
A Formal Model of the Shape Expression
Language

Harold Solbrig1, Eric Prud’hommeaux2

1 Mayo Clinic, Rochester MN 55095, USA,
solbrig.harold@mayo.edu

2 World Wide Web Consortium, Cambridge MA 02139, USA,
eric@w3.org

Abstract. Shape Expressions express formal constraints on the con-
tent of RDF graphs and are intended to be used to validate RDF docu-
ments, communicate expected graph patterns for interfaces and to gen-
erate forms and validation code. This document describes the formal
semantics of the Shape Expressions language through the use of the Z
Specification Language.

Keywords: RDF, RDF Graph, RDF Dataset, validation, formal schema, ShEx,
RDF Validation, Z Specification Language

1 Introduction

The Shape Expressions Language (ShEx) is used to specify formal constraints
on the content of RDF graphs and are intended to be used to validate RDF
documents, communicate expected graph patterns for interfaces and to generate
forms and validation code. ShEx can be used to:

– Describe the contents of an RDF graph
– Express invariants about an RDF triple store
– Define a predicate that can be tested against an RDF graph instance
– Define a set of rules that can be used to generate forms, validation code and

other constructs in specific target languages

Information about the use, grammar and syntax of ShEx can be found at
http://www.w3.org/2013/ShEx. This document describes the formal semantics
of the ShEx language using the Z specification language, beginning with a Z
specification of the characteristics of an RDF Graph that are referenced by ShEx .

2 The RDF Data Model in Z

Using the formal definitions in RDF 1.1 Concepts and Abstract Syntax [?]:

“An RDF graph is a set of RDF Triples”

2

Formally:

Graph == PTriple

“An RDF triple consists of three components:
– the subject, which is an IRI or a blank node
– the predicate, which is an IRI
– the object, which is an IRI, a literal or a blank node”

“‘... IRIs, literals and blank nodes are distinct and distinguishable.”

The ShEx language treats IRIs and blank nodes as primitive types, which
are defined as Z free types:

[IRI ,BlankNode]

The ShEx language can express constraints on both the type and content of
literals, which are modeled separately:

“A literal in an RDF graph consists of two or three elements:
– a lexical form, being a Unicode string...
– a datatype IRI, being an IRI
– if and only if the datatype IRI is
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString, a non-
empty language tag as defined in [BCP47][?]. The language tag
MUST be well-formed according to section 2.2.9 of [BCP47][?].”

This is modelled by String and LanguageTag as free types:

[String ,LanguageTag]

and using them in the definition the two flavors of RDFLiteral , plain literal and
typed literal::

TypedLiteral =̂ [lexicalForm : String ; dataType : IRI | dataType 6= RDF langString]
PlainLiteral =̂ [lexicalForm : String ; dataType : IRI ; langTag : LanguageTag |

dataType = RDF langString]
RDFLiteral ::= pl〈〈PlainLiteral〉〉 | tl〈〈TypedLiteral〉〉

RDFTerm is defined as:

“IRIs, literals and blank nodes are collectively known as RDF terms

RDFTerm ::= iri〈〈IRI 〉〉 | literal〈〈RDFLiteral〉〉 | bnode〈〈BlankNode〉〉

The definition of RDF Triple is modelled as a tuple consisting of three con-
strained RDFTerms:

Triple
s, p, o : RDFTerm

iri∼s ∈ IRI ∨ bnode∼s ∈ BlankNode
iri∼p ∈ IRI
iri∼o ∈ IRI ∨ bnode∼o ∈ BlankNode ∨ literal∼o ∈ RDFLiteral

3

2.1 RDF Access Functions

The ShEx language uses the following functions:

triplesForSubject – return set of triples in a graph triples whose subject is a
given RDFTerm

triplesForSubject : RDFTerm → Graph → Graph

∀ subj : RDFTerm; g : Graph • triplesForSubject subj g = {t : g | t .s = subj}

triplesForObject – return set of triples in a graph triples whose object is a
given RDFTerm

triplesForObject : RDFTerm → Graph → Graph

∀ obj : RDFTerm; g : Graph • triplesForObject obj g = {t : g | t .o = obj}

2.2 Well Known URIs

The following URI’s are referenced explicitly in the ShEx implementation:

ID URI

RDF langString http://www.w3.org/1999/02/22-rdf-syntax-ns#langString

SHEX IRI http://www.w3.org/ns/shacl#IRI

SHEX BNODE http://www.w3.org/ns/shacl#BNode

SHEX LITERAL http://www.w3.org/ns/shacl#Literal

SHEX NONLITERAL ?

SHEX IRI ,SHEX BNODE ,SHEX LITERAL,SHEX NONLITERAL,
RDF langString : IRI

disjoint 〈{SHEX IRI }, {SHEX BNODE}, {SHEX LITERAL},
{SHEX NONLITERAL}, {RDF langString}〉

This completes the formal definition of Graph, Triple, RDFTerm and their
components, which we can now use to describe the relationship between an ShEx
Schema and an RDF graph.

3 Shape Expression Evaluation

A Shape Expression Schema is a collection of labeled rules where exactly one rule
in the collection is identified as the outermost or “starting” rule. In addition, any
rule that is referenced within the Schema is also itself a member of the Schema
Formally:

4

Schema
rules : Label 7→ Rule
start : Label

start ∈ dom rules
∀ r : ran rules •

(r ∈ ran group ⇒ (group∼r).rule ∈ dom rules) ∧
(r ∈ ran and ⇒ ran(and∼r) ⊆ dom rules) ∧
(r ∈ ran xor ⇒ ran(xor∼r) ⊆ dom rules) ∧
(r ∈ ran arc ∧ (arc∼r).valueSpec ∈ ran valueRef ⇒

(valueRef ∼(arc∼r).valueSpec) ∈ dom rules)

While existing ShEx implementations define a rule Label as being either an
IRI or a BlankNode, the type of Label does not impact the evaluation semantics.
For our purposes, we can simply define it as a separate free type:

[Label]

The validity of a given RDF Graph is determined by taking the start Rule
of a ShEx Schema and a reference IRI and evaluating the validity of the Rule
against the supplied graph.

Formally, the evaluate function takes a Schema, a Graph and a reference IRI
and, if the start Rule in the Schema, in the context of the starting Schema and
graph, returns either nomatch (z) or pass (p) then the function returns pass. In
all other cases, the function returns fail (f).

evaluate : Schema → Graph → IRI → OptValidity

∀ s : Schema; g : Graph; i : IRI ; v : OptValidity ; ec : EvalContext |
ec.graph = g ∧ ec.schema = s •

evaluate s g i =
if evalRule ec (iri i) (s.rules s.start) ∈ {z ,p}
then p else f

4 Rule Evaluation

A ShEx Rule is a set of constraints that can be evaluated against a reference
RDFTerm in the context of a given Schema and RDF Graph:

EvalContext =̂ [schema : Schema; graph : Graph]

Formally, the evalRule function takes an EvalContext, a reference RDFTerm
and a Rule and returns one of the following:

– Pass (p) - the supplied Graph satisfied the evaluation Rule
– Fail (f) - the supplied Graph did not satisfy the evaluation Rule
– Nomatch (z) - an optional GroupRule was encountered and there were no

matching triples

5

– None (∅) - an ArcRule was encountered with a minimum cardinality of 0
and there were no matching triples

– Error(ε) - an XorRule was evaluated and two or more components passed
the evaluation.

OptValidity ::= p | f | z | ∅ | ε

A Rule can take one of five forms. Each will be formally described later in this
document, but informally they are:

– ArcRule – selects the subset of the graph having the reference RDFTerm as
the subject and matching predicates and and validates the resulting objects

– RevArcRule – selects the subset of the graph having the reference RDFTerm
as the object and matching predicates and and validates the resulting sub-
jects

– GroupRule – identifies a Rule and declares it as optional and/or describes
a set of external Actions to be evaluated if the inner Rule passes.

– AndRule – identifies a set of Rules, all of which must pass when evaluated
against the supplied Graph and EvalContext

– XorRule – identifies a set of Rules, exactly one of which must pass when
evaluated against the supplied Graph and EvalContext

Rule ::= arc〈〈ArcRule〉〉 |
rarc〈〈RevArcRule〉〉 |
group〈〈GroupRule〉〉 |
and〈〈AndRule〉〉 |
xor〈〈XorRule〉〉

evalRule : EvalContext → RDFTerm → Rule → OptValidity

∀ ec : EvalContext ; i : RDFTerm; r : Rule • evalRule ec i r =
if r ∈ ran arc

then evalArcRule ec i (arc∼r)
else if r ∈ ran rarc

then evalRevArcRule ec i (rarc∼r)
else if r ∈ ran group

then evalGroupRule ec i (group∼r)
else if r ∈ ran and

then evalAndRule ec i (and∼r)
else

evalXorRule ec i (xor∼r)

The evalRule ′ function de-references the supplied Label and invokes evalRule
with the result. This is not explicitly represented because the Z specification
language does not allow cyclic dependencies. This function is undefined if Label
is not in EvalContext

evalRule ′ : EvalContext → RDFTerm → Label → OptValidity

∀ ec : EvalContext ; l : Label • l ∈ dom ec.schema.rules

6

4.1 ArcRule evaluation

The ArcRule is used to select the subset of the graph having a given predicate
or predicates and to determine whether the cardinality and/or “type” of this
subset matches a supplied criteria. The rule itself consists of a PredicateFilter to
select the triples, an ObjectSpecification to evaluate the result, an optional min
and max cardinality and a (possibly empty) set of Actions:

ArcRule
filter : PredicateFilter
valueSpec : ObjectSpecification
min,max : Optional [N]
actions : PAction

(#min = 1 ∧ #max = 1)⇒ value min ≤ value max

ArcRule evaluation consists of:

1. Select the subset of the EvalContext Graph with the supplied subject and
predicates matching PredicateFilter

2. Evaluate the cardinality and return the result if it doesn’t pass
3. Evaluate the object of each of the triples in the set against ObjectSpecifica-

tion. If any of the evaluations fail, return fail (f).
4. Return the result of evaluating actions against the matching triples.

evalArcRule : EvalContext → RDFTerm → ArcRule → OptValidity

∀ ec : EvalContext ; s : RDFTerm; ar : ArcRule; sg : Graph |
sg = evalPredicateFilter ar .filter (triplesForSubject s ec.graph) •

evalArcRule ec s ar =
if evalCardinality sg ar .min ar .max 6= p

then evalCardinality sg ar .min ar .max
else if evalObjectSpecification ec ar .valueSpec sg 6= p

then evalObjectSpecification ec ar .valueSpec sg
else

dispatch ar .actions sg ec

PredicateFilter Validation A PredicateFilter can be one of:

– an pfIRI - the IRI of a specific predicate or the IRIstem that defines a set
of predicates

– pfWild - an expression that matches any predicate except those matching
the (possibly empty) set of IRIorStems

IRIorStem ::= iosi〈〈IRI 〉〉 | ioss〈〈IRIstem〉〉
PredicateFilter ::= pfIRI 〈〈IRIorStem〉〉 | pfWild〈〈P IRIorStem〉〉

7

An IRIstem matches any IRI whose stringified representation begins with the
stringified representation of IRIstem according to standard IRI matching rules
[?]. This is represented by the function:

[IRIstem]

IRIstemRange : IRIstem 7→ P IRI

evalPredicateFilter returns all of the triples in a Graph whose predicate matches
the supplied PredicateFilter :

evalPredicateFilter : PredicateFilter 7→ Graph 7→ Graph

∀ f : PredicateFilter ; g : Graph • evalPredicateFilter f g =
if f ∈ ran pfIRI then evalIRIorStem (pfIRI∼f) g
else evalWild (pfWild∼f) g

evalIRIorStem returns all of the triples in a Graph matching the supplied IRI-
orStem

evalIRIorStem : IRIorStem 7→ Graph 7→ Graph

∀ e : IRIorStem; g : Graph • evalIRIorStem e g =
if e ∈ ran iosi then {t : g | iri∼t .p = iosi∼e}
else {t : g | iri∼t .p ∈ IRIstemRange (ioss∼e)}

evalWild returns all of the triples in a Graph that do not match an entry in the
set of IRIorStems.

evalWild : P IRIorStem 7→ Graph 7→ Graph

∀ es : P IRIorStem; g : Graph • evalWild es g =
{t : g | t /∈

⋃
{e : es • evalIRIorStem e g}}

ObjectSpecification evaluation ObjectSpecification specifies a set of possible
values for an RDFTerm and takes one of the following forms:

– ValueType - matches Literals having a specified data type
– ValueSet - matches IRIs or Literals that match one or more of the expres-

sions in the specified set
– ValueWild - matches any target except those matching the (possibly empty)

set of IRIstems
– ValueReference - matches any target that is considered valid according the

Rule identified by Label.

MatchValue ::= mviri〈〈IRI 〉〉 | mviris〈〈IRIstem〉〉 |
mvlit〈〈RDFLiteral〉〉

ObjectSpecification ::= valueType〈〈IRI 〉〉 |
valueSet〈〈PMatchValue〉〉 |
osWild〈〈PMatchValue〉〉 |
valueRef 〈〈Label〉〉

8

evalCardinality – evaluates the cardinality the supplied graph.

– If the graph has no elements and:

• min value is 0 – nomatch (z)

• min value isn’t specified or is > 0 – none (∅)

– Otherwise:

• If number of elements in graph < min or > max – fail (f)

• Otherwise – pass (p)

evalCardinality : Graph → Optional [N]→ Optional [N]→ OptValidity

∀ g : Graph; min,max : Optional [N] • evalCardinality g min max =
if #min = 1 ∧ #g = 0 ∧ value min = 0

then z
else if #g = 0

then ∅
else if (#min = 1 ∧ #g < value min) ∨

(#max = 1 ∧ #g > value max)
then f

else p

evalObjectSpecification – returns pass (p) if all of the triples in a Graph match
the supplied ObjectSpecification, otherwise fail (f)

evalObjectSpecification : EvalContext → ObjectSpecification → Graph →
OptValidity

∀ ec : EvalContext ; os : ObjectSpecification; g : Graph •
evalObjectSpecification ec os g =

if ∀ t : g • evalObjectSpecificationTriple ec os t .o = p then p
else f

evalObjectSpecificationTriple : EvalContext → ObjectSpecification →
RDFTerm → OptValidity

∀ ec : EvalContext ; os : ObjectSpecification; n : RDFTerm •
evalObjectSpecificationTriple ec os n =

if os ∈ ran valueType then
evalValueType (valueType∼os) n

else if os ∈ ran valueSet then
evalTermSet (valueSet∼os) n

else if os ∈ ran osWild then
evalTermWild (osWild∼os) n

else
evalTermReference ec (valueRef ∼os) n

9

evalValueType – returns pass if the supplied RDFTerm is:

– type literal and whose dataType matches ValueType
– type IRI and ValueType is type RDF Literal

evalValueType : IRI 7→ RDFTerm 7→ OptValidity

∀ vt : IRI ; n : RDFTerm; l : RDFLiteral • evalValueType vt n =
if vt = SHEX IRI ∧ n ∈ ran iri then p
else if vt = SHEX BNODE ∧ n ∈ ran bnode then p
else if vt = SHEX NONLITERAL ∧ (n ∈ ran iri ∨ n ∈ ran bnode) then p
else if vt = SHEX LITERAL ∧ n ∈ ran literal then p
else if n ∈ ran literal ∧ l = (literal∼n) ∧

((l ∈ ran pl ∧ (pl∼l).dataType = vt) ∨
(l ∈ ran tl ∧ (tl∼l).dataType = vt)) then p

else f

evalTermSet – return p if the supplied RDFTerm is a member of MatchValue

evalTermSet : PMatchValue 7→ RDFTerm 7→ OptValidity

∀mvs : PMatchValue; n : RDFTerm • evalTermSet mvs n =
if ∃mv : mvs •

((mv ∈ ran mviri ∧ n ∈ ran iri ∧ (iri∼n) = mviri∼mv) ∨
(mv ∈ ran mviris ∧ n ∈ ran iri ∧

(iri∼n) ∈ IRIstemRange (mviris∼mv)) ∨
(n ∈ ran literal ∧ mvlit∼mv = literal∼n))

then p
else f

evalTermWild – return pass (p) if the supplied RDFTerm is not a member of
MatchValue.

evalTermWild : PMatchValue → RDFTerm → OptValidity

∀mvs : PMatchValue; n : RDFTerm • evalTermWild mvs n =
if evalTermSet mvs n = p then f else p

evalTermReference – return p if the subgraph of the EvalContext graph whose
subjects match the supplied RDFTerm satisfies the ValueReference rule.

evalTermReference : EvalContext 7→ Label 7→ RDFTerm 7→ OptValidity

∀ ec : EvalContext ; vr : Label ; n : RDFTerm •
evalTermReference ec vr n =

if n /∈ ran literal then evalRule ′ ec n vr
else f

10

4.2 RevArcRule evaluation

The RevArcRule is used to select the subset of the graph having a given predicate
or predicates and to determine whether the cardinality and/or “type” of this
subset matches a supplied criteria. The rule itself consists of a PredicateFilter to
select the triples, an SubjectSpecification to evaluate the result, a optional min
and max cardinality and a (possibly empty) set of Actions:

RevArcRule
filter : PredicateFilter
valueSpec : SubjectSpecification
min,max : Optional [N]
actions : PAction

(#min = 1 ∧ #max = 1)⇒ value min ≤ value max

RevArcRule evaluation consists of:

1. Select the subset of the EvalContext Graph with the supplied object and
predicates matching PredicateFilter

2. Evaluate the cardinality and return the result if it doesn’t pass
3. Evaluate the object of each of the triples in the set against SubjectSpecifica-

tion. If any of the evaluations fail, return fail (f).
4. Return the result of evaluating actions against the matching triples.

evalRevArcRule : EvalContext → RDFTerm → RevArcRule → OptValidity

∀ ec : EvalContext ; o : RDFTerm; rar : RevArcRule; og : Graph |
og = evalPredicateFilter rar .filter (triplesForObject o ec.graph) •

evalRevArcRule ec o rar =
if evalCardinality og rar .min rar .max 6= p

then evalCardinality og rar .min rar .max
else if evalSubjectSpecification ec rar .valueSpec og 6= p

then evalSubjectSpecification ec rar .valueSpec og
else

dispatch rar .actions og ec

SubjectSpecification evaluation SubjectSpecification specifies a set of possi-
ble values for an RDFTerm and takes one of the following forms:

– SubjectSet - matches IRIs or IRIstems that match one or more of the ex-
pressions in the specified set

– SubjectWild - matches any target except those matching the (possibly empty)
set of IRIstems

– subjectRef - matches any target that is considered valid according the Rule
identified by Label.

SubjectSpecification ::= subjectSet〈〈PMatchValue〉〉 |
ssWild〈〈PMatchValue〉〉 |
subjectRef 〈〈Label〉〉

11

evalSubjectSpecification – returns pass (p) if all of the triples in a Graph match
the supplied SubjectSpecification, otherwise fail (f)

evalSubjectSpecification : EvalContext → SubjectSpecification → Graph →
OptValidity

∀ ec : EvalContext ; ss : SubjectSpecification; g : Graph •
evalSubjectSpecification ec ss g =

if ∀ t : g • evalSubjectSpecificationTriple ec ss t .o = p then p
else f

evalSubjectSpecificationTriple : EvalContext → SubjectSpecification →
RDFTerm → OptValidity

∀ ec : EvalContext ; ss : SubjectSpecification; n : RDFTerm •
evalSubjectSpecificationTriple ec ss n =

if ss ∈ ran subjectSet then
evalTermSet (subjectSet∼ss) n

else if ss ∈ ran ssWild then
evalTermWild (ssWild∼ss) n

else
evalTermReference ec (subjectRef ∼ss) n

4.3 GroupRule evaluation

A GroupRule serves two purposes. The first is to declare that a referenced rule is
to be treated as “optional”, which, in this case means that if (a) the referenced
rule returned none (∅), (meaning an ArcRule was encountered that had no
matching predicates and a non-zero minimum cardinality) the group rule returns
nomatch (z). An optional GroupRule also treats an error situation as a fail (f).

The second purpose of a group rule is to allow a set of external actions to
be evaluated whenever the referenced rule returns pass (p).

OPT ::= OPTIONAL | REQUIRED
GroupRule =̂ [rule : Label ; opt : OPT ; actions : PAction]

evalGroupRule evaluates Rule, applies opt and,if the result is pass (p) evaluates
the actions with respect the passing Graph

evalGroupRule : EvalContext → RDFTerm → GroupRule → OptValidity

∀ ec : EvalContext ; i : RDFTerm; gr : GroupRule • evalGroupRule ec i gr =
if evalRule ′ ec i gr .rule = ∅ ∧ gr .opt = OPTIONAL

then z
else if evalRule ′ ec i gr .rule = ε ∧ gr .opt = OPTIONAL

then f
else if evalRule ′ ec i gr .rule = p

then dispatch gr .actions ∅ ec
else evalRule ′ ec i gr .rule

12

4.4 AndRule evaluation

An AndRule consists of a set of one or more Rules, whose evaluation is deter-
mined by the following table:

And ∅ z f p ε

∅ ∅ ∅ f f ε
z ∅ z f p ε
f f f f f ε
p f p f p ε
ε ε ε ε ε ε

The formal implementation of which will be realized in the corresponding
function.

– If either term is an error the result is an error

– else if either term is a fail the result is a fail

– else if both terms are the same, the result is whatever they were

– else none (∅) and nomatch (z) is nomatch (z)

– nomatch (z) and pass (p) is fail (f)

– none (∅) and pass (p) is pass(p)

And : OptValidity → OptValidity → OptValidity

∀ a1, a2 : OptValidity • And a1 a2 =
if a1 = ε ∨ a2 = ε then ε
else if a1 = f ∨ a2 = f then f
else if a1 = a2 then a1
else if a1 = ∅ then

if a2 = z then z else f
else if a1 = ∅ then

if a2 = z then z else p
else if a2 = z then f else p

Observing that the above table is a monoid with nomatch (z) as an identity
element, evalAndRule can be applied using the standard functional pattern:

AndRule == seq1 Label

evalAndRule : EvalContext → RDFTerm → AndRule → OptValidity

∀ ec : EvalContext ; i : RDFTerm; r : AndRule •
evalAndRule ec i r =

foldr And z (map (evalRule ′ ec i) r)

13

4.5 XorRule evaluation

An XorRule consists of a set of one or more Rules, whose evaluation is deter-
mined by the following table:

Xor ∅ z f p ε

∅ ∅ z ∅ p ε
z z z z p ε
f ∅ z f p ε
p p p p ε ε
ε ε ε ε ε ε

The formal implementation of which will be realized in the corresponding func-
tion:

– If either term is fail (f) the result is the other term Identity
– else if either term is error (ε) the result is (ε) unity
– else if both terms are pass (p) the result is (ε)
– else if either term is pass (p) the result is (p)
– else if either term is nomatch (z) the result is (z)
– else the result is none (∅)

Xor : OptValidity → OptValidity → OptValidity

∀ o1, o2 : OptValidity • Xor o1 o2 =
if o1 = ε ∨ o2 = ε ∨ (o1 = p ∧ o2 = p) then ε
else if o1 = p ∨ o2 = p then p
else if o1 = f then o2
else if o2 = f then o1
else if o1 = z ∨ o2 = z then z
else ∅

As with the And function above, Xor is a monoid whose identity is fail (f)
resulting in the following definition for evalXorRule

XorRule == seq1 Label

evalXorRule : EvalContext → RDFTerm → XorRule → OptValidity

∀ ec : EvalContext ; i : RDFTerm; r : XorRule •
evalXorRule ec i r =

foldr Xor f (map (evalRule ′ ec i) r)

5 Action evaluation

The dispatch function allows the evaluation / execution of arbitrary external
“Actions”. While the evaluation of an Action can (obviously) have side effects

14

outside the context of the ShEx environment, it must be side effect free within
the execution context. In particular, an Action may not change anything in the
EvalContext The action dispatcher exists to allow external events to happen.
Parameters:

– as - the set of Actions associated with the GroupRule, ArcRule or RevAr-
cRule

– g - the Graph that passed the ArcRule or RevArcRule. Empty in the case of
GroupRule

– ec - the EvalContext containing the Schema and Graph

The dispatch function usually returns pass (p) or fail (f), although there
may also be cases for other OptValidity values in certain circumstances. The
dispatch function always returns pass (p) if the set of actions is empty.

[Action]

dispatch : PAction → Graph → EvalContext → OptValidity

∀ as : PAction; g : Graph; ec : EvalContext •
as = ∅ ⇒ dispatch as g ec = p

6 Appendix

6.1 Foldr

The foldr function is the standard functional pattern, which takes a binary func-
tion of type T, an identity function for type T, a sequence of type T and returns
the result of applying the function to the right to left pairs of the sequence.

[T]
foldr : (T → T → T)→ T → seq T → T

∀ f : T → T → T ; id : T ; xs : seq T • foldr f id xs =
if xs = 〈〉 then id
else f (head xs) (foldr f id (tail xs))

6.2 Map

The map function takes a function from type A to type B and applies it to all
members in the supplied sequence

[A,B]
map : (A→ B)→ seq A→ seq B

∀ f : A→ B ; xs : seq A • map f xs =
if xs = 〈〉 then 〈〉
else 〈f (head xs)〉amap f (tail xs)

15

6.3 Helper Functions

Z uses the notion of free type definitions in the form:

FreeType ::= constructor〈〈source〉〉

which introduces a collection of constants of type FreeType, one for each element
of the set source. constructor is an injective function from source to FreeType:

constructor ::= source � FreeType

In the models that follow, there is a need to reverse this – to find the source for a
given FreeType instance. The ∼ function exists for this purpose. As an example,
if one were to define:

TravelDirections ::= bus〈〈BusDirections〉〉 | walking〈〈WalkingDirections〉〉

If one is supplied with an instance of Travel , one can convert it to the appropriate
type by:

x : TravelDirections

if x ∈ ran bus then bus∼x else walking∼x

One way to represent optional values is a set with one member. We take that
route here and introduce a bit of syntactic sugar to show our intent:

Optional [T] == {s : PT | #s ≤ 1}

And a shorthand for addressing the content:

[T]
value : PT 7→ T

∀ s : PT • value s = (µ e : T | e ∈ s)

