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Introduction 
Duo Labs believes that CTAP2 should support a network-based transport. This would allow 
users to connect to mobile authenticator devices (such as smartphones) via the local network 
or the public internet. 
 
Bluetooth is the only currently available transport that would allow a user to use their mobile 
device as an authenticator (barring physical connections like USB). Many desktop computers 
do not have Bluetooth, and not all laptops support Bluetooth Low Energy. Mobile devices also 
often have reason to turn off or disable bluetooth. 
 
To increase adoption of FIDO2 authentication, we should endeavour to make it possible for all 
customers to fit FIDO2 into their existing deployments. A network-based transport would 
remove the reliance on Bluetooth and allow many more enterprises to deploy FIDO2 
authentication without purchasing extra hardware. 

Summary 
Duo Labs proposes: 
 

● An HTTPS-based transport, built on top of caBLE, that allows for communication with 
an authenticator over the public internet 

● An mDNS extension to the caBLE pairing protocol allowing client-authenticator pairing 
between devices on the same network, without relying on Bluetooth 

 
Communications over the public internet would be mediated by a relay server that can securely 
broker communications between the client and the mobile device acting as an authenticator. 

caBLE 
Google’s proposal, ​caBLE v2​ (which we will refer to as caBLE), is a mechanism that allows 
binding between a client and authenticator. A detailed description of caBLE v2 can be found in 
the appendix. Unlike the BLE transport, caBLE uses application-layer cryptographic binding. 
This allows users to sidestep the issues in the Bluetooth pairing process, and lets clients (such 
as Google Chrome) synchronize pairing data between multiple machines. 
 
caBLE’s pairing and communications design currently works over BLE, but the 
application-layer components are agnostic to the Bluetooth transport. The same pairing 
process, ​Noise​ handshake, and resultant Noise channel can all be implemented on top of 
HTTPS. 
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Security Considerations 
We think of two stages: “pairing” and “post-pairing.” The pairing stage has certain phishing 
resistance requirements that are partially addressed by a proximal communication mechanism 
like BLE or local network communication, whereas post-pairing communications do not require 
the same proximity guarantees. 
 

Proximity 

Once a pairing between authenticator and client is established, a cryptographic binding 
between the two devices is created, and the contents of their communications are secure from 
eavesdropping and modification. As a result, an attacker would have to convince the user to 
pair the authenticator with a malicious client in order to interfere. caBLE relies on BLE’s implicit 
assurance of proximity to prevent remote attackers from pairing with a local device, instilling 
significant confidence that the user is pairing their authenticator with the intended device (i.e. 
their personal computer). A QR code is used to share out-of-band secrets to bootstrap an 
authenticator-client pairing. 
 
Although pairing secrets are shared via the visual channel, if an attacker can phish the user by 
displaying a webpage that mimics the browser chrome (i.e. non-web content), the attacker may 
be able to convince the user to pair their mobile device with a malicious client. This is currently 
addressed in caBLE by the use of BLE: because the pairing happens over a range-limited 
channel, an attacker would also need control of Bluetooth hardware in proximity to the victim 
for the malicious pairing to succeed. 
 
In a local-network scenario, two devices connected to the same local network obtain similar 
proximity assurances. mDNS traffic uses an address in the ​multicast local network control block 
(224.0.0/24), which is unroutable. Just as an attacker would need control of Bluetooth hardware 
in proximity to the victim in the BLE medium, so too would the attacker need control of a device 
on the local network for the malicious pairing to succeed. This similarly increases the difficulty 
for remote attackers to phish the pairing process. 
 
Proximity provides some assurance of user intention during the pairing process, but does not 
provide any meaningful benefit once a secure channel has been established. We suggest that 
pairing could be completed over BLE or the local network, with future, post-pairing 
communications occurring over the local network or even the public Internet. 
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Protocol Options 
We separate our local-network proposals into ​pairing​ and ​post-pairing​ stages. The security 
properties provided to us by authenticator-client proximity are only relevant to the pairing stage. 
We expect that a client that implements the network transport will implement some subset of the 
possible options for each stage. 
 

Pairing 

caBLE Standard BLE 
 
This is the BLE pairing mechanism outlined in the caBLE v2 PR and described in the appendix 
of this document. If you are unfamiliar with the caBLE v2 PR, we recommend you jump to the 
appendix for context, as the following mDNS proposal is very similar. 
 
caBLE Pairing via mDNS  

In circumstances where BLE is unavailable or undesired, supporting connectivity over an 
alternate medium for the pairing process can provide additional options. 
 
The core problem we address with mDNS is allowing the client and authenticator to discover 
each other based on the generated EID. It's important to note that our goal is simply to solve 
the discoverability problem. We anticipate that the actual handshake will take place via direct 
communication over the network using Noise, similar to what the existing caBLE proposal 
dictates. 
 
Before discussing the proposed solution, it's also important to give some background on 
alternative solutions that might be closer to how caBLE v2 works today, showing why these 
won't work over mDNS: 
 
With BLE, the authenticator can beacon arbitrarily to advertise its availability for connectivity. 
With mDNS, this works slightly differently. When an mDNS service is registered, the device 
may send an unsolicited Response message to the network, claiming a particular service 
name. However, ​RFC 6762​ places strict limits on how many such announcements may be sent. 
Once the service has been announced, the authenticator must wait for the client to send a 
query message before sending another response message to the network. Consequently, the 
client must initiate any connections for already-paired devices. This may be an advantage over 
BLE in certain cases, since the FIDO2 flow begins with the client, so the authenticator does not 
have to be open in the foreground, beaconing periodically. 
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The client must start a connection by querying the network for the authenticator, but 
unfortunately cannot query for a particular authenticator via the EID since it is known to only 
one party when it is generated. In the existing caBLE v2 specification, the authenticator is 
responsible for generating the EID. If the client were responsible for generating the EID and 
embedding it into the query (for instance, ​<eid>._fido_c1._udp.local​), the authenticator 
would need to perform trial decryption on all such queries and respond to any that it 
recognizes as corresponding to a known pairing. On mobile platforms such as ​Android​, 
applications may only register services using pre-known service names, which precludes this 
approach.  
 
Instead, we propose the following flow which will enable clients and authenticators to discover 
each other. We will cover certain portions in detail: 
 

● The user initiates pairing on the client device 
● The authenticator scans a QR code presented by the client (browser) 
● With information gathered from the QR code, the authenticator creates an EID and 

registers an mDNS service at ​<EID>._fido_c1.udp.local 
○ This registration should initiate an announcement of the registered service via 

mDNS, potentially bypassing the need for the client to send an mDNS PTR 
request 

○ Should it be needed, the client sends an mDNS PTR request for 
_fido_c1._udp.local​, to which all authenticators on the network are 
expected to respond 

○ The authenticator sees this query, and returns a response containing a SRV 
record with the hostname (​<EID>._fido_c1.udp.local​) and port to which 
the Noise handshake should occur, as well as a TXT record that includes 
optional metadata 

● The client, using information from the SRV response, initiates a handshake with the 
authenticator over the network 

○ In the PairingData transmitted in the last step of the handshake, permanent 
pairing information (i.e. FQDN and port of a network relay) may be included 

● CTAP2 is spoken over the channel established by the handshake. 
 
Discovery via mDNS 
 
In order for the client to discover the authenticator on the LAN after initiating the pairing, the 
client begins to make DNS PTR requests for ​_fido_c1._udp.local​. 
 
After the authenticator generates the EID, it will register the service 
<EID>._fido_c1._udp.local​ and begin listening for mDNS queries. Upon observing a 
query for ​_fido_c1._udp.local​, the authenticator will create a response with the following 
structure: 
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<EID>._fido_c1._udp.local 
 
SRV: 
    hostname 
    port 
TXT: 
    possible metadata 

 
 
The client will process each observed response, attempting to decrypt the observed EID's until 
it records a plaintext ending in the expected 8 zero bytes. 
 
Establishing the Handshake 
 
Upon receipt of a DNS response containing a valid EID, the client will inspect the embedded 
SRV and TXT answers. The SRV record provides a hostname (or IP address) and port the client 
can use to establish a Noise handshake over TCP. 
 
Due to the difficulties of holding a listening socket open in perpetuity on the mobile device, we 
instead propose ultimately enabling the mobile authenticator to receive a new 
registration/assertion flow via mobile push. This is typically done via a message broker that 
coordinates with the Firebase Cloud Messenger (FCM) or Apple Push Notification (APN) service 
to deliver a push notification to the mobile device. 
 
To make this possible, the authenticator may specify an external FQDN and port in the 
PairingData (allowing the client to reach a network relay) and a network identifier (to allow the 
message broker to forward messages to the correct authenticator). In this case, the client 
knows that the information provided in the PairingData is permanent, and an mDNS discovery 
flow is not needed for future registrations/assertions. 
 
If permanent pairing data is provided, the post-pairing HTTPS protocol is used. 
 

Post-pairing 

HTTPS 
 
The client (Chrome) establishes a channel with an authenticator by connecting to the network 
relay: 
 
POST /advertise 

Headers: 
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    X-Cable-Network-ID: <base64(network_id)> 

Body: 

    <base64(eid)> 

Response: 

    channel_id 

 
Now, with the channel ID received, the client communicates with the authenticator in 
request-response format, with the network relay brokering messages to/from the mobile device: 
 
POST /communicate 

Headers: 

    X-Cable-Channel-ID: <base64(channel_id)> 

Body: 

    <base64(noise(ctap2))> 

Response: 

    <base64(noise(ctap2))> 

 
The network ID in question is a global identifier that we suggest using for routing purposes, 
since a network relay server is likely to host multiple authenticators. This isn't a perfect solution 
in that it breaks the non-identifiability of the EID broadcasts, but our assumption is that the 
network relay needs to be sufficiently trusted to route requests to the correct authenticator 
anyway.  

6 



 

Appendix 
 

How does caBLE v2 work? 

In the existing caBLE v2 proposal, there are two steps required for an authenticator (e.g. 
mobile device) and a client (e.g. Chrome) to communicate: pairing and handshake. A pairing 
can be temporary or permanent. You may want a temporary pairing if you are using your 
smartphone as an authenticator with a public kiosk, whereas a permanent pairing makes sense 
for a personal machine. 
 
The outline of the flow is as follows, and we will dig into each step: 
 

● The user initiates a pairing on the client device (by clicking a “pair new device” button 
or similar) 

● The authenticator scans a QR code 
● With information gathered from the QR code, the authenticator broadcasts (via BLE) an 

advertisement that the client can recognize 
● The client, using information from the authenticator advertisement, initiates a 

handshake with the authenticator 
● The authenticator optionally provides permanent pairing information in the last step of 

the handshake 
● CTAP2 is spoken over the channel established by the handshake. 

 
Let’s dive into the specifics of how this flow works. 
 
Pairing 
 

● The client generates a 16-byte random QR secret, encodes it as the URI 
fido://c1/<Base64(QR secret)>​, and displays the QR code 

● The authenticator scans the QR code and retrieves the QR secret 
 
Both parties are now able to calculate two keys: the EID generating key and the PSK generating 
key. The EID generating key is used to generate ephemeral IDs that the client will use to 
recognize the authenticator. The PSK generating key is used to generate PSKs that will be used 
to secure the handshake between client and authenticator. 
 
PSK generating key = 

HKDF-SHA256(ikm = QR secret, salt = nil, info = “caBLE QR to PSK 
generator key”) 
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EID generating key = 
HKDF-SHA256(ikm = QR secret, salt = nil, info = “caBLE QR to EID 

generator key”) 
 
The authenticator is now ready to advertise. It does so by generating a handshake nonce of 8 
random bytes. An ephemeral ID is the result of encrypting the handshake nonce with the EID 
generating key. 
 
ephemeral ID = 

AES-256(key = EID generating key, plaintext = handshake nonce ++ 
eight zero bytes) 
 
The authenticator then uses BLE GATT (which we won’t delve into) to beacon out the 
ephemeral ID. To an observer, this ephemeral ID looks randomly generated. The client that is 
waiting to pair with an authenticator can await these beacons and ​attempt to decrypt the 
ephemeral ID​. If the ephemeral ID, decrypted with the EID generating key, results in a value that 
ends in eight zero bytes, we know we have found an authenticator that scanned the client’s QR 
code. 
 
The first eight bytes of the decrypted value are the handshake nonce. The nonce is then used to 
generate the PSK, along with the PSK generating key: 
 
PSK = 

HKDF-SHA256(ikm = PSK generating key, salt = handshake nonce, 
info = nil) 
 
Now, the client initiates a ​Noise handshake​ with the authenticator, following the ​NNpsk0​ pattern. 
The inputs to this initial handshake are the PSK generated above and the prologue string 
“caBLE QR code handshake”​. 
 
If the pairing is to be a permanent pairing, the authenticator transmits a payload alongside its 
final handshake message, which is a CBOR structure: 
 
PairingData = { 
  1 => bstr   ; EID generating key; 32-bytes 
  2 => bstr   ; PSK generating key; 32-bytes 
  3 => bstr   ; authenticator identity; 65-bytes; X9.62 encoded P-256 
point 
  4 => string ; authenticator's suggested name 
} 
 
These new EID generating keys and PSK generating keys are ​not​ the same keys as previously 
calculated. Instead, they are global to the authenticator. The authenticator uses global keys to 
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avoid having to maintain state and, in the future, transmit beacons for every pairing it has. This 
results in the limitation that the authenticator cannot revoke individual pairings, and must reset 
its global keys and invalidate all pairings if it wishes to remove one. 
 
Post-pairing Handshake 
 
If a pairing was previously established, a similar handshake can be conducted. No QR code is 
scanned. When the authenticator app is opened on the mobile device, the authenticator again 
starts beaconing an ephemeral ID. Again, the ephemeral ID is: 
 
ephemeral ID = 

AES-256(key = EID generating key, plaintext = handshake nonce ++ 
eight zero bytes) 
 
The EID generating key used here is the global key transmitted in the PairingData payload 
above. The handshake nonce is again eight random bytes. 
 
The client listens for beacons, and performs ​trial decryption​ on each beacon it sees, using each 
EID generating key it knows (one per pairing). Once it finds eight zero bytes as a payload suffix, 
it can again calculate a PSK: 
 
PSK = 

HKDF-SHA256(ikm = PSK generating key, salt = handshake nonce, 
info = nil) 
 
The client uses this PSK, the prologue string ​“caBLE handshake”​, and the authenticator 
identity from the PairingData as input to the ​NKpsk0​ Noise handshake. 
 
Limitations 
 

● As mentioned above, the EID and PSK generating keys are global to an authenticator, 
so individual pairings cannot be revoked 

● The authenticator must initiate the handshake process by beaconing. The caBLE v2 PR 
comments that the client could initiate the handshake by choosing a handshake nonce 
and beaconing in a similar fashion, with a different suffix pattern (say, eight bytes of 
0x01). This is not supported by caBLE v2 at the moment because the BLE stacks of 
clients are not sufficiently well-behaved to support this across platforms. 

 
Perhaps the largest limitation of this scheme is that it relies on BLE. This is by design, but we 
can already see that some limitations (such as the authenticator-led handshake process) are 
caused by BLE. An mDNS channel for caBLE v2 messages may alleviate some of these issues 
while retaining the proximity requirements that led to BLE’s use. 
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