
GUI Development for RELAP-5

By

Waleed Ahmed Malik

Report submitted to the faculty of Engineering at PIEAS in partial

fulfillment of requirements for the Degree of MS Nuclear Engineering

Department of Nuclear Engineering

Pakistan Institute of Engineering & Applied Sciences

Nilore, Islamabad, Pakistan

October, 2013

ii

iii

Department of Nuclear Engineering,
Pakistan Institute of Engineering and Applied Sciences (PIEAS)

Nilore. Islamabad 45650, Pakistan

Declaration of Originality

I hereby declare that the work contained in this report and the intellectual content of

this report are the product of my own work. This report has not been previously

published in any form nor does it contain any verbatim of the published resources

which could be treated as infringement of the international copyright law.

I also declare that I do understand the terms ‘copyright’ and ‘plagiarism,’ and

that in case of any copyright violation or plagiarism found in this work, I will be held

fully responsible of the consequences of any such violation.

Signature: _______________________________

Name: Waleed Ahmed Malik

Date: 21/10/2013

Place: PIEAS, Islamabad

iv

Certificate of Approval

This is to certify that the work contained in this thesis entitled

“GUI Development for RELAP-5”

was carried out by

Waleed Ahmed Malik

Under our supervision and that in our opinion, it is fully adequate, in scope

and quality, for the degree of M.Sc. Nuclear Engineering from Pakistan

Institute of Engineering and Applied Sciences (PIEAS).

 Approved By:

 Signature:________________________

 Supervisor: Dr. Imran Rafique Chughtai

 Signature: ________________________
 Co-Supervisor: Dr. Muhammad Ilyas

 Verified By:
 Signature: ________________________
 Head, Department of Nuclear Engineering
 Stamp:

v

Dedication

Dedicated to my striving Country,

Islamic Republic of Pakistan

vi

Acknowledgement

Gratitude and endless thanks to Allah Almighty, the Lord of the World, who

bestowed mankind, the light of knowledge through laurels of perception, learning and

reasoning, in the way of searching, inquiring and finding the ultimate truth. To whom

we serve, and to whom we pray for help.

I feel my privilege and honor to express my sincere gratitude to my supervisor

Dr. Imran Rafique Chughtai and Co supervisior Dr. Muhammad Ilyas for their kind

help, guidance, suggestions and support through the development of this project. With

due respect, I would also like to thank project panel and coordinator for useful

discussions.

I would like to express my most sincere gratitude and thanks to my beloved

Parents, Wife Sarah, team member Afnan and all others who were with me in any

aspect, for their overnice support and motivations during the work of this thesis.

Finally, I would also like to thank Pakistan Institute of Engineering and

Applied Sciences and ACRE (Advance Computational Reactor Engineering) Lab for

providing very conducive educational environment.

Waleed Ahmed Malik

vii

Table of Contents

1. INTRODUCTION .. 1

1.1. BACKGROUND AND CONTEXT .. 1

1.2. SCOPE AND OBJECTIVES ... 2

1.3. LITERATURE REVIEW ... 2

1.4. THESIS LAYOUT ... 4

2. DESCRIPTION OF GUI ENVIRONMENT .. 5

2.1. MAJOR MODULES .. 5

2.1.1. Design Surface / Flow sheet and Graphics Collection ... 5

2.1.2. Components List ... 6

2.1.3. Component Properties and Configuration Table ... 6

2.1.4. Input File Generator ... 7

2.2. TECHNOLOGIES USED .. 7

2.2.1. Microsoft Visual Studio .. 7

2.2.2. GDI+ .. 8

2.2.3. Team Foundation Server .. 8

2.2.4. External Libraries: ... 10

3. IMPLEMENTATION .. 11

3.1. INTEGRATED GUI .. 14

3.1.1. Main Toolbar / Menu Strip ... 14

3.1.2. Initialization Toolbar .. 14

3.1.3. Flow Sheet .. 15

3.1.4. Property Grid Form ... 15

3.1.5. User Interface (UI) Editors .. 16

3.1.6. Component List ... 18

3.2. FILE SAVE/LOAD.. 18

3.2.1. Serialization .. 18

3.3. PUBLISHING OF SOFTWARE .. 19

3.3.1. About CodePlex .. 19

4. CONCLUSIONS AND RECOMMENDATIONS .. 20

4.1. CONCLUSIONS .. 20

4.2. RECOMMENDATIONS .. 20

REFERENCES ... 21

viii

List of Figures
FIGURE 2-1: BLOCK DIAGRAM OF RELAP5 GUI DEVELOPMENT .. 5

FIGURE 2-2: RIFGEN OVERVIEW .. 6

FIGURE 2-3: CENTRALIZED VERSION CONTROL .. 9

FIGURE 3-1: TAB CONTROL ... 11

FIGURE 3-2: LABEL, TEXTBOX AND COMBOBOX CONTROLS.. 12

FIGURE 3-3: CHECKBOX AND GROUPBOX CONTROL .. 12

FIGURE 3-4: LISTBOX CONTROL ... 13

FIGURE 3-5: DATAGRIDVIEW CONTROL ... 13

FIGURE 3-6: INTEGRATED GUI .. 14

FIGURE 3-7: INITIALIZATION TOOLBAR ... 14

FIGURE 3-8: EXAMPLE OF CONNECTORS ... 15

FIGURE 3-9: PROPERTY GRID TOOLBOX FOR TIME DEPENDENT VOLUME... 16

FIGURE 3-10: COMPONENTS LIST .. 18

ix

Abstract

Nuclear Reactor safety analysis is a systematic study to demonstrate the limits and

reliability of reactor in normal as well as accidental conditions. Reactor Excursion and

Leak Analysis Program (RELAP) or RELAP5 is a tool for analyzing small-break

LOCAs and system transients in PWRs or BWRs. It has the capability to model

thermal-hydraulic phenomena in 1-D volumes. It is used for the thermal- hydraulic

transient analysis in water-cooled nuclear reactors by solving one dimensional, two-

phase thermal-hydraulic equations in an arbitrarily connected system of volumes.

However, the preparation of the input file and subsequent analysis of results in this

code is a tiresome task.

The aim of this work was to develop a Graphical User Interface (GUI) for

preparation of the input file for RELAP5. The GUI has been developed in VB.NET

using Microsoft Visual Studio 2010. The whole task of GUI development was divided

into three sections namely “Development of GUI Environment”, “Interfacing of

Thermal-Hydraulic components" and “Interfacing of Neutronic Components”.

This thesis deals with the development of the GUI Environment named as

RELAP5 Input File Generator (RIFGen). The base classes for the development of

further RELAP5 Components have been designed and implemented. The major

programming logic and layout of all forms is described in detail in the thesis. This

GUI generates complete set of cards for Hydrodynamic Components, Core

Components, Time Step Control, Minor Edit Requests, Trip Input Data, Heat

Structure Input, General Table Data, Plot Request data, Control System Data,

Additional Plot variables, General Code Input, Couple Control Cards and other

Miscellaneous Cards. These components have been tested and validated individually.

RIFGen has been validated as a whole by generating input files for several standard

problems.

1

1. Introduction

Reactor safety analysis is an analytical study to demonstrate the limits and integrity of

reactor in normal as well as accidental conditions. There are many codes available for

reactor safety study but RELAP5 is the most widely used systems analysis code.

There are numerous references available in the public literature describing the

application of the RELAP5 to a variety of problems. It is developed by the U.S.

Nuclear Regulatory Commission (NRC) for use in rulemaking, licensing audit

calculations, evaluation of operator guidelines, and as a basis for the nuclear plant

analyzer. Although RELAP5 was originally developed to support the analysis of

postulated accidents in commercial power plants in the United States, different

versions of the code have been widely distributed around the world and now are used

to support a wide range of activities.

 In recent years, RELAP5 has been applied most extensively to support the

certification of advanced reactor designs as well as help resolve outstanding severe

accidents issues. Both RELAP5 was important tools used by the USNRC to certify the

expected performance of the AP600 passive reactor design while SCDAP/RELAP

also played an important role in the resolution of concerns about high pressure failure

of US reactor designs during postulated severe accident conditions. RELAP5 made

important contributions to the reassessment of safety of Russian-designed reactors [1].

RELAP5 is also being widely used by regulatory and research organizations

around the world to support international standard problem exercises and

experimental programs. The impact of user experience, the ability of the code to

predict thermal-hydraulic and severe accident phenomena, and its applicability to

prototypic plant transient data have been extremely well characterized. Although plant

data for accidental conditions is limited, the code has also been widely used to assess

the performance of plants under design basis and severe accident conditions. In

particular, RELAP5 was used extensively by the US Department of Energy and many

international organizations to support the assessment of the TMI-2 accident.

1.1. Background and Context

RELAP5 input file is a text file of extension “.i”. The system flow, components

properties and all the initial conditions are described by specific card numbers. The

card numbers are actually six to eight numeric numbers. For a single component these

cards may range from tens to hundreds. A single problem comprising of three

2

components may have hundred cards therefore a user needs to remember or browse

throughout the manual to write even a single card. This is a tedious job and time

consuming as well. Moreover, if the solution is not converging, a lot of time and

effort is required to modify this input file.

The complexity of the input file can be seen by just considering these few

cards in input file. The user has to browse through the user manual of the RELAP5 to

input all the properties on specific cards. If a single card is misplaces then RELAP5

does not read the input file, and user has to trace and correct the error. This tedious

job can be well reduced by a helpful Graphical User Interface (GUI) for input file

generation. The input file needs a single click to be generated. In the GUI the

nodalization diagram is first drawn, and then the parameters of components and the

initial conditions are input. This file is saved and can be modified easily. This type of

GUI, on one hand, makes RELAP5 user friendly and on the other hand, saves times of

input file generation and modification.

1.2. Scope and Objectives

An interface for user friendly model development for RELAP5 has been developed.

This includes a graphical user interface for building a nodalization diagram in

accordance with RELAP5 model and its consequent conversion into RELAP5 input

file. The main objective of this project is to aid RELAP5 users in the writing of input

file. In other words, it may serve as a helpful tool for RELAP5. Graphics have always

been successful in doing tedious problems easily and efficiently. This part deals with

development of the GUI for the above mentioned purpose. It is a drag and drop type

diagram development facility having all features/components supported by RELAP5.

It provides an interface to other parts of the project that translates every component

into RELAP5 input file syntax

Ultimate Goal: “To enable users at PIEAS as well as other PAEC

establishments to use RELAP5 in a hassle free and productive manner”

1.3. Literature Review

It is a known fact that input file generation and revision is tiresome task therefore

many efforts are made to develop graphical user interface for RELAP5 by many

peoples and organizations in different countries.

In 1999, Dr. George Mesina developed GUI for RELAP-3d in Idaho National

engineering and environmental laboratory. He used some aspects of the older GUIs of

3

some other codes i.e. Athena Aid, TROPIC and SNAP to establish a new friendly

GUI for 3d version of RELAP5. JAVA as programming language was used which is

object oriented language. There are good visualization aspects of this GUI but as far

as complexity of the input file is concerned, the user has to browse through the

RELAP5 manual to use this software.[2]

In 2007, K.D. Kim from Korea and Rizwan-uddin from USA made a web

based simulator using RELAP5 and LabVIEW. They used RELAP5 as the solver and

LabVIEW for the graphical user interface and web casting. Their software reads the

input file and shows the results graphically which can be operated remotely from

another site connected to the server via the World Wide Web. But it does not have the

facility to generate input file through graphical user interface. [3]

In 2008, two PIEAS students Abid Afsar Khan and Muhammad Muneeb

Anwar made the RELAP5 GUI for mod 3.2. They used C Sharp (C#) as programming

language. They developed initialization form, design surface, connectors, and many

thermal-hydraulic components modeling, but their project lacked modularity which

made further improvements difficult.[4]

All the GUIs for RELAP5 made so far are not available to use commercially

so there was a need to develop a new RELAP-GUI. All the imperfections and short

comings in the previously developed RELAP-GUI are taken into account and a new

GUI is made with a more dynamic structure having the ability to extend.[5]

DWSIM is an open-source CAPE-OPEN compliant chemical process

simulator for Windows, Linux and Mac. Built on the top of the Microsoft .NET 2.0

and Mono Platforms and featuring a rich Graphical User Interface (GUI) in VB.NET,

DWSIM allows chemical engineering students and chemical engineers to better

understand the behavior of their chemical systems by using rigorous thermodynamic

and unit operations' models with no cost at all. Since DWSIM is open source, they can

see how the calculations are actually being done by inspecting the code behind during

execution using free tools available elsewhere.[6]

The best features of the DWSIM open-source software are re-used to develop

the GUI for RELAP5. Features like Design Surface, Component Connectors, drag-

and-drop of the components to the design surface, assigning properties to the

components in property grid and save/load. These features helped to make the code

more dynamic and user friendly.

http://www.colan.org/

4

1.4. Thesis Layout

The GUI environment, main form, the programming language and technologies used

are explained briefly in chapter 2. In chapter 3, the core classes and the main

architecture of the application is discussed in detail. Also component interfacing with

GUI is described and all the necessary cards and properties for input file are

illustrated. The appendix contains the User Manual and Installation guide for this

RELAP5 Input File Generator (RIFGen).

5

2. Description of GUI Environment

The required GUI named as RELAP5 Input File Generator (RIFGen) takes the

nodalization data, component properties and initial conditions as input of RELAP.

The program block diagram is shown in Figure 2-1.

Figure 2-1: Block diagram of RELAP5 GUI development

Thermal-hydraulic components, neutronics and control systems, save and load of the

file, nodalization diagram and input file generation is interfaced with the main form of

the program.

2.1. Major Modules

The major modules used to develop the graphical user interface for RELAP5 are as

under.

2.1.1. Design Surface / Flow sheet and Graphics Collection

Modeling of graphics for components requires the creation of a 2D graphic so that it

can be rendered and manipulated digitally. Connection points are defined so that input

and output connectors to different components are possible. This Design Surface is

located in the center of the window as shown in Figure 2-2.

This is the core module that has been reused from DWSIM, it has the ability to

6

move around components, rotate them and to connect the components with each

other. Components can be zoomed in or out. It uses the GDI+ API by Microsoft.

Windows GDI+ is the subsystem of the Windows XP operating system or Windows

Server 2003 that is responsible for displaying information on screens and printers.

GDI+ is an API that is exposed through a set of C++ classes.[6]

2.1.2. Components List

The component list contains a list of all RELAP5 Components. These components are

designed in a way that they can be added to RELAP5 in an incremental manner

without disrupting the existing coding. Component coding task has been distributed

among team members so that the application may be coded in parallel with optimal

progress. The component list is located on the right side of the application as shown in

Figure 2-2.

Figure 2-2: RIFGen Overview

2.1.3. Component Properties and Configuration Table

This list contains all properties of the component (Volume, Area, Wall Roughness

etc), these properties are later used to create the Input file which is used by RELAP5

to perform calculations and simulations. The component properties table is located on

the left of the main program as shown in Figure 2-2.

7

2.1.4. Input File Generator

The RELAP5 input file is written in accordance with the RELAP5 user manual. An

output file stream writes the input file cards and subsequent words to a file with

extension “.i”. These words are fetched from the collection of the components stored

in the parent form.

2.2. Technologies Used

Microsoft Visual Studio 2010 is the Integrated Development Environment used to

develop RIFGen in which GDI+ technology is used. Team foundation server is the

source control server to synchronize, develop and publish the code. Some external

libraries are also used to assist in various tasks to make the GUI an even more friendly

experience. The following technologies are used to develop the GUI for RELAP5.

2.2.1. Microsoft Visual Studio

RIFGen was developed using Microsoft Visual Studio, an integrated development

environment (IDE) from Microsoft. It is used to develop console and graphical user

interface applications along with Windows Forms or WPF applications, web sites,

web applications, and web services in both native code together with managed code

for all platforms supported by Microsoft Windows, Windows Mobile, Windows CE,

.NET Framework, .NET Compact Framework and Microsoft Silverlight.

Visual Studio includes a code editor supporting IntelliSense as well as code

refactoring. The integrated debugger works both as a source-level debugger and a

machine-level debugger. Other built-in tools include a forms designer for building

GUI applications, web designer, class designer, and database schema designer. It

accepts plug-ins that enhance the functionality at almost every level including adding

support for source-control systems and adding new toolsets like editors and visual

designers for domain-specific languages or toolsets for other aspects of the software

development lifecycle (like the Team Foundation Server client: Team Explorer).

Visual Studio supports different programming languages by means of

language services, which allow the code editor and debugger to support nearly any

programming language, provided a language-specific service exists. Built-in

languages include C/C++ (via Visual C++), VB.NET (via Visual Basic .NET), C#

(via Visual C#), and F# (as of Visual Studio 2010). Support for other languages such

as M, Python, and Ruby among others is available via language services installed

separately. It also supports XML/XSLT, HTML/XHTML, JavaScript and CSS.

8

Individual language-specific versions of Visual Studio also exist which provide more

limited language services to the user: Microsoft Visual Basic, Visual J#, Visual C#,

and Visual C++.[7]

2.2.2. GDI+

RIFGen was developed using GDI+ technology. As its name suggests, GDI+ is the

successor to Windows Graphics Device Interface (GDI), the graphics device interface

included with earlier versions of Windows. Windows XP or Windows Server 2003

supports GDI for compatibility with existing applications, but programmers of new

applications should use GDI+ for all their graphics needs because GDI+ optimizes

many of the capabilities of GDI and also provides additional features.

A graphics device interface, such as GDI+, allows application programmers to

display information on a screen or printer without having to be concerned about the

details of a particular display device. The application programmer makes calls to

methods provided by GDI+ classes and those methods in turn make the appropriate

calls to specific device drivers. GDI+ insulates the application from the graphics

hardware, and it is this insulation that allows developers to create device-independent

applications.

Our Major Focus is on Vector graphics, which involves drawing primitives

(such as lines, curves, and figures) that are specified by sets of points on a coordinate

system. For example, a straight line can be specified by its two endpoints, and a

rectangle can be specified by a point giving the location of its upper-left corner and a

pair of numbers giving its width and height. A simple path can be specified by an

array of points to be connected by straight lines.

GDI+ provides classes that store information about the primitives themselves,

classes that store information about how the primitives are to be drawn, and classes

that actually do the drawing. For example, the ‘Rect’ class stores the location and size

of a rectangle; the Pen class stores information about line color, line width, and line

style; and the Graphics class has methods for drawing lines, rectangles, paths, and

other figures. There are also several Brush classes that store information about how

closed figures and paths are to be filled with colors or patterns.[8]

2.2.3. Team Foundation Server

RIFGen development was greatly accelerated in an organized manner using Team

Foundation Server (TFS). It is a Microsoft product which provides for source code

9

management (either via Team Foundation Version Control or Git), reporting,

requirements management, project management, automated builds, lab management,

testing and release management capabilities. It covers the entire end-to-end software

development process. TFS can be used as a back end to numerous integrated

development environments but is designed to provide the most benefit by serving as

the back end to Microsoft Visual Studio or Eclipse.

Source Code Control
Revision control, also known as version control and source control, is the

management of changes to documents, computer programs, large web sites, and other

collections of information. Changes are usually identified by a number or letter code,

termed the "revision number", "revision level", or simply "revision". For example, an

initial set of files is "revision 1". When the first change is made, the resulting set is

"revision 2", and so on. Each revision is associated with a timestamp and the person

making the change. Revisions can be compared, restored, and with some types of

files, merged.

Figure 2-3: Centralized Version Control

In computer software engineering, revision control is any practice that tracks

and provides control over changes to source code. Software developers sometimes use

revision control software to maintain documentation and configuration files as well as

source code.

As teams design, develop and deploy software, it is common for multiple

versions of the same software to be deployed in different sites and for the software's

developers to be working simultaneously on updates. Bugs or features of the software

are often only present in certain versions (because of the fixing of some problems and

the introduction of others as the program develops). Therefore, for the purposes of

10

locating and fixing bugs, it is important to be able to retrieve and run different

versions of the software to determine in which version(s) the problem occurs. It may

also be necessary to develop two versions of the software concurrently (for instance,

where one version has bugs fixed, but no new features (branch), while the other

version is where new features are worked on (trunk).

At the simplest level, developers could simply retain multiple copies of the

different versions of the program, and label them appropriately. This simple approach

has been used on many large software projects. While this method can work, it is

inefficient as many near-identical copies of the program have to be maintained. This

requires a lot of self-discipline on the part of developers, and often leads to mistakes.

Consequently, systems to automate some or all of the revision control process have

been developed.

Moreover, in software development, legal and business practice and other

environments, it has become increasingly common for a single document or snippet of

code to be edited by a team, the members of which may be geographically dispersed

and may pursue different and even contrary interests. Sophisticated revision control

that tracks and accounts for ownership of changes to documents and code may be

extremely helpful or even indispensable in such situations.[9]

2.2.4. External Libraries:

• DevComponents.DotNetBar2 – To enhance textbox control for the validation

of inputs.

• ICSharpCode.SharpZip.Lib – To compress “.RELAP” files.

• WeifenLuo.WinFormsUI.Docking – To dock child forms to the parent form.

11

3. Implementation

The execution of our GUI starts with the appearance of main form. The Nodalization

diagram is created using the components on the drawing canvas. Properties for the

components are available which are used to create the input file. These properties are

defined in accordance with the RELAP5 User manual. When all forms are filled in,

the whole file is saved on the hard disk with an extension “.RELAP”. The same file

can be opened and could be changed or updated easily.

Commonly used VB.NET Controls are:

 Tab Control: A Tab Control manages and displays to the user a related

collection of Tabs that can contain controls and components. This is shown in

Figure 3-1.

Figure 3-1: Tab Control

 Text box: A text box, text field or text entry box is a common element of

graphical user interface of computer programs, as well as the corresponding

type of widget used when programming GUIs. A text box's purpose is to allow

the user to input text information to be used by the program. This is shown in

Figure 3-2.

12

Figure 3-2: Label, TextBox and ComboBox Controls

 Combo box: A combo box is a commonly used GUI widget as shown in

Figure 3-2. It is a combination of a drop-down list or list box and a single-line

textbox, allowing the user either to type a value directly into the control or

choose from the list of existing options. An example of this use is the address

bar of graphical web browsers.

Figure 3-3: Checkbox and GroupBox Control

 Check box: In computing, a check box (checkbox, tickbox, or tick box) is a

graphical user interface element (widget) that permits the user to make

multiple selections from a number of options. Normally, check boxes are

shown on the screen as a square box that can contain white space (for false) or

a tick mark or X (for true), as shown in Figure 3-3. Adjacent to the check box

is normally shown a caption describing the meaning of the check box.

Label

ComboBox

Box

TextBox

GroupBox

CheckBox

13

Inverting the state of a check box is done by clicking the mouse on the box, or

the caption, or by using a keyboard shortcut.

 List box: A list box (as shown in Figure 3-4) is a GUI widget that allows the

user to select one or more items from a list contained within a static, multiple

line text box.

Figure 3-4: ListBox Control

Figure 3-5: DataGridView Control

 Group box: A group box (as shown in Figure 3-3) is used for grouping

various similar GUI widgets.

 Label: This control (as shown in Figure 3-2) is required to aid each

aforementioned widget to aid its purpose and requirement on each form.

 Data Grid View: Presents the data in a tabular form, enables the user to

14

add/edit and remove rows on the fly. This is shown in Figure 3-5

3.1. Integrated GUI

An overview of the Integrated GUI for RIFGen is shown in Figure 3-6. It contains a

Main Toolbar on the top, Initialization Toolbar also on the top, Flowsheet in the

center, Property Grid Form on the left and a Component List on the right. Below are

Plot Request, Minor Edit Requests, Control System Data Input, Trips and General

Core Input forms.

Figure 3-6: Integrated GUI

3.1.1. Main Toolbar / Menu Strip

It has the standard menu items like File, Edit, View, Copy, Save etc. These features

are commonly available on all windows based applications.

3.1.2. Initialization Toolbar

This is the initialization toolbar which is always enabled regardless of the type of

simulation to be modeled. This is shown in Figure 3-7.

Figure 3-7: Initialization Toolbar

All the fields visible above are taken directly from the user manual for the input file

generation of RELAP5.

15

 Problem Type: This is combo box that contains the type of problem as NEW;

RESTART; PLOT; IN-COND; STRIP; CMPCOMS.

 Option: This combo box specifies INPUT CHECK or RUN.

 Units: This is to specify units as SI or BRITISH for both input and output.

 Type of State: It mentions the problem type as Steady state or Transient.

3.1.3. Flow Sheet

RIFGen’s major module is the Flow Sheet, also known as the drawing canvas or

design surface. GDI+ Plus based drawing canvas has been implemented so that

Components may be easily dragged and dropped, repositioned, rotated or transformed

into any way. Graphics objects can be connected to each other using predefined

connection points these have also been implemented so that the process flow of the

components is better visualized in the nodalization diagram. A graphic object is

drawn using the curves and lines; defining points to draw a curve or a line does this.

Figure 3-8: Example of Connectors

The graphic object also contains the tag which is used to identify the

component, this identification tag is incremented automatically for example Time

Dependent Volumes are tagged as TMPDVOL-000, TMPDVOL-001 and so on. This

tag may be modified as per user’s need. An example of connected components is

illustrated in Figure 3-8

3.1.4. Property Grid Form

This form has 2 tabs, one is the property tab and the other is the appearance tab. All

component specific properties are visible in this toolbar once the component has been

selected on the drawing canvas. These include properties related to the component

defined in the RELAP5 User Manual. Values of these properties are formatted

according to their data type. As seen in Figure 3-9 the Volume Flow Area is formatted

as a real number formatted up to 2 decimal places. These properties are further

16

categorized for easier user readability and navigation. Detailed description for each

property is displayed at the bottom of the form. In the appearance tab the graphics

object may be modified Complex properties are further tackled in separate forms

called from this parent Property Grid Form using UI Editors.

Figure 3-9: Property Grid Toolbox for Time Dependent Volume

3.1.5. User Interface (UI) Editors

These provide a custom design-time experience for complex property types by

implementing a user interface (UI) type editor.

Displaying and Editing Custom Types
When a custom type as a property is exposed, there are three ways to edit the

property's value in a PropertyGrid:

 Edit the property in place as a string. This requires a TypeConverter for the

custom type

 Edit the property with a drop-down UI. This is especially useful for properties

that can be set with a single click.

 Edit the property with a modal dialog box. If the property is particularly

complex, a full dialog box may be necessary to edit it properly.

To enable either single-click or modal dialog box editing, one needs to implement a

17

UI type editor to interact with a PropertyGrid.

Drop-down Editors
Drop-down editors are ideal for types that can be set with a single click. For example,

to edit the Dock and BackColor properties of the Control class in a PropertyGrid with

a drop-down editor.

Access a drop-down UI type editor by clicking on the arrow button that

appears next to the selected property entry in a PropertyGrid. The custom UI appears,

attached to the PropertyGrid. The top of its window is positioned along the bottom of

the property entry, and its width matches that of the property entry. This editor

window must also be closed after the user makes a selection. The implementation

must call the DropDownControl method to position and size the UI type editor

window in the design environment, and must call the CloseDropDown method to

close the window.[10]

Modal Dialog Editors
Modal editors are useful for types that require a fully interactive UI. For example,

collection editors like the TabPage Collection Editor of TabControl or the Edit

Columns dialog box of the DataGridView control are modal editors.

Access a modal UI type editor by clicking on the ellipsis button that appears

next to the selected property entry in a PropertyGrid. The modal dialog box appears,

and the user interacts with it like a typical dialog box. The implementation must call

the ShowDialog method to position and size the dialog box in the design environment.

Implementing a UI Type Editor
To implement a custom UI type editor, the following tasks must be performed:

 Define a class that derives from UITypeEditor.

 Override the GetEditStyle method to inform the PropertyGrid of the type of

editor style that the editor will use.

 Override the EditValue method to handle the UI, user input processing, and

value assignment.

The following tasks need to be performed to add additional support for painting a

value's representation in a PropertyGrid:

 Override GetPaintValueSupported to indicate that the editor supports

displaying the value's representation.

 Override PaintValue to implement the display of the value's representation.

 Override the UITypeEditor constructor method if the editor should have

18

initialization behavior.

3.1.6. Component List

This list contains a list of all RELAP5 Components, these components are designed in

a way that they can be added to RELAP5 in an incremental manner without disrupting

the existing coding. Component coding task has been distributed among team

members so that the application may be coded in parallel with optimal progress.

Figure 3-10: Components List

3.2. File Save/Load

This has been achieved by writing export files for each object in the GUI and zipping

them into a single file with the extension of “.RELAP”. Objects and GUI layout is

serialized and exported to binary files. This may later be used to read and load the

layout back again. The properties of the components are in this way saved and may be

reused later when needed.

3.2.1. Serialization

In computer science, in the context of data storage and transmission, serialization is

the process of translating data structures or object state into a format that can be

stored and restored later in the same or another computer environment. When the

resulting series of bits is reread according to the serialization format, it can be used to

create a semantically identical clone of the original object. For many complex objects,

such as those that make extensive use of references, this process is not

straightforward. Serialization of object-oriented objects does not include any of their

associated methods with which they were previously inextricably linked.

This process of serializing an object is also called deflating or marshalling an

object. The opposite operation, extracting a data structure from a series of bytes, is

deserialization. In the .NET languages, classes can be serialized and deserialized by

adding the Serializable attribute to the class.

19

If new members are added to a serializable class, they can be tagged with the

OptionalField attribute to allow previous versions of the object to be deserialized

without error. This attribute affects only deserialization, and prevents the runtime

from throwing an exception if a member is missing from the serialized stream. A

member can also be marked with the NonSerialized attribute to indicate that it should

not be serialized. This will allow the details of those members to be kept secret.

Objects may be serialized in binary format for deserialization by other .NET

applications. There are also third party binary serializers that are documented,

portable, use less memory footprint and CPU.

The framework also provides the SoapFormatter and XmlSerializer objects to

support serialization in human-readable, cross-platform XML.

3.3. Publishing of Software

The beta version was published on Codeplex on 2
nd

 May 2013. Codeplex enables the

use of Team Foundation Server (TFS) which was our main asset to help us in the

integrated team development. The project URL is http://relap.codeplex.com.

3.3.1. About CodePlex

CodePlex is Microsoft's open source project hosting web site. It can be used to create

new projects to share with the world, join others who have already started their own

projects, or download open source software on this site and provide feedback.

Hosting over 30,000 projects, CodePlex is one of the fastest growing and most

popular open source project hosting sites. CodePlex provides a rich set of

functionality for hosted projects including:

 Team Foundation Server, Git, or Mercurial for project source control

 Project contributor forks or patches

 Project release downloads

 Discussion forums & mailing lists

 Wiki and documentation pages

 Bug and feature request tracker

 Project usage statistics

http://relap.codeplex.com/

20

4. Conclusions and Recommendations

4.1. Conclusions

It is concluded that a GUI for the preparation of the input file for RELAP5 has been

developed using VB.NET as programming language, using GDI+ as the main module

for drawing purposes. This Software is named as RELAP5 Input File Generator

(RIFGen). It is capable of reducing work of hours to few minutes. It has been

validated for individual components as well as on complete test cases as a whole.

RIFGen exhibited correct results and is ready to be used for any PWR type reactor.

Hence, the aim of this project is achieved.

4.2. Recommendations

There is always room for improvement. RIFGen currently works for PWR reactors

only. It can be improved to work for both BWR and ATR. It’s input file generator

outputs files according to Mod. 3.2. It can be improved to work for latest Mod. 4.0.

There can be options to read output file and plot results. There can be an option to

convert an already prepared input file to a nodalization diagram on the drawing

canvas. Inclusion of post processing of results and grouping of components into a

subsystem may also be a useful feature. A feature to import existing nodalization

diagrams may be included.

21

References

[1] Daniel Wagner Oliveira de Medeiros, “DWSIM - Process Simulation,

Modeling and Optimization”, Version 2.1, Revision 0, January 2012 Source

Code Guide.

[2] CAPE-OPEN Methods and Tools Guidelines by “Industrial and Materials

Technologies.

[3] RELAP/MOD Code Manual, volume I: code structure, system models, and

solution methods, NUREG/CR-5535, June 1995.

[4] SCDAP/RELAP/MOD3.2 Code Manual, NUREG/CR/6150, rev.1, July 1998.

[5] E. A. Harvego, et al., "Developmental assessment of the

SCDAP/RELAP/MOD3.2 code" 6th Inter. Conference on Nuclear Engineering,

ICONE-6, May 1998.

[6] James J. Duderstadt and Louis J. Hamilton, “Nuclear Reactor Analysis”, John

Wiley & Sons, New York/London/Sydney/Toronto, 1976.

[7] Dr. George Mesina, “Developments and New Directions for the RELAP5-3D

Graphical User Interface” , 2001 RELAP5 International Users Seminar.

[8] RELAP/MOD Code Manual, volume 5A:mod 3.2 Assessment, NUREG/CR-

5535, June 1995.

[9] Microsoft
®
 2013, “.NET Framework Development Guide”, Islamabad Office:

Microsoft Corporation Pakistan, Liaison Office, House No. 10/A, Street No.

71, Sector F-8/3 Islamabad.

Website: <http://msdn.microsoft.com/en-us/library/hh156542.aspx>

[10] Microsoft
®
 2013, “The Three Parts of GDI+”, Islamabad Office: Microsoft

Corporation Pakistan, Liaison Office, House No. 10/A, Street No. 71, Sector

F-8/3 Islamabad.

Website:<http://msdn.microsoft.com/en-

us/library/windows/desktop/ms536384(v=vs.85).aspx>

http://msdn.microsoft.com/en-us/library/hh156542.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms536384(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms536384(v=vs.85).aspx

22

Vita

The author, Waleed Ahmed Malik, was born in Rawalpindi, Pakistan on 30
th

November 1987. His initial schooling until grade 9 was in Al Nujoom International

School Jeddah, Saudi Arabia. Completed O’ and A’ Levels from OPF Boys College

H-8/4, Islamabad. Graduated with a degree in Computer Information Sciences from

PIEAS, Islamabad. Later he completed his MS in Nuclear Engineering from PIEAS as

well. The author also enjoys working as a freelance programmer and has a rich 6 year

experience of the corporate world of Software Engineering.

