Skip to content
Find file
1075f15 Jan 6, 2015
466 lines (366 sloc) 13.8 KB
"""A Jython interface to the Stanford parser (v.3.5.0). Includes various
utilities to manipulate parsed sentences:
* parse text containing XML tags,
* obtain probabilities for different analyses,
* extract dependency relations,
* extract subtrees,
* find the shortest path between two nodes,
* print the parse in various formats.
See examples after the if __name__ == "__main__" hooks.
1. Download the parser from
2. Unpack into a local dir, put the path to stanford-parser.jar into the
classpath for jython
3. Put the full path to englishPCFG.ser.gz as parser_file arg to
StanfordParser (searched in the local directory by default)
Initialize a parser:
parser = StanfordParser('englishPCFG.ser.gz')
To keep XML tags provided in the input text:
sentence = parser.parse('This is a <tag>test</tag>.')
To strip all XML before parsing:
sentence = parser.parse_xml('This is a <b>test</b>.')
To print the sentence as a table (one word per line):
To print the sentence as a parse tree:
On input, the script accepts unicode or utf8 or latin1.
On output, the script produces unicode.
__author__ = "Viktor Pekar <>"
__version__ = "0.2"
import sys
import re
import os
import string
import math
assert 'java' in sys.platform
except AssertionError:
raise Exception("The script should be run from Jython!")
from java.util import *
from edu.stanford.nlp.trees import PennTreebankLanguagePack, TreePrint
from edu.stanford.nlp.parser.lexparser import LexicalizedParser
from edu.stanford.nlp.process import Morphology, PTBTokenizer, WordTokenFactory
from edu.stanford.nlp.parser.lexparser import Options
from edu.stanford.nlp.ling import Sentence, WordTag
from import StringReader
def stanford2tt(sentence):
"""Given a Sentence object, return TreeTagger-style
tuples (word, tag, lemma).
for idx in sorted(sentence.word):
word = sentence.word.get(idx, '')
if word.startswith('<'):
tag, lemma = 'XML', word
tag = sentence.tag.get(idx, '')
lemma = sentence.lemma.get(idx, '')
# correcting: TO -> IN
if word == 'to' and tag == 'TO':
tag = 'IN'
yield (word, tag, lemma)
class PySentence:
"""An interface to the grammaticalStructure object of SP
def __init__(self, parser, parse, xmltags={}):
"""Create a PySentence object from parse.
@param gsf: a grammaticalStructureFactory object
@param parse: a parse of the sentence
@param xmltags: index of the previous text token =>
list of intervening xmltags
""" = parser.gsf.newGrammaticalStructure(parse)
self.parse = parse
self.node = {}
self.word = {}
self.tag = {}
self.lemma = {}
self.dep = {}
self.rel = {}
self.children = {}
self.lemmer = parser.lemmer
self.xmltags = xmltags
def get_lemma(self, word, tag):
lemma = self.lemmer.lemmatize(WordTag(word, tag)).lemma()
return lemma.decode('latin1')
def get_pos_tag(self, node):
parent = node.parent()
tag = 'Z' if parent == None else parent.value()
return tag.decode('latin1')
def get_word(self, node_i):
word = node_i.value().decode('latin1')
# correct the appearance of parentheses
if word == '-RRB-':
word = u'('
elif word == '-LRB-':
word = u')'
return word
def populate_indices(self):
# insert the tags before the text, if any are present before the text
# dependency indices
for td in
dep_idx = td.dep().index()
p_idx =
self.rel[dep_idx] = td.reln().getShortName()
self.dep[dep_idx] = p_idx
self.children[p_idx] = self.children.get(p_idx, [])
# word, pos tag and lemma indices
for node_i in
if node_i.headTagNode() != None:
idx = node_i.index()
word = self.get_word(node_i)
if word == "ROOT":
tag = self.get_pos_tag(node_i)
self.node[idx] = node_i
self.word[idx] = word
self.tag[idx] = tag
self.lemma[idx] = self.get_lemma(word, tag)
# if the word is unattached
if word in string.punctuation or not self.dep.get(idx):
self.dep[idx] = 0
self.rel[idx] = 'punct'
# insert xml tags, if any
def add_xml_tags_to_word_index(self, idx):
"""@param idx: the id of the previous word
tags_at_idx = self.xmltags.get(idx)
if tags_at_idx:
num_tags = len(tags_at_idx)
for tag_i in xrange(num_tags):
tag_idx = (tag_i + 1) / float(num_tags + 1)
tag_name = tags_at_idx[tag_i].decode('latin1')
self.word[idx + tag_idx] = tag_name
def get_head(self, node):
"""Return a tuple with the head of the dependency for a node and the
relation label.
idx = node.index()
dep_idx = self.dep.get(idx)
if not dep_idx:
return None, None
return self.node.get(dep_idx), self.rel.get(idx)
def get_children(self, node):
"""Yield tuples each with a child of the dependency
and the relation label
for idx in self.children.get(node.index(), []):
yield self.node[idx], self.rel[idx]
def get_descendants(self, start_idx):
"""Return all descendants of a node, including the node itself
def traverse(idx):
global descendants
for idx_i in self.children.get(idx, []):
global descendants
descendants = [start_idx]
return descendants
def prune(self, idx):
"""Given an index, remove all the words dependent on the word with that
index, including the word itself.
for idx_i in self.get_descendants(idx):
def delete_node(self, idx):
del self.node[idx], self.word[idx], self.tag[idx], self.lemma[idx], \
self.rel[idx], self.dep[idx]
if idx in self.children:
del self.children[idx]
def get_plain_text(self):
"""Output plain-text sentence.
text = ' '.join([self.word[x] for x in sorted(self.node)])
# remove spaces in front of commas, etc
for i in ',.:;!?':
text = text.replace(' ' + i, i)
return text
def get_least_common_node(self, node_i_idx, node_j_idx):
"""Return a node that is least common for two given nodes,
as well as the shortest path between the two nodes
@param node_i_idx: index of node 1
@param node_j_idx: index of node 2
common_node = None
shortest_path = []
path1 = self.path2root(node_i_idx)
path2 = self.path2root(node_j_idx)
for idx_i in path1:
if common_node != None:
for idx_j in path2:
if idx_i == idx_j:
common_node = idx_i
if common_node != None:
for idx_i in path1:
if idx_i == common_node:
for idx_i in path2:
if idx_i == common_node:
return common_node, shortest_path
def path2root(self, idx):
"""The path to the root from a node.
@param idx: the index of the node
path = [idx]
if idx != 0:
while True:
parent = self.dep.get(idx)
if not parent:
idx = parent
return path
def print_table(self):
"""Print the parse as a table, FDG-style, to STDOUT
def get_index(id_str):
return '-' if '.' in id_str else id_str
for idx in sorted(self.word):
line = '\t'.join([
self.word.get(idx, ''),
self.lemma.get(idx, ''),
self.tag.get(idx, ''),
self.rel.get(idx, ''),
unicode(self.dep.get(idx, '')),
print line.encode('latin1')
def print_tree(self, mode='penn'):
"""Prints the parse.
@param mode: penn/typedDependenciesCollapsed/etc
tree_print = TreePrint(mode)
class StanfordParser:
TAG = re.compile(r'<[^>]+>')
def __init__(self, parser_file,
parser_options=['-maxLength', '80', '-retainTmpSubcategories']):
"""@param parser_file: path to the serialised parser model
(e.g. englishPCFG.ser.gz)
@param parser_options: options
assert os.path.exists(parser_file)
options = Options()
self.lp = LexicalizedParser.getParserFromFile(parser_file, options)
tlp = PennTreebankLanguagePack()
self.gsf = tlp.grammaticalStructureFactory()
self.lemmer = Morphology()
self.word_token_factory = WordTokenFactory()
self.parser_query = None
def get_most_probable_parses(self, text, kbest=2):
"""Yield kbest parses of a sentence along with their probabilities.
if not self.parser_query:
self.parser_query = self.lp.parserQuery()
response = self.parser_query.parse(self.tokenize(text))
if not response:
raise Exception("The sentence cannot be parsed: %s" % text)
for candidate_tree in self.parser_query.getKBestPCFGParses(kbest):
py_sentence = PySentence(self, candidate_tree.object())
prob = math.e ** candidate_tree.score()
yield py_sentence, prob
def parse(self, sentence):
"""Strips XML tags first.
@param s: the sentence to be parsed, as a string
@return: a Sentence object
sentence = self.TAG.sub('', sentence)
tokens = [unicode(x) for x in self.tokenize(sentence)]
parse = self.lp.apply(Sentence.toWordList(tokens))
return PySentence(self, parse)
def tokenize(self, text):
reader = StringReader(text)
tokeniser = PTBTokenizer(reader, self.word_token_factory, None)
tokens = tokeniser.tokenize()
return tokens
def parse_xml(self, text):
"""Tokenise the XML text, remember XML positions, and then parse it.
# build a plain-text token list and remember tag positions
xml_tags = {}
sent = []
for token in self.tokenize(text):
token = unicode(token).replace(u'\xa0', ' ')
if token.startswith('<'):
cur_size = len(sent)
xml_tags[cur_size] = xml_tags.get(cur_size, [])
# parse
parse = self.lp.apply(Sentence.toWordList(sent))
return PySentence(self, parse, xml_tags)
def parse_xml_example(sp):
print 'Parsing XML text'
text = 'The quick brown <tag attr="term">fox<!-- this is a comment --></tag> jumped over the lazy dog.'
print 'IN:', text
sentence = sp.parse_xml(text)
print 'OUT:'
print '-' * 80
def parse_probabilities_example(sp):
print 'Parse probabilities\n'
text = 'I saw a man with a telescope.'
print 'IN:', text
for sentence, prob in sp.get_most_probable_parses(text, kbest=2):
print 'Probability:', prob
print 'Tree:'
print '-' * 50
print '-' * 80
def subtrees_example(sp):
print 'Subtrees:'
text = 'I saw a man with a telescope.'
sentence = sp.parse(text)
for subtree in sentence.parse.subTrees():
print subtree
print '-' * 50
print '-' * 80
def get_dependencies_example(sp):
print 'Dependencies:'
text = 'I saw a man with a telescope.'
tmpl = 'Head: %s (%d); dependent: %s (%d); relation: %s'
sentence = sp.parse(text)
for td in
gov =
gov_idx = gov.index()
dep = td.dep()
dep_idx = dep.index()
rel = td.reln()
print tmpl % (gov.value(), gov_idx, dep.value(), dep_idx, rel)
print '-' * 80
def get_common_path_example(sp):
tmpl = 'Least common node for "%s" and "%s": "%s"'
print 'Common path:'
text = 'The quick brown fox jumped over a lazy dog.'
print 'Text:', text
i = 4
j = 9
sentence = sp.parse(text)
lcn, shortest_path = sentence.get_least_common_node(i, j)
print tmpl % (sentence.word[i], sentence.word[j], sentence.word[lcn])
path = ' '.join([sentence.word[x] for x in sorted(shortest_path)])
print 'Path: %s' % path
if __name__ == '__main__':
# full path to parser file, e.g. englishPCFG.ser.gz
parser_file = sys.argv[1]
sp = StanfordParser(parser_file)
Something went wrong with that request. Please try again.