
This is a REVISED proposal being
considered for the W3C DID Core
Specification (or an associated Note).
The original proposal (now deprecated)
is ​here ​. Please direct all comments to
the DID Core issue thread ​.

Appendix A: What Does a DID Identify?
Although the DID specification clearly states that ​a DID identifies the DID subject​, and that a
DID subject can be anything that can be identified with a URI, some finer details of DID
identification architecture can be important to certain applications, particularly those for the
Semantic Web. This appendix explains these finer details.

Information resources and non-information resources
In W3C Semantic Web architecture, all resources have URIs, but there is a distinction between
information resources​ and ​non-information resources​. An information resource is any type
of digital object. In most (but not all) cases, such an object has one or more ​representations
that can be retrieved over a digital network. Examples include web pages, files, images, videos,
audio clips, and any other data structure that can be “on” the World Wide Web.

A non-information resource is anything that cannot directly be “on” the World Wide Web
because it does not exist as a digital object on a network. Examples include people,
organizations, physical objects (the Eiffel Tower, the moon), places (“Bolivia”, “Gibraltar”), or
logical concepts (“calculus”, “peace”, “unicorn”).

Such non-information resources ​cannot have representations​ because by definition they are
not “made” of information. However, they still need to be referred to by people (and by other
information resources). For this reason, the W3C recommends

1. A non-information resource should still be identified with a URI​ that uniquely
identifies that resource (and nothing else).

https://docs.google.com/document/d/1QJWyk128yt98v8_42kPJy0Qhpu33QB_qy0_biqaB6EI/edit?usp=sharing
https://github.com/w3c/did-core/issues/373

2. That URI should enable discovery of other URIs​ that identify other information
resources associated with the non-information resource.

3. Those other information resources can return ​descriptions​ of the non-information
resource. A description does not ​represent​ a resource, it only ​describes​ it.

These architectural requirements posed a dilemma for the Semantic Web community that can
be summarized by the following recommendation from the W3C: 1

There should be no confusion between identifiers for Web documents and identifiers for
other resources. URIs are meant to identify only one of them, so one URI can't stand for
both a Web document and a real-world object.

In short, the dilemma is: how do you distinguish between URIs for information resources that
should​ return one or more representations and URIs for non-information resources that ​must not
return any representations—yet ​should​ still be able to be dereferenced to discover other URIs
for associated information resources. 2

1 “Cool URIs for the Semantic Web”: ​https://www.w3.org/TR/cooluris/
2 In Semantic Web architecture this is known as the ​HTTP Range 14​ problem.

https://www.w3.org/TR/cooluris/
https://en.wikipedia.org/wiki/HTTPRange-14

The answer the W3C Technical Architecture Board (TAB) arrived at for this dilemma can be
summarized as follows: 3

1. A URI always identifies one resource and only one resource—no matter whether it is an
information resource or a non-information resource.

2. If the resource is an information resource, the URI can be used to directly retrieve
representations of the resource.

3. If the resource is a non-information resource, the URI identifying it must not return any
representations of the resource. However it should be possible to use that URI to
discover other URIs that identify ​associated​ information resources. Those information
resources can return ​descriptions​ of the non-information resource.

4. This mapping between the URI identifying the non-information resource and other URIs
identifying associated information resources can be accomplished in one of two ways:

a. The URI for the non-information resource can be constructed by adding a
URI fragment to an information resource URI.​ In this case, only the
information resource URI can be used to retrieve a description of the
non-information resource. The W3C TAB calls this option “hash URIs”.

b. An HTTP server can be programmed to provide a HTTP 303 ​seeOther
response code in response to a request for the non-information resource
URI​. This 303 response code can provide a reference to an associated
information resource URI. The W3C TAB calls this option “303 URIs”.

While both of these solutions work, the Semantic Web community has never been entirely
happy with either. In the first case, some information resources use URI fragments to identify
other information resources, so you cannot assume that all URIs ending in fragments identify
non-information resources. In the second case, requiring an HTTP request to determine the
semantic status of a URI generates extra web traffic, and in some cases URIs identifying
non-information resources simply do not have an associated web server.

3 “Cool URIs for the Semantic Web”: ​https://www.w3.org/TR/cooluris/

https://www.w3.org/TR/cooluris/

How DID architecture addresses this challenge
DIDs offer a different solution to this dilemma. Here’s how it works.

First, by definition, ​the DID subject identified by a DID is always a non-information
resource​. Even if the DID refers to a web page, for example, the DID itself does not refer to the
URL of the web page that can be dereferenced at a particular point in time (“the weather in
Seattle today”), but rather to the abstract concept of what that web page represents, (e.g., “the
Seattle weather page”). Thus DIDs are by definition ​abstract identifiers​ and DID subjects enable
abstract identification​ of any kind of resource—information or non-information.

Secondly, because the DID subject is by definition a non-information resource, the DID
resolution function returns ​a description of the DID subject in the form of a DID document​.
As described in the W3C’s ​Cool URIs for the Semantic Web​, this DID document is never
considered a ​representation​ of the DID subject because a non-information resource does not
have any direct representation, only descriptions. This is illustrated in Figure 1 below.

Figure 1: A DID identifies a DID subject as a non-information resource; it resolves to a DID
document that describes this non-information resource

So now the question becomes: what is the nature of the resource for which the DID subject is
an abstraction? There are two cases:

1. CASE 1: The DID subject is an abstraction of a non-information resource.​ This
means the DID is an abstract identifier for a person, organization, or anything else that is
NOT inherently a digital object and does NOT live on a digital network.

2. CASE 2: The DID subject is an abstraction of an information resource.​ This means

https://www.w3.org/TR/cooluris/

the DID is an abstract identifier for a web page, file, image, video, audio clip, or any other
data structure that can be “on” the World Wide Web.

In both these cases, the DID document can ​point to other information resources that further
describe the DID subject.​ But how this is accomplished depends on whether it is Case 1 or
Case 2.

CASE 1: Describing non-information resources with the ​service​ or
seeOther​ properties
As explained above, the W3C recommends that the URI for a non-information resource should
not return a representation because that would confuse it with an information resource. A
non-information resource can only be ​described​ by an information resource. DID abstract
identification architecture ​standardizes this description in the form of a DID document​.

In this way, DID architecture already fulfills this recommendation from the W3C: 4

Given only a URI, machines and people should be able to retrieve a description about
the resource identified by the URI from the Web. Such a look-up mechanism is important
to establish shared understanding of what a URI identifies. Machines should get RDF
data and humans should get a readable representation, such as HTML. The standard
Web transfer protocol, HTTP, should be used.

In a DID document, a DID controller has two options for how to describe an information
resource associated with DID subject that is an abstraction of a non-information resource:

1. Use the ​seeOther ​ property to describe how to access other information about the DID
subject. See the example below.

2. Use the ​service ​ property to describe how to interact with the DID subject. See section
___ of DID Core.

An example of the ​seeOther ​ property is shown in this JSON-LD representation of a DID
document:

{

 "@context": "https://www.w3.org/ns/did/v1",

 "id": "did:example:123456789abcdefghi",

 "seeOther": [

 "https://example.com/some/other/description.html",

 "https://example.com/some/other/description.rdf"

]

}

4 “Cool URIs for the Semantic Web”: ​https://www.w3.org/TR/cooluris/​. Note that, although it is not strictly
required that a DID document use an RDF-based representation such as JSON-LD, it certainly can use
that format to meet the letter of this W3C recommendation.

https://www.w3.org/TR/cooluris/

The use of the ​seeOther ​ property is visually illustrated in Figure 2:

Figure 2: A DID document using a seeOther property to reference an information resource
further describing a DID subject as a non-information resource

CASE 2: Describing information resources with the ​representation
property
The key difference between non-information resources and information resources is that ​only
the latter can directly return representations​. So if a DID subject is an abstraction of an
information resource, the DID controller can use the ​representation ​ property of a DID
document to precisely map the DID to URIs for representations of the information resource.

There are two options for doing this—one by value and one by reference. This JSON-LD
provides an example of both:

{

 "@context": "https://www.w3.org/ns/did/v1",

 "id": "did:example:123456789abcdefghi",

 "representation": [{

 ​// used to contain a representation by value
 "id": "did:example:123456789abcdefghi#rep-1",

 "media-type": "application/json",

 "value": "some-json-structure-here"

 },

 {

 ​// used to point to a representation by reference
 "id": "did:example:123456789abcdefghi#rep-2",

 "seeAlso": "http://example.com/example"

 }]

}

Both options use the ​id ​ subproperty to uniquely identify an instance of the ​representation
property within the DID document using a DID fragment. This enables a unique DID URL to
identify a representation of the resource.

The first option is to use the ​value ​ subproperty to map a DID URL directly to a representation
embedded in the DID document itself​. From an RDF graph perspective, this corresponds to the
following two RDF statements—the first one asserting the DID URL and the second one
asserting the ​rdf:value ​ of the representation: 5

<DID> <did:representation> <DID URL>

<DID URL> <rdf:value> ...value...

While the DID identifies a non-information resource, the DID URL identifies an information
resource ​bound to the non-information resource via the DID document​. The DID ​resolves​ to
a ​description​ of the non-information resource—the DID document. The DID URL ​dereferences
to a ​representation​ of the information resource—the value of the ​value ​ property directly
contained inside the DID document. This is shown in Figure 3 (using JSON):

5 See ​https://www.w3.org/TR/rdf-schema/#ch_value

https://www.w3.org/TR/rdf-schema/#ch_value

Figure 3: A DID document containing a representation of the DID subject as an information
resource

The second option is to use the ​seeAlso ​ property under the ​representation ​ property to
map a DID URL to a URI identifying a representation of the information resource external to the
DID document. From an RDF graph perspective, this corresponds to the following two RDF
statements—the first one asserting the DID URL and the second one asserting that the DID
URL maps to another URI using the ​rdfs:seeAlso ​ property: 6

<DID> <did:representation> <DID URL>

<DID URL> <rdfs:seeAlso> <URI>

In this case, the DID identifies the non-information resource, and both the DID URL and the
seeAlso ​ URI identify information resources ​bound to the non-information resource via the
DID document​ . As always, the DID dereferences to a ​description​ of the non-information
resource—the DID document. The DID URL dereferences to the value of the ​seeAlso
property, which must be a URI. This effectively serves as a “logical redirect” to the URI for the
information resource which in turn dereferences to a representation as shown in Figure 4:

Figure 4: A DID document referencing a external representation of the DID subject as an
information resource

6 See ​https://www.w3.org/TR/rdf-schema/#ch_seealso

https://www.w3.org/TR/rdf-schema/#ch_seealso

Note that the values of both the ​seeOther ​ property in Figure 2 and the ​seeAlso ​ property in
Figure 4 are URIs. The difference is the meaning of these URIs from a Semantic Web
standpoint:

● With ​seeOther ​, the URI is ​an identifier for another information resource that
describes the non-information resource​ abstractly identified by the DID.

● With ​seeAlso ​, the URI is ​an identifier for an information resource​ abstractly
identified by the DID.

It follows that a DID document should only include a ​representation ​ property if the DID
abstractly identifies an information resource, and it should only include a ​seeOther ​ property if
the DID abstractly identifies a non-information resource, ​but never both​. If a DID document
contains ​neither​ property is it indeterminate whether the DID abstractly identifies an information
resource or a non-information resource.

Example use cases
Here are two examples to illustrate the real-world value of being able to unambiguously
distinguish between information and non-information resources.

The first example is a web page about an author. This web page is identified with a standard
HTTP URL. From the Semantic Web standpoint, this URL identifies exactly one information
resource—a page of a website. The URL can be dereferenced to retrieve a representation of
that resource—the current version of the web page. No dilemma here.

Now, if the same web home page is identified with a DID, it adds a layer of indirection. This is
the whole purpose of abstract identification—the DID ​abstractly​ identifies the web page. As
described above, it is easy for the associated DID document to reference the current URL for
the web page—concrete identification—using the ​seeAlso ​ property. The abstract DID is bound
via the DID document to the concrete URL.

One benefit of this layer of abstraction is that ​the DID never needs to change​ even if the URL for
the web page changes. DIDs effectively function as URNs (Uniform Resource
Names)—persistent identifiers for information resources whose network location can change
over time. 7

Now let’s take a second example—this time of a non-information resource: the author of the
web page. Let’s say she wants to create a URI to identify herself as the author in an RDF
document describing the website. If the author used the URL of her web page, she runs into the
Semantic Web dilemma: does the URL identify the web page as an information resource or the
author as a non-information resource?

7 ​https://tools.ietf.org/html/rfc8141

https://tools.ietf.org/html/rfc8141

However if the author creates a DID as an abstract identifier for herself as a non-information
resource, that DID will not be confused with either the URL for the web page or the DID for the
web page. As explained above, the abstract DID for the author can resolve to a DID document
that can reference the concrete URL for the author’s web page (an information resource) using
the ​seeOther ​ property.

The result is a clean separation: a DID that abstractly identifies—and a DID document that
describes—the author as a non-information resource, and a URL that concretely identifies a
web page as an associated information resource also describing the author. Even better, the
concrete URL for the web page can be discovered from the abstract DID. (If helpful, the author’s
DID can also be discovered from the web page if the author publishes it there—although for
security reasons this DID should be dereferenced to verify that its DID document also a
seeOther ​ with the URL of the web page.)

This separation becomes even stronger if the author also has a DID for her web page. Now the
author can use the first DID to identify herself as a person and the second DID to identify her
web page. Both of these DIDs are permanent, semantically distinct, cryptographically verifiable,
and under her personal control for as long as she wants them.

Appendix B: DID Controllers and DID
Subjects
The relationship between DID controllers and DID subjects can be confusing. The W3C DID
Working Group has found it helpful to classify DID subjects into two disjoint sets based on their
relationship to the DID controller.

Set 1: The DID subject is the DID controller
The first set, shown in Figure 1, is the common scenario where the DID subject is also the DID
controller. This is the case when an individual or organization creates a DID to self-identify.

Figure 1: The DID subject is the same entity as the DID controller

From a graph model perspective, even though the nodes identified as the DID controller and
DID subject in Figure 1 are distinct, there is a logical arc connecting them to express a semantic
equivalence relationship (in RDF/OWL, this is expressed using the ​owl:sameAs ​ predicate​).

Set 2: The DID subject is ​not​ the DID controller
In the second case, shown in Figure 2, the DID subject is a separate entity from the DID
controller. This would be the case when, for example, a parent creates a DID for a child; a

https://www.w3.org/TR/owl-ref/#sameAs-def
https://www.w3.org/TR/owl-ref/#sameAs-def

corporation creates a DID for a subsidiary; or a manufacturer creates a DID for a product, an IoT
device, or a digital file.

Figure 2: The DID subject is a separate entity from the DID controller

From a graph model perspective, the only difference between Figure 1 and Figure 2 is that in
the latter there is no ​owl:sameAs ​ arc connecting the DID subject and DID controller nodes.

Also note that, as explained in Appendix A, the DID document is always a ​description​ and never
a ​representation​ of the DID subject, no matter whether the DID subject is or is not the DID
controller.

Appendix C: Multiple DID Controllers
In both cases described in Appendix B, a DID document may have more than one DID
controller. In this situation there are three logical options available to the DID controllers.

Option #1: Independent DID Controllers
In the first option, all the DID controllers may all act separately, i.e., each of them has full power
to update the DID document. In this configuration (shown in Figure 1):

● Each additional DID controller is another distinct graph node.
● The same arc (“controls”) exists between each DID controller and the DID document.

Figure 1: Multiple independent DID controllers who can each act independently

Option #2: Aggregate DID Controllers
In this option, all of the DID controllers must act together, such as when using a cryptographic
multisig algorithm. This case is functionally identical to a single DID controller as all the DID
controller nodes collapse into the DID controller node as shown in Figure 2:

Figure 2: Multiple DID controllers who must all act together as a single aggregate DID controller

Option #3: Partial Aggregate DID Controllers
In this option, some subset of the DID controllers must act together, such as when using an
m-of-n cryptographic signature algorithm. This is a variant of option two where only a subset of
the DID controller nodes are needed to collapse into the DID controller node. This is shown as
dotted “control” arcs in Figure 3:

Figure 3: Multiple DID controllers who must act in some combination as a single DID controller

Notes:

1. These DID controller options can be further nested in any combination.
2. In all three of these configurations, ​only one DID controller​ may be the target of an

RDF/OWL ​sameAs ​ arc from the DID subject as shown in Figure 1 of Appendix B.

