
1

Ensuring the Authenticity and Fidelity of

Camera data

Date 2021-03-03

Author(s) huazhe.thz@antgroup.com, jianxu.zjx@antgroup.com, jingwei.yang@antgroup.com

, jushi.zf@antgroup.com

Status EXTERNALLY PUBLISHED

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

2

Mobile devices, which users habitually carry along, have become the main data gateway for the

majority of the online services. Cameras, microphones, accelerometers, and more recently,

fingerprint scanners, are already commonplace on these devices. At the same time, modern

identification techniques ask users to scan their ID documentation or do face verification

authentication in order to be verified by an online service. Such techniques request from

users to capture a photo through the camera of their mobile device. Data authenticity and

fidelity is crucial for user identification techniques. Therefore, it is vital to address feasible

attacks.

Here we will concentrate on one such attack — the injection attack. Such attacks are easy to

perform, devastatingly successful, and represent a significant barrier to the widespread

deployment of authentication systems that use consumer smart devices in web scenario.

Instead of attacking the system in front of the capture device (e.g., the webcam on a smart

device), the injection attack operates by copying a digital representation of a real biometric

signal, and then injecting it into the system at some later date and/or different location. Since

the copied signal is bit-for-bit an exact replica of a legitimate signal, it can completely

bypass the security checks, such as liveness and anti-spoofing.

Injection attacks succeed if the system does not protect the digital information captured by

the camera sensor. That protection must ensure obtaining the digital signal live from the

actual device, and providing that signal to the decision process intact. Compromise initially

may involve copying the data. During the attack, the attacker fraudulently replaces the data

with false data. The attacker obtains this false data by either carefully constructing it or using

previously captured data (perhaps from a different device). Even if the attack does not target

the original (or derived) signal, the extracted feature template may also be subject to injection

attacks. To use signals captured by these uncontrolled smart devices successfully in an

authentication system, the system must validate the source of that signal and preserve the

integrity of any data.

In the scenario of using a webcam on a smart device, the webcam does not currently possess

any intelligent capabilities to defeat injection attacks. The communication path from the

camera to the remote server is generally not protected, allowing the original stream to be

intercepted or modified prior to any additional security (such as authentication meta-data)

being added.

To address this vulnerability, what is required is a data integrity and timeliness test. The

digital data must be tested to confirm that the capture occurred at the time the authentication

Introduction

Threat Model

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

3

system expected it to be (i.e., now), that it came from the expected device, and that it has not

been tampered with.

Figure 1. video injection to bypass liveness detection

Add pre and post middleware hooks to webrtc methods to form a complete video injection

attack device

Using the above device, we can disguise the HDMI output of a PC as a video stream

captured by native camera

Figure 2. Software-level Video Injection Workflow

Using a chip to make a hardware module that can converts HDMI stream to MIPI CSI

 stream

Connecting the above module to an Android development board to form a complete video

 injection attack device

Using the above device, we can disguise the HDMI output of a PC as a video stream

captured by native camera

Software-level Video Injection Example

Hardware-level Video Injection Example

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

4

Figure 3. Hardware-level Video Injection Workflow

One of the most important goal is the ability of the remote service to verify the authenticity of

the received data. In our proposal, remote image attestation utilizes a modified Webauthn

protocol to facilitate a public-key signatures between the client and the server, means that

you have the private key and you share a public key with the verifier of the signature. When a

photo has been captured, it computes and signs the hash of the photo with the private key.

When the user submits the photo, the server computes the hash of the photo with the same

hash function as the client side and using the public key for the corresponding user verifies

that the signed hash matches the hash of the received photo. If this is successful, then the

uploaded photo has not been tampered with, otherwise it is potentially dangerous to trust the

client with camera data.

Figure 4. Photo authenticity and fidelity protection model

Using the Remote Image Attestation flow, a browser can attest to a remote entity that it is

trusted, and establish an authenticated communication channel with that entity. As part of

attestation, the browser proves the following:

Its website identity

That uploaded data has not been tampered with

That it is running on a genuine platform with Image Attest Service enabled

That it is running at the latest security level, also referred to as the Trusted Computing

Base (TCB) level

Our Proposal

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

5

Figure 5. Remote Photo Attestation at a glance

This proposal defines the procedure enabling the creation and use of attested, scoped, public

key-based webcam photo by web applications, for the purpose of ensuring the authenticity

and fidelity of captured Photos. A public key credential is created and stored by a local image

attest service at the behest of a Relying Party, subject to user consent. Subsequently, the

public key credential can only be accessed by origins belonging to that Relying Party. This

scoping is enforced jointly by conforming web browser and local image attest service. Some

modifications of webauthn are proposed here to make it suitable to protect against any type

of injection attack. Here we propose an alternatives to webauthn or webauthn variants to

attain this objective.

Here is the comparison among Credentials Management API, WebAuthentication API and Image

Attest API.

Credentials Management API WebAuthentication API Image Attest API

navigator.credentials.store navigator.credentials.create navigator.credentials.create

navigator.credentials.get navigator.credentials.get navigator.credentials

.generateImageAssertion

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

6

Image Attest API is actually an extension to WebAuthentication API. In the nutshell it is an

interface to talk to media service. You give it a challenge. You get media assertion back.

In order to understand how remote image attestation works, it is important to understand that

they sit between two components that are outside the browser:

Server - It is intended to register new credentials on a server (also referred to as a service or

a relying party) and later use those same credentials on that same server to authenticate a

user.

Image attest - the credentials are created and stored in a device called a image attest

service, when a photo has been captured, it computes and signs the hash of the photo with

the private key.

As webauthn specification, a registration process has six steps, as illustrated in Figure 6 and

described further below. This is a simplification of the data required for the registration

process that is only intended to provide an overview.

Figure 6. a diagram showing the sequence of actions for a Image Authenticity Attest

registration and the essential data associated with each action.

The registration steps are:

0. Application Requests Registration - The application makes the initial registration request.

The protocol and format of this request is outside of the scope.

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

7

1. Server Sends Challenge and Relying Party Info - The server sends a challenge and relying

party information to the JavaScript program.

2. Browser Calls on Image attest service - Internally, the browser will validate the parameters

and fill in any defaults. One of the most important parameters is the origin, which is

recorded as part of the clientData so that the origin can be verified by the server later.

3. Image attest service Creates New Key Pair and Attestation - Before doing anything, the

authenticator will typically ask for some form of user verification to prove that the user is

present and consenting to the registration. After the user verification, the authenticator will

create a new asymmetric key pair and safely store the private key for future reference. The

public key will become part of the attestation, which the authenticator will sign over with a

private key that was burned into the secure environment during its manufacturing process

and that has a certificate chain that can be validated back to a root of trust.

4. Image attest service Returns Data to Browser - The new public key, a globally unique

credential id, and other attestation data are returned to the browser where they become the

attestationObject.

5. Browser Creates Final Data, Application sends response to Server - The

PublicKeyCredential is sent back to the server using any desired formatting and protocol.

6. Server Validates and Finalizes Registration - Finally, the server is required to perform a

series of checks to ensure that the registration was complete and not tampered with. These

include:

a. Verifying that the challenge is the same as the challenge that was sent

b. Ensuring that the origin was the origin expected

c. Validating that the signature over the clientDataHash and the attestation using the

certificate chain for that specific secure environment

After a user has registered with webauthn, they can subsequently capture photo with the

service. The authentication flow looks similar to the registration flow, and the illustration of

actions in Figure 7 may be recognizable as being similar to the illustration of registration

actions in Figure 6.

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

8

Figure 7. similar to Figure 6, a diagram showing the sequence of actions for Image

Authenticity Attest authentication and the essential data associated with each action.

0. Application Requests Authentication - The application makes the initial authentication

request. The protocol and format of this request is outside of the scope.

1. Server Sends Challenge - The server sends a challenge to the JavaScript program.

2. Browser Calls Image attest service - Internally, the browser will validate the parameters

and fill in any defaults. One of the most important parameters is the origin, which recorded

as part of the clientData so that the origin can be verified by the server later.

3. Image attest service Creates an Assertion - The image attest service finds a credential for

this service that matches the Relying Party ID and prompts a user to capture photo.

Assuming both of those steps are successful, the image attest service will create a new

assertion by signing over the clientDataHash and photo data with the private key generated

for this website during the registration call. The assertion signature could be embedded in

the EXIF data of the photo itself.

4. Image attest service Returns Data to Browser - The image attest service returns the

authenticatorData and assertion signature back to the browser.

5. Browser Creates Final Data, Application sends response to Server - It is up to the

JavaScript application to transmit this data back to the server using any protocol and

format of its choice.

6. Server Validates and Finalizes Authentication - Upon receiving the result of the

authentication request, the server performs validation of the response such as:

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

9

a. Using the public key that was stored during the registration request to validate the

signature by the image attest service.

b. Ensuring that the challenge that was signed by the authenticator matches the challenge

that was generated by the server.

c. Checking that the Relying Party ID is the one expected for this service.

In the present situation, injection attacks can be extremely simple in web scenario. In contrast,

the attacker must specifically customise the spoofing attack to target an individual victim.

This makes injection attacks a significant risk, and a barrier to the successful deployment of

enhanced authentication.

We propose camera security in web scenario is engineered to isolate the data received from

the camera and securely sign it, in HW, safeguarding against untrusted applications and

processes. It is designed to empower the remote service with the ability to determine about

the authenticity of the received web image, helping to deliver a protected authentication

method for making payments and conducting safe transactions.

Moreover, The Trusted Web Application will be able to provide authenticity to a remote

service, not only for the captured photos, but also to various sensitive data captured from the

sensors of a device. This can be achieved by slightly modifying our current implementation.

In the existing Image Attest proposal, you adopt Image Attest to check if clients send the

original data captured by the camera sensor to your server. Your website uses the

makeCredential call to create a cryptographic key on device, and then attest to the key’s

validity. This produces an attestation object that your website passes to your server, along

with the corresponding key identifier. Your server verifies the attestation object, and then

extracts the embedded public key and other information. Later, your server uses the key to

verify assertion objects with camera data sent from your website. Once verified, camera data

authenticity and fidelity is maintained. Let’s dive into the specifics of how this flow works.

Conclusion

Appendix

How does Image Attest work?

Check for Availability

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

10

Not all devices can use the Image Attest service, so it’s important to have your website run a

compatibility check before accessing the service. If the website doesn’t pass the compatibility

check, gracefully bypass the service. You check for availability by reading the

isImageAttestAvailable property:

You change the behavior of both your website, as shown above, and your server — which can

no longer require assertions — when you find that the service isn’t supported.

Every time your website needs to communicate attestation data to your server, the website

first asks the server for a unique, one-time challenge. Image Attest integrates this challenge

into the objects that it provides, and that your website sends back to your server for

validation. This makes it harder for an attacker to implement a replay attack.

When asked for a challenge, provide your website with a randomized data value, and remember

the value for use when verifying the corresponding attestation or assertion objects sent by the

client. How you use the challenge data depends on the kind of object that you need to

validate.

For each user account on every device opening your website, generate a unique, hardware-

based, cryptographic key pair by calling the navigator.credentials.create method:

1 // 🆕
2 if(PublicKeyCredential.isImageAttestAvailable()) {
3 // Perform key generation and attestation.
4 }
5 // Continue with server access.

Provide a Challenge

Create a Key Pair

 1 var challenge = <# A string from your server #>
 2
 3 var publicKey = {
 4 'challenge': challenge,
 5
 6 'rp': {
 7 'name': 'Example Inc.'
 8 },
 9
10 'user': {
11 'name': 'the@example.com',

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

11

On success, the method’s completion handler returns attestation response contains credential

info, such as user public key, credential identifier, counter, as well as authenticator info, such

as certificates, signature, aaguid and other information. The device automatically stores the

associated private key in the Secure Enclave or TEE, from where the Image Attest service can

use it to create signatures, but from where no process can ever directly read or modified it,

ensuring its security.

The Image Attest service creates an attestation object composed of authenticator data and an

attestation statement, as specified by the Web Authentication specification. The following

authenticator fields are of particular interest for Image Attest:

RP ID (32 bytes) — A hash of your website’s eTLD.

counter (4 bytes) — The number of times your website used the attested key to sign an

assertion.

aaguid (16 bytes) — An Image Attest–specific constant that indicates whether the

attested key belongs to the different browser environment. Different browser may have

different Image Attest root certificate.

credentialId (32 bytes) — A hash of the public key part of the cryptographic key pair

being attested.

The attestation statement uses a custom Image attestation statement format with the

following syntax:

12 'displayName': 'Theo'
13 },
14
15 'pubKeyCredParams': [
16 { 'type': 'public-key', 'alg': -7 },
17 { 'type': 'public-key', 'alg': -257 }
18]
19 }
20
21 navigator.credentials.create({ 'publicKey': publicKey })
22 .then((newCredentialInfo) => {
23 console.log('SUCCESS', newCredentialInfo)
24 })
25 .catch((error) => {
26 console.log('FAIL', error)
27 })

Verify the Attestation

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

https://www.w3.org/TR/webauthn/#sec-authenticator-data

12

To verify and decode the attestation object, first check that it has the Concise Binary Object

Representation (CBOR) data format with the expected syntax. The decoded object should look

like this:

Use the decoded object, along with the key identifier sent by your website, to perform the

following steps:

1. Verify that the x5c array contains the intermediate and leaf certificates for Image Attest,

starting from the credential certificate stored in the first data buffer in the array

(credcert). Verify the validity of the certificates using browser’s Image Attest root

certificate depend on the authenticator data’s aaguid field.

2. Create clientDataHash as the SHA256 hash of the one-time challenge sent to your

website before performing the attestation, and append that hash to the end of the

authenticator data (authData from the decoded object).

3. Generate a new SHA256 hash of the composite item to create nonce .

4. Obtain the value of the credCert extension with OID 1.2.840.xxxx.xxx.x.x , which is

a DER-encoded ASN.1 sequence. Decode the sequence and extract the single octet string

that it contains. Verify that the string equals nonce .

5. Create the SHA256 hash of the public key in credCert , and verify that it matches the key

identifier from your website.

1 $$attStmtType //= (
2 fmt: "image-attest",
3 attStmt: StmtFormat
4)
5
6 StmtFormat = {
7 x5c: [credCert: bytes, * (caCert: bytes)],
8 }

 1 {
 2 fmt: 'image-attest',
 3 attStmt: {
 4 x5c: [
 5 <Buffer 22 33 42 de ... >,
 6 <Buffer 22 33 52 aa ... >
 7],
 8 },
 9 authData: <Buffer 42 c3 1e 23 ... >
10 }

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

https://tools.ietf.org/html/rfc7049

13

6. Compute the SHA256 hash of your website's eTLD, and verify that this is the same as the

upload data’s RP ID hash.

7. Verify that the authenticator data’s counter field equals 0 .

8. Verify that the authenticator data’s credentialId field is the same as the key identifier.

After successfully completing these steps, you can trust the attestation object.

Store the verified public key from credCert on your server and associate it with the user for

the given website. You’ll use this key to check assertions later. As an added protection against

replay attacks, make sure that the public key isn’t already associated with another user.

After successfully verifying a key’s attestation, your server can require the website to assert

its authenticity for any or all future server requests. The website does this by signing the

request. In the website, first obtain a unique, one-time challenge from the server. You use a

challenge here, like for attestation, to avoid replay attacks. Use challenge from server and the

key identifier that you generated earlier to create an assertion object by calling the

navigator.credentials.generateImageAssertion method:

Store the Public Key

Assert the Authenticity and Fidelity of Captured Photos as Needed

 1 var publicKey = {
 2 challenge: <# A string from your server #>,
 3
 4 allowCredentials: [
 5 { type: "public-key", id: credentialId }
 6]
 7 }
 8
 9 // 🆕
10 navigator.credentials.generateImageAssertion({ 'publicKey': publi

cKey })
11 .then((getAssertionResponse) => {
12 alert('SUCCESSFULLY GOT AN ASSERTION! Open your browser con

sole!')
13 console.log('SUCCESSFULLY GOT AN ASSERTION!', getAssertionR

esponse)
14 })
15 .catch((error) => {
16 alert('Open your browser console!')

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

14

It uses HTML5 getUserMedia to capture photos or videos from user's camera. The camera

data will be passed to assertion statement as a receipt that you can use later to be displayed

in your web page, rendered into a canvas, or submitted to server. On success, you can pass

the completion handler’s assertion object, along with the client data, to the server. If the

assertion object fails verification, it’s up to you to decide how to handle the request.

After successful attestation, your server can require the associated client to accompany server

requests with an assertion object. Each verified assertion reestablishes the authenticity of the

client.

The client creates the assertion by packaging the request as clientData and asking the

Image Attest service to sign the data with the attested private key. Along with the signature,

Image Attest includes a receipt that you can use later to extract the camera data,and a

simplified authenticator data instance in the assertion object, similar to the one in the

attestation object but containing only the first few fields, including RP ID and counter .

After receiving the client data and the assertion, you’ll need to verify and decode the assertion

to ensure it uses the CBOR data format has has the expected contents. The decoded object

should look like this:

To verify the assertion, use the decoded assertion, the client data, and the previously stored

public key, and follow these steps:

1. Compute clientDataHash as the SHA256 hash of clientData .

2. Concatenate authenticatorData , receipt and clientDataHash and apply a SHA256

hash over the result to form nonce .

3. Use the public key that you stored from the attestation object to verify that the assertion’s

signature is valid for nonce .

4. Compute the SHA256 hash of the website’s eTLD, and verify that it matches the RP ID in

the authenticator data.

17 console.log('FAIL', error)
18 })

Verify the Assertion

1 {
2 signature: <Buffer 22 33 42 de ... >,
3 authenticatorData: <Buffer 30 23 43 1d ... >
4 // 🆕
5 receipt: <Buffer 30 80 06 09 ... >
6 }

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

http://dev.w3.org/2011/webrtc/editor/getusermedia.html

15

5. Verify that the authenticator data’s counter value is greater than the value from the

previous assertion, or greater than 0 on the first assertion.

6. Verify that the challenge embedded in the client data matches the earlier challenge to the

client.

When the assertion meets all of these conditions, you can consider the assertion verified.

Store counter for use in step 5 of verifying the next assertion. When assertion succeeds,

independently handle the receipt right away.

Suggested countermeasures to injection attacks are to operate in a controlled environment

and challenge-response operations may limit the widespread adoption. This feature is

available only in secure contexts (HTTPS), in some or all supporting browsers.

Since proposal security depends on security of key, the security that the private key store

has been more important for this purpose. Generally, it should be a hardware-based,

cryptographic key.

The data received from the camera is essentially insecure, requiring browsers to provide

additional restrictions for security purposes, safeguarding against untrusted applications

and processes. To mitigate hardware-layer injection, the browser should add identity

authentication for native camera.

Limitation

E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

16
E6636BC20180234D78A0072836F0B1E012B9B2091D64AB50A1D98636B1C12B2E1B4BBC38F151FB0B22992E08C84638EBFC0921FA91D04BC11BBFC2E479BE20DA241234ADBF20B6A7A4802DD768274BF05B64EA5E702F167028DBA19E378B9C68DDF62B9B2E3

