ground truth labels are indeed ambiguous or incorrect. Take the second image, for example. It is labeled as "treadmill" , while all but one of the zero-
shot models predict "horse" . To a human, the image does indeed look like a horse, and the ground truth label is likely incorrect.

The seventh image is a prime example of ambiguity. The ground truth label is "sneaker" , but almost all of the zero-shot models predict "tennis-shoes" . It is difficult to say which label is correct, and it is likely that the ground truth
label is not specific enough to be useful.

To get a more precise view into the relative quality of our zero-shot models, we would need to handle these edge cases and re-evaluate on the improved dataset.

💡 This is a great example of how the combination of zero-shot models and FiftyOne can be used to iteratively improve the quality of your data and your models!

Before we wrap up, let’s construct one even more nuanced view of our data: the samples where just one of the models was correct. This will really help us understand the strengths and weaknesses of each model.

To construct this view, we will copy the array of expressions, remove one model from the array, and see where that model was correct and the others were not. We will then loop through the models, and find the samples where each
any of these conditions is met:

all_right_view = dataset.match(F().all(exprs))
print(f"{len(all_right_view)} samples were right for all models")

session = fo.launch_app(all_right_view, auto=False)

498 samples were right for all models
Session launched. Run `session.show()` to open the App in a cell output.

all_wrong_view = dataset.match(~F().any(exprs))
print(f"{len(all_wrong_view)} samples were wrong for all models")

session = fo.launch_app(all_wrong_view, auto=False)

45 samples were wrong for all models
Session launched. Run `session.show()` to open the App in a cell output.

n = len(prediction_fields)
sub_exprs = []
for i in range(n):
 tmp_exprs = exprs.copy()
 expr = tmp_exprs.pop(i)
 sub_exprs.append((expr & ~F().any(tmp_exprs)))

one_right_view = dataset.match(F().any(sub_exprs))

session = fo.launch_app(one_right_view, auto=False)

Next

Looking at these samples in the FiftyOne App, a few things stand out:

First, the vast majority of these samples are primarily images of people’s faces. A lot of the “wrong” predictions are related to people, faces, or facial features, like "eye-glasses" , "iris" , "yarmulke" , and "human-skeleton" . This is

a good reminder that zero-shot models are not perfect, and that they are not well-suited to all types of images.

Second, of all 22 samples where only one model was correct, 11 of them were correctly predicted by the DFN model. This is more validation of the DFN model’s strong performance on this dataset.

Summary
Zero-shot image classification is a powerful tool for predicting categories that were not seen during training. But it is not a panacea, and it is important to understand the strengths and weaknesses of zero-shot models, and how they
interface with your data.

In this walkthrough, we showed how to not only apply a variety of zero-shot image classification models to your data, but also how to evaluate them and choose the best model for your use case.

The same principles can be applied to other types of zero-shot models, like zero-shot object detection, instance segmentation, and semantic segmentation. If you’re interested in these use cases, check out the FiftyOne Zero-Shot
Prediction Plugin .

For zero-shot object detection, here are some resources to get you started: - YOLO-World from Ultralytics - Zero-Shot Detection Transformers from Hugging Face - Evaluating Object Detections tutorial

 Previous

330 E Liberty St
Ann Arbor, MI 48104
+1 734-489-1134
info@voxel51.com

Products

FiftyOne

FiftyOne Teams

Use Cases

Success Stories

Resources

Blog

Docs

GitHub

Slack

About Us

Events

Careers

Press

 © 2023 Voxel51 Inc. Privacy Policy Terms of Service

file:///Users/jacobmarks/Desktop/work/fiftyone/fiftyone/docs/build/html/recipes/index.html
https://github.com/jacobmarks/zero-shot-prediction-plugin
https://github.com/jacobmarks/zero-shot-prediction-plugin
https://docs.voxel51.com/integrations/ultralytics.html#open-vocabulary-detection
https://docs.voxel51.com/integrations/huggingface.html#zero-shot-object-detection
https://docs.voxel51.com/tutorials/evaluate_detections.html
file:///Users/jacobmarks/Desktop/work/fiftyone/fiftyone/docs/build/html/tutorials/dimension_reduction.html
https://voxel51.com/
https://voxel51.com/
mailto:info@voxel51.com
https://voxel51.com/fiftyone/
https://voxel51.com/fiftyone-teams/
https://voxel51.com/computer-vision-use-cases/
https://voxel51.com/success-stories/
https://voxel51.com/blog/
https://docs.voxel51.com/
https://github.com/voxel51/
https://slack.voxel51.com/
https://voxel51.com/ourstory/
https://voxel51.com/computer-vision-events/
https://voxel51.com/jobs/
https://voxel51.com/press/
https://www.linkedin.com/company/voxel51/
https://www.linkedin.com/company/voxel51/
https://github.com/voxel51/
https://github.com/voxel51/
https://twitter.com/voxel51
https://twitter.com/voxel51
https://www.facebook.com/voxel51/
https://www.facebook.com/voxel51/
https://voxel51.com/privacy/
https://voxel51.com/terms/

