use the kaggle api to create and upload a dataset (example!)
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
Dockerfile
README.md
create_dataset.py

README.md

Kaggle

Here we are testing using the Kaggle API to generate datasets. We would want to be able to do this automatically for a Dinosaur Dataset from the Stanford Research Computer Center.

Build

To build the container

docker build -t vanessa/kaggle .

Enter the Container

Shell into it interactively. Notice that we are binding our kaggle API credentials to root's home so they are discovered by the client.

docker run -v /home/vanessa/.kaggle:/root/.kaggle -it vanessa/kaggle bash

If you want to also bind some directory with data files (for your dataset) you can do that with another volume:

docker run -v /home/vanessa/.kaggle:/root/.kaggle -v $HOME/code-images:/tmp/data -it vanessa/kaggle bash

Usage

The script create_dataset.py is located in the working directory you shell into, and the usage accepts the arguments you would expect to generate a dataset.

usage: create_dataset.py [-h] --username USERNAME --title TITLE [--name NAME]
                         [--keywords KEYWORDS] [--files [FILES [FILES ...]]]
                         [--license LICENSE]

Dinosaur Kaggle Dataseet Creator

optional arguments:
  -h, --help            show this help message and exit
  --username USERNAME   the kaggle username (in the url)
  --title TITLE, -t TITLE
                        verbose title for the dataset
  --name NAME           The identifier (name) of the dataset
  --keywords KEYWORDS, -k KEYWORDS
                        comma separated (no spaces) keywords for dataset
  --files [FILES [FILES ...]], -f [FILES [FILES ...]]
                        dataset files
  --license LICENSE, -l LICENSE
                        license name for file description, uses 'other' in
                        metadata
usage: create_dataset.py [-h] --username USERNAME --title TITLE [--name NAME]
                         [--keywords KEYWORDS] [--files [FILES [FILES ...]]]
                         [--license LICENSE]
create_dataset.py: error: the following arguments are required: --username, --title/-t

It's easier to see an example. I had my data files (.tar.gz files) in /tmp/data/ARCHIVE, so first I prepared a space separated list of fullpaths to them:

# Prepare a space separated list of fullpaths to data files
uploads=$(find /tmp/data/ARCHIVE -type f | paste -d -s)

/tmp/data/ARCHIVE/cs.tar.gz /tmp/data/ARCHIVE/m.tar.gz /tmp/data/ARCHIVE/js.tar.gz /tmp/data/ARCHIVE/md.tar.gz /tmp/data/ARCHIVE/map.tar.gz /tmp/data/ARCHIVE/css.tar.gz /tmp/data/ARCHIVE/go.tar.gz /tmp/data/ARCHIVE/json.tar.gz /tmp/data/ARCHIVE/r.tar.gz /tmp/data/ARCHIVE/html.tar.gz /tmp/data/ARCHIVE/cc.tar.gz /tmp/data/ARCHIVE/txt.tar.gz /tmp/data/ARCHIVE/csv.tar.gz /tmp/data/ARCHIVE/c.tar.gz /tmp/data/ARCHIVE/f90.tar.gz /tmp/data/ARCHIVE/xml.tar.gz /tmp/data/ARCHIVE/java.tar.gz /tmp/data/ARCHIVE/dat.tar.gz /tmp/data/ARCHIVE/cpp.tar.gz /tmp/data/ARCHIVE/py.tar.gz /tmp/data/ARCHIVE/create_archives.sh.tar.gz /tmp/data/ARCHIVE/cxx.tar.gz

and I wanted to upload them to a new dataset called vanessa/code-images. My arguments are thus the following:

  • username your kaggle username, or the name of an organization that the dataset will belong to
  • title the title to give the dataset (put in quotes if you have spaces)
  • name the name of the dataset itself (no spaces or special characters, and good practice to put in quotes)
  • keywords comma separated list of keywords (no spaces!)
  • files full paths to the data files to upload

My command looked like this:

python create_dataset.py --keywords software,languages --files $uploads --title "Zenodo Code Images" --name "code-images" --username stanfordcompute

It will generate a temporary directory with a data package:

Data package template written to: /tmp/tmp3559572b/datapackage.json

And add your fields to it, for example, here is how my temporary folder was filled:

$ ls /tmp/tmp3559572b/
c.tar.gz    css.tar.gz  datapackage.json  java.tar.gz  map.tar.gz  txt.tar.gz
cc.tar.gz   csv.tar.gz  f90.tar.gz        js.tar.gz    md.tar.gz   xml.tar.gz
cpp.tar.gz  cxx.tar.gz  go.tar.gz         json.tar.gz  py.tar.gz
cs.tar.gz   dat.tar.gz  html.tar.gz       m.tar.gz     r.tar.gz

And then it will show you the metadata file:

{
 "title": "Zenodo Code Images",
 "id": "stanfordcompute/code-images",
 "licenses": [
  {
   "name": "other"
  }
 ],
 "keywords": [
  "software",
  "languages"
 ],
 "resources": [
  {
   "path": "cs.tar.gz",
   "description": "cs.tar.gz, part of Zenodo Code Images Dataset, 6/2018, MIT License"
  },
  {
   "path": "m.tar.gz",
   "description": "m.tar.gz, part of Zenodo Code Images Dataset, 6/2018, MIT License"
  },
  {
   "path": "js.tar.gz",
   "description": "js.tar.gz, part of Zenodo Code Images Dataset, 6/2018, MIT License"
  },
...

  {
   "path": "cxx.tar.gz",
   "description": "cxx.tar.gz, part of Zenodo Code Images Dataset, 6/2018, MIT License"
  }
 ]
}

At this point you will see your files start to upload, and it will show a URL when finished! Note that the dataset takes some time to process, so you might get a 404 for a bit while this is happening.

Starting upload for file cs.tar.gz
100%|███████████████████████████████████████| 49.3M/49.3M [01:13<00:00, 708kB/s]
Upload successful: cs.tar.gz (49MB)
Starting upload for file m.tar.gz
...
Upload successful: cxx.tar.gz (57MB)
The following URL will be available after processing (10-15 minutes)
https://www.kaggle.com/stanfordcompute/code-images

result
https://www.kaggle.com/stanfordcompute/code-images

Since there is a lot of additional metadata and description / helpers needed on your part for the dataset, it's recommended (and essential) to go to the URL when it's available and do things like add an image, description, examples, etc.

Development

It's nice to develop in the container, and the easiest way to do that is to bind the present working directory (with the dataset generation script) to /code in the container. That way, you can work in a local text editor, and changes you make to the file persist in the container.

docker run -v /home/vanessa/.kaggle:/root/.kaggle -v $PWD/:/code -v $HOME/code-images:/tmp/data -it vanessa/kaggle bash

Have a question or want to contribute? You can open an issue or pull request.