
Web of Things (WoT)
Scripting API

This version:
https://w3c.github.io/wot-scripting-api/

Latest published version:
https://www.w3.org/TR/wot-scripting-api/

Latest editor's draft:
https://w3c.github.io/wot-scripting-api/

Editors:
Zoltan Kis (Intel)

Daniel Peintner (Siemens AG)

Johannes Hund (Former Editor, when at Siemens AG)

Kazuaki Nimura (Former Editor, at Fujitsu Ltd.)

Repository:
On GitHub

File a bug

Contributors:
Contributors on GitHub

Copyright © 2017-2020 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive

document license rules apply.

The main Web of Things (WoT) concepts are described in the WoT Architecture

document. The Web of Things is made of entities (Things) that can describe their

capabilities in a machine-interpretable Thing Description (TD) and expose these

capabilities through the WoT Interface, that is, network interactions modeled as

Properties (for reading and writing values), Actions (to execute remote procedures

with or without return values) and Events (for signaling notifications).

Scripting is an optional "convenience" building block in WoT and it is typically used

in gateways that are able to run a WoT Runtime and script management, providing a

convenient way to extend WoT support to new types of endpoints and implement

W3C Editor's Draft 23 June 2020

Abstract

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

1 of 75 8/3/20, 6:14 PM

Ege Korkan
Note
Wasn't @relu91 discussed to be a co-editor?

Ege Korkan
Note
The start of the abstract is a bit rough. I think that the first sentence can be simply removed.

Ege Korkan
Insert text
(WoT)

Ege Korkan
Note
Scripting is an optional "convenience" -> I would remove convenience since it said later anyways and makes the text look weak.

Ege Korkan
Insert text
the

Ege Korkan
Note
I think that in addition to gateways, browsers should be also mentioned.

Ege Korkan
Note
Why is the date still old? Weren't there changes since then?

WoT applications such as Thing Directory.

This specification describes a programming interface representing the WoT

Interface that allows scripts to discover, operate Things and to expose locally

defined Things characterized by WoT Interactions specified by a script.

The specification deliberately follows the WoT Thing Description specification

closely. It is possible to implement simpler APIs on top of this API, or implementing

directly the WoT network facing interface (i.e. the WoT Interface).

EDITOR'S NOTE

This specification is implemented at least by the Thingweb project also known as

node-wot, which is considered the reference open source implementation at the

moment. Check its source code, including examples. Other, closed source

implementations have been made by WG member companies and tested against

node-wot in plug-fests.

This section describes the status of this document at the time of its publication.

Other documents may supersede this document. A list of current W3C publications

and the latest revision of this technical report can be found in the W3C technical

reports index at https://www.w3.org/TR/.

Implementers need to be aware that this specification is considered unstable.

Vendors interested in implementing this specification before it eventually reaches

the Candidate Recommendation phase should subscribe to the repository and take

part in the discussions.

EDITOR'S NOTE: The W3C WoT WG is asking for feedback

Please contribute to this draft using the GitHub Issue feature of the WoT

Scripting API repository. For feedback on security and privacy considerations,

please use the WoT Security and Privacy Issues.

This document was published by the Web of Things Working Group as an Editor's

Draft.

Comments regarding this document are welcome. Please send them to public-wot-

Status of This Document

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

2 of 75 8/3/20, 6:14 PM

Ege Korkan
Replace

Ege Korkan
Replace
of

Ege Korkan
Replace

Ege Korkan
Replace
is

Ege Korkan
Note
Not every aspect of the spec is implemented by node-wot. It would be good to show what is and what is not implemented.

Ege Korkan
Note
examples do not point to the examples folder

Ege Korkan
Note
second link can be removed?

Ege Korkan
Note
It would be good to mention Eclipse

Ege Korkan
Note
It is not clear what an implementation is here. Do you mean Scripting API implementations or Things with a TD? I guess the latter but is understood as the former

1.

2.

2.1

2.2

2.3

3.

4.

4.1

4.2

4.3

5.

5.1

5.2

5.3

6.

6.1

6.2

wg@w3.org (archives).

Publication as an Editor's Draft does not imply endorsement by the W3C

Membership. This is a draft document and may be updated, replaced or obsoleted by

other documents at any time. It is inappropriate to cite this document as other than

work in progress.

This document was produced by a group operating under the W3C Patent Policy.

W3C maintains a public list of any patent disclosures made in connection with the

deliverables of the group; that page also includes instructions for disclosing a

patent. An individual who has actual knowledge of a patent which the individual

believes contains Essential Claim(s) must disclose the information in accordance

with section 6 of the W3C Patent Policy.

This document is governed by the 1 March 2019 W3C Process Document.

Introduction

Use Cases

Consuming a Thing

Exposing a Thing

Discovery

Conformance

The ThingDescription type

Fetching a Thing Description

Expanding a Thing Description

Validating a Thing Description

The WOT namespace

The consume() method

The produce() method

The discover() method

Handling interaction data

The InteractionInput type

The InteractionOutput interface

Table of Contents

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

3 of 75 8/3/20, 6:14 PM

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

6.3

6.4

7.

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

8.

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

The value() function

The arrayBuffer() function

The check data schema algorithm

The create interaction data algorithm

The parse interaction response algorithm

Using InteractionInput and InteractionOutput

Error handling

The ConsumedThing interface

Constructing ConsumedThing

The getThingDescription() method

The InteractionOptions dictionary

The PropertyMap type

The readProperty() method

The readMultipleProperties() method

The readAllProperties() method

The writeProperty() method

The writeMultipleProperties() method

The WotListener callback

The observeProperty() method

The unobserveProperty() method

The invokeAction() method

The subscribeEvent() method

The unsubscribeEvent() method

ConsumedThing Examples

The ExposedThing interface

Constructing ExposedThing

Methods inherited from ConsumedThing

The PropertyReadHandler callback

The setPropertyReadHandler() method

Handling requests for reading a Property

Handling requests for reading multiple Poperties

Handling requests for reading all Properties

The setPropertyObserveHandler() method

Handling Property observe requests

The setPropertyUnobserveHandler() method

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

4 of 75 8/3/20, 6:14 PM

8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18

8.19

8.20

8.21

8.22

8.23

8.24

8.25

8.26

8.27

8.28

8.29

8.30

9.

9.1

9.2

9.3

9.4

9.5

9.6

9.7

10.

10.1

10.1.1

10.1.2

10.1.3

10.1.4

10.2

10.2.1

Handling Property unobserve requests

The PropertyWriteHandler callback

The setPropertyWriteHandler() method

Handling requests for writing a Property

Handling requests for writing multiple Properties

The ActionHandler callback

The setActionHandler() method

Handling Action requests

The EventListenerHandler callback

The EventSubscriptionHandler callback

The setEventSubscribeHandler() method

Handling Event subscribe requests

The setEventUnsubscribeHandler() method

Handling Event unsubscribe requests

The setEventHandler() method

Handling Events

The emitEvent() method

The expose() method

The destroy() method

ExposedThing Examples

The ThingDiscovery interface

Constructing ThingDiscovery

The DiscoveryMethod enumeration

The ThingFilter dictionary

The start() method

The next() method

The stop() method

Discovery Examples

Security and Privacy

Scripting Runtime Security and Privacy Risks

Corrupted Input Security and Privacy Risk

Physical Device Direct Access Security and Privacy Risk

Provisioning and Update Security Risk

Security Credentials Storage Security and Privacy Risk

Script Security and Privacy Risks

Corrupted Script Input Security and Privacy Risk

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

5 of 75 8/3/20, 6:14 PM

10.2.2

10.2.3

11.

A.

A.1

A.1.1

A.1.2

A.1.3

A.2

A.3

A.4

A.5

A.6

B.

C.

D.

E.

F.

F.1

Denial Of Service Security Risk

Stale TD Security Risk

Terminology and conventions

API design rationale

Approaches to WoT application development

No Scripting API

Simple Scripting API

This API, aligned with [WOT-TD]

Fetching and validating a TD

Factory vs constructors

Observers

Using Events

Polymorphic functions

Changes

Open issues

Full Web IDL

Acknowledgements

References

Normative references

WoT provides layered interoperability based on how Things are used: "consumed"

and "exposed", as defined in [WOT-ARCHITECTURE].

By consuming a TD, a client Thing creates a local runtime resource model that

allows accessing the Properties, Actions and Events exposed by the server Thing on

a remote device.

Exposing a Thing requires:

defining a Thing Description (TD),

then instantiating a software stack that implements the WoT Interface specified

by the TD in order to serve requests for accessing the exposed Properties,

1. Introduction§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

6 of 75 8/3/20, 6:14 PM

Ege Korkan
Insert text
The

Ege Korkan
Note
the word accessing sounds a bit weird here. It is as if I ssh and take control of the interactions.

maybe something like: allows interacting with the Thing through the P,A,E that it exposes

Ege Korkan
Strikeout

Ege Korkan
Note
Instead of using then in each bullet point, would be better to make a numbered list

Ege Korkan
Note
the word client should not be used when possible to avoid confusion since it can be the exposed Thing in case of e.g. MQTT

Actions and Events,

then eventually publishing the Thing Description (for instance to a Thing

Directory directory for easier discovery).

This specification describes how to expose and consume Things by a script. Also, it

defines a generic API for Thing discovery.

NOTE

Typically scripts are meant to be used on bridges or gateways that expose and

control simpler devices as WoT Things and have means to handle (e.g. install,

uninstall, update etc.) and run scripts.

NOTE

This specification does not make assumptions on how the WoT Runtime handles

and runs scripts, including single or multiple tenancy, script deployment and

lifecycle management. The API already supports the generic mechanisms that

make it possible to implement script management, for instance by exposing a

manager Thing whose Actions (action handlers) implement script lifecycle

management operations.

This section is non-normative.

The following scripting use cases are supported in this specification:

Consume a TD, i.e. create a programmatic object from a Thing Description that

exposes WoT Interactions:

Read the value of a Property or a set of properties.

Set the value of a Property or a set of properties.

Observe value changes of a Property.

Invoke an Action.

2. Use Cases§

2.1 Consuming a Thing§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

7 of 75 8/3/20, 6:14 PM

Ege Korkan
Insert text
an

Ege Korkan
Insert text
process

Ege Korkan
Note
Similar to the note in the abstract, browsers should be mentioned

Ege Korkan
Replace

Ege Korkan
Replace
�Write to

Observe WoT Events emitted by the Thing.

Introspect the Thing Description, including the list of linked resources based

on the Thing Description.

Exposing the Thing includes generating the protocol bindings in order to access

lower level functionality.

Create a local Thing to be exposed, based on a Thing Description provided in

string serialized format, or out of an existing Thing object.

Add a Property definition to the Thing.

Remove a Property definition from the Thing.

Add an Action definition to the Thing.

Remove an Action definition from the Thing.

Add a WoT Event definition to the Thing.

Remove a WoT Event definition from the Thing.

Emit a WoT Event, i.e. notify all subscribed listeners.

Register service handlers for external requests:

to retrieve a Property value;

to update a Property value;

to invoke an Action: take the parameters from the request, execute the

defined action, and return the result;

Discover Things in a network by sending a broadcast request.

Discover Things running in the local WoT Runtime.

Discover nearby Things, for instance connected by NFC or Bluetooth.

Discover Things by sending a discovery request to a given registry.

Discover Things filtered by filters defined on Thing Descriptions

Discover Things filtered by semantic queries.

Stop or suppress an ongoing discovery process.

Optionally specify a timeout to the discovery process after which it is

2.2 Exposing a Thing§

2.3 Discovery§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

8 of 75 8/3/20, 6:14 PM

Ege Korkan
Insert text
Subscribe to and thus

Ege Korkan
Strikeout

Ege Korkan
Note
not clear what "based on the TD" means here

Ege Korkan
Note
Adding interactions have been removed?

Similar for removing

Ege Korkan
Note
Now, there are also handlers for observer, unobserve, subscribe

Ege Korkan
Note
Instead of registry, the word TD Directory is used above and would be more future-proof

stopped/suppressed.

As well as sections marked as non-normative, all authoring guidelines, diagrams,

examples, and notes in this specification are non-normative. Everything else in this

specification is normative.

The key words MAY, MUST, and SHOULD in this document are to be interpreted as

described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification describes the conformance criteria for the following classes of

user agent (UA).

Due to requirements of small embedded implementations, splitting WoT client and

server interfaces was needed. Then, discovery is a distributed application, but

typical scenarios have been covered by a generic discovery API in this specification.

This resulted in using 3 conformance classes for a UA that implements this API, one

for client, one for server, and one for discovery. An application that uses this API can

introspect for the presence of the consume(), produce() and discover() methods on the

WoT API object in order to determine which conformance class the UA implements.

WoT Consumer UA
Implementations of this conformance class MUST implement the ConsumedThing

interface and the consume() method on the WoT API object.

WoT Producer UA
Implementations of this conformance class MUST implement ExposedThing

interface and the produce() method on the WoT API object.

WoT Discovery UA
Implementations of this conformance class MUST implement the ThingDiscovery

interface and the discover() method on the WoT API object.

These conformance classes MAY be implemented in a single UA.

This specification can be used for implementing the WoT Scripting API in multiple

programming languages. The interface definitions are specified in [WEBIDL].

The UA may be implemented in the browser, or in a separate runtime environment,

such as Node.js or in small embedded runtimes.

3. Conformance§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

9 of 75 8/3/20, 6:14 PM

Ege Korkan
Underline

Ege Korkan
Underline

Implementations that use ECMAScript executed in a browser to implement the APIs

defined in this document MUST implement them in a manner consistent with the

ECMAScript Bindings defined in the Web IDL specification [WEBIDL].

Implementations that use TypeScript or ECMAScript in a runtime to implement the

APIs defined in this document MUST implement them in a manner consistent with

the TypeScript Bindings defined in the TypeScript specification [TYPESCRIPT].

Represents a Thing Description (TD) as defined in [WOT-TD]. It is expected to be a

parsed JSON object that is validated using JSON schema validation.

Fetching a TD given a URL should be done with an external method, such as the

Fetch API or a HTTP client library, which offer already standardized options on

specifying fetch details.

Note that [WOT-TD] allows using a shortened Thing Description by the means of

4. The ThingDescription type§

WebIDL

typedef object ThingDescription;

4.1 Fetching a Thing Description§

EXAMPLE 1: Fetching a Thing Description

try {

let res = await fetch('https://tds.mythings.biz/sensor11');

// ... additional checks possible on res.headers

let td = await res.json();

let thing = new ConsumedThing(td);

console.log("Thing name: " + thing.getThingDescription().title);

} catch (err) {

console.log("Fetching TD failed", err.message);

}

4.2 Expanding a Thing Description§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

10 of 75 8/3/20, 6:14 PM

Ege Korkan
Replace

Ege Korkan
Replace
S (capital)

Ege Korkan
Note
There is some sort of inconsistency with what the consumption method should be

- node-wot uses consume()

- this example shows ConsumedThing

- above text on UA says consume()

defaults and requiring clients to expand them with default values specified in [WOT-

TD] for the properties that are not explicitly defined in a given TD.

To expand a TD given , run the following steps:

1. For each item in the TD default values table from [WOT-TD], if the term is not

defined in , add the term definition with the default value specified in [WOT-

TD].

The [WOT-TD] specification defines how a TD should be validated. Therefore, this

API expects the ThingDescription objects be validated before used as parameters. This

specification defines a basic TD validation as follows.

To validate a TD given , run the following steps:

1. If is not an object, throw a "TypeError" and abort these steps.

2. If any of the mandatory properties defined in [WOT-TD] for Thing that don't have

default definitions are missing from , throw a "TypeError" and abort these steps.

3. If JSON schema validation fails on , throw a "TypeError" and abort these steps.

Defines the WoT API object as a singleton and contains the API methods, grouped

by conformance classes.

td

td

4.3 Validating a Thing Description§

td

td

td

td

5. The WOT namespace§

WebIDL

[SecureContext, Exposed=(Window,Worker)]

namespace WOT {

 // methods defined in UA conformance classes

};

5.1 The consume() method§

WebIDL

partial namespace WOT {

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

11 of 75 8/3/20, 6:14 PM

Ege Korkan
Replace

Ege Korkan
Replace
To expand a given TD (linked to ref) named td

Ege Korkan
Replace

Ege Korkan
Replace
To validate a given TD (linked to ref) named td

Ege Korkan
Replace

Ege Korkan
Replace
 following

Ege Korkan
Note
The JSON Schema validation should be before the step 2 and that way if something fails the schema validation, it must have values for terms that do not have defaults. The schema validation does not expect a TD with defaults filled in.

Belongs to the WoT Consumer conformance class. Expects an argument and

returns a Promise that resolves with a ConsumedThing object that represents a client

interface to operate with the Thing. The method MUST run the following steps:

1. Return a Promise and execute the next steps in parallel.

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

3. Run the validate a TD steps on . If that fails, reject with SyntaxError

and abort these steps.

4. Let be a new ConsumedThing object constructed from .

5. Set up the WoT Interactions based on introspecting td as explained in [WOT-TD]

and [WOT-PROTOCOL-BINDINGS]. Make a request to the underlying platform to

initialize the Protocol Bindings.

EDITOR'S NOTE

Implementations encapsulate the complexity of how to use the Protocol

Bindings for implementing WoT interactions. In the future elements of that

could be standardized.

6. Resolve with .

Belongs to the WoT Producer conformance class. Expects a argument and returns

a Promise that resolves with an ExposedThing object that extends ConsumedThing with a

server interface, i.e. the ability to define request handlers. The method MUST run

the following steps:

1. Return a Promise and execute the next steps in parallel.

Promise<ConsumedThing> consume(ThingDescription td);

};

td

promise

promise

td promise

thing td

promise thing

5.2 The produce() method§

WebIDL

partial namespace WOT {

Promise<ExposedThing> produce(ThingDescription td);

};

td

promise

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

12 of 75 8/3/20, 6:14 PM

Ege Korkan
Replace

Ege Korkan
Replace
td (without underline)

Ege Korkan
Insert text
,

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

3. Let be a new ExposedThing object constructed with .

4. Resolve with .

Belongs to the WoT Discovery conformance class. Starts the discovery process that

will provide ThingDescription objects for Thing Descriptions that match an optional

 argument of type ThingFilter. The method MUST run the following steps:

1. If invoking this method is not allowed for the current scripting context for

security reasons, throw a "SecurityError" and abort these steps.

2. Construct a ThingDiscovery object with .

3. Invoke the discovery.start() method.

4. Return .

As specified in [WOT-TD], WoT interactions extend DataSchema and include a

number of possible Forms, out of which one is selected for the interaction. The Form

contains a contentType to describe the data. For certain content types, a DataSchema

is defined, based on JSON schema, making possible to represent these contents as

JavaScript types and eventually set range constraints on the data.

promise

thing td

promise thing

5.3 The discover() method§

WebIDL

partial namespace WOT {

ThingDiscovery discover(optional ThingFilter filter = null);

};

filter

discovery filter

discovery

6. Handling interaction data§

6.1 The InteractionInput type§

WebIDL

typedef any DataSchemaValue;

typedef (ReadableStream or DataSchemaValue) InteractionInput;

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

13 of 75 8/3/20, 6:14 PM

Ege Korkan
Replace

Ege Korkan
Replace
S (capital)

Ege Korkan
Note
It is not used in invokeAction of 7.13 ?

Belongs to the WoT Consumer conformance class and represents the WoT

Interaction data provided by application scripts to the UA.

DataSchemaValue is an ECMAScript value that is accepted for DataSchema defined in

[WoT-TD] (i.e. null, boolean, number, string, array, or object).

ReadableStream is meant to be used for WoT Interactions that don't have a

DataSchema in the Thing Description, only a Form's contentType that can be

represented by a stream.

In practice, any ECMAScript value may be used for WoT Interactions that have a

DataSchema defined in the Thing Description, or which can be mapped by

implementations to the Form's contentType defined in the Thing Description.

The algorithms in this document specify how exactly input data is used in WoT

Interactions.

Belongs to the WoT Consumer conformance class. An InteractionOutput object is

always created by the implementations and exposes the data returned from WoT

Interactions to application scripts.

This interface exposes a convenience function which should work in the vast

majority of IoT use cases: the value() function. Its implementation will inspect the

data, parse it if adheres to a DataSchema, or otherwise fail early, leaving the

underlying stream undisturbed so that application scripts could attempt reading the

stream themselves, or handling the data as ArrayBuffer.

The data property represents the raw payload in WoT Interactions as a ReadableStream,

6.2 The InteractionOutput interface§

WebIDL

[SecureContext, Exposed=(Window,Worker)]

interface InteractionOutput {

 readonly attribute ReadableStream? data;

 readonly attribute boolean dataUsed;

 readonly attribute Form? form;

 readonly attribute DataSchema? schema;

Promise<ArrayBuffer> arrayBuffer();

Promise<any> value();

};

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

14 of 75 8/3/20, 6:14 PM

initially null.

The dataUsed property tells whether the data stream has been disturbed. Initially

false.

The form attribute represents the Form selected from the Thing Description for this

WoT Interaction, initially null.

The schema attribute represents the DataSchema (defined in [WoT-TD]) of the payload

as a JSON object, initially null.

The [[value]] internal slot represents the parsed value of the WoT Interaction,

initially undefined (note that null is a valid value).

Parses the data returned from the WoT Interaction and returns a value with the type

described by the DataSchema of the interaction if that exists, or by the contentType of

the Form used for the interaction. The method MUST run the following steps:

1. Return a Promise and execute the next steps in parallel.

2. If the value of the [[value]] internal slot is not undefined, resolve with

that value and abort these steps.

3. If the value of the property is not a ReadableStream or if is true, or if

 is null or if or its are null or undefined, reject with

NotReadableError and abort these steps.

4. If 's is not application/json and if a mapping is not available in

the Protocol Bindings from 's to [JSON-SCHEMA], reject

 with NotSupportedError and abort these steps.

5. Let be the result of getting a reader from . If that threw an

exception, reject with that exception and abort these steps.

6. Let be the result of reading all bytes from with .

7. Set to true.

8. If 's is not application/json and if a mapping is available in the

Protocol Bindings from 's to [JSON-SCHEMA], transform

with that mapping.

9. Let be the result of running parse JSON from bytes on . If that throws,

reject with that exception and abort these steps.

6.2.1 The value() function§

promise

promise

data dataUsed

form schema type promise

form contentType

form contentType

promise

reader data

promise

bytes data reader

dataUsed

form contentType

form contentType bytes

json bytes

promise

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

15 of 75 8/3/20, 6:14 PM

Ege Korkan
Underline

Ege Korkan
Underline

Ege Korkan
Underline

Ege Korkan
Underline

10. Set [[value]] to the result of running check data schema on and . If

that throws, reject with that exception and abort these steps.

11. Resolve with [[value]].

When invoked, MUST run the following steps:

1. Return a Promise and execute the next steps in parallel.

2. If is not ReadableStream or if is true, reject with

NotReadableError and abort these steps.

3. Let be the result of getting a reader from . If that threw an

exception, reject with that exception and abort these steps.

4. Let be the result of reading all bytes from with .

5. Set to true.

6. Let be a new ArrayBuffer whose contents are . If that throws,

reject with that exception and abort these steps.

7. Resolve with .

To run the check data schema steps on and ,

1. Let be 's .

2. If is "null" and if is not null, throw TypeError and abort these steps,

otherwise return null.

3. If is "boolean" and is a falsey value or its byte length is 0, return

false, otherwise return true.

4. If is "integer" or "number",

1. If is not a number, throw TypeError and abort these steps.

2. If 's is defined and is smaller, or if 's is

defined and is bigger, throw RangeError and abort these steps.

5. If is "string", return .

6. If is "array", run these sub-steps:

1. If is not an array, throw TypeError and abort these steps.

json schema

promise

promise

6.2.2 The arrayBuffer() function§

promise

data dataUsed promise

reader data

promise

bytes data reader

dataUsed

arrayBuffer bytes

promise

promise arrayBuffer

6.2.3 The check data schema algorithm§

payload schema

type schema type

type payload

type payload

type

payload

form minimum payload form maximum

payload

type payload

type

payload

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

16 of 75 8/3/20, 6:14 PM

Ege Korkan
Strikeout

Ege Korkan
Note
what about exclusiveMinimum and exclusiveMaximum? and multipleOf etc.

See: https://json-schema.org/draft/2019-09/json-schema-validation.html#rfc.section.6.3.1

Ege Korkan
Note
I am not sure why this is defined here where JSON Schema does the same explanation

2. If 's is defined and 's is less than that, or if

's is defined and 's is more than that, throw

RangeError and abort these steps.

3. Let be an array of items obtained by running the check data schema

steps on each element of and 's . If this throws at

any stage, re-throw that exception and abort these steps.

7. If is "object", run these sub-steps:

1. If or 's is not an object, throw TypeError and abort

these steps.

2. For each property in ,

1. Let be the value of .

2. Let be the value of in 's .

3. Let be the result of running the check data schema steps on

and . If this throws, re-throw that exception and abort these

steps.

3. Let be 's if that is an array or an empty array

otherwise.

4. For each in , if is not present in , throw SyntaxError

and abort these steps.

8. Return .

For a given ConsumedThing object , in order to create interaction data given

, and , run these steps:

1. Let be a new an InteractionOutput object whose is set to , whose

 is set to , whose [[value]] internal slot is undefined and whose

 is null.

2. If is a ReadableStream object, let 's be , return and

abort these steps.

3. If and its are defined and not null, run these sub-steps:

1. If is "null" and is not, throw TypeError and abort these steps.

2. If is "boolean" and is a falsy value, set 's [[value]] to

false, otherwise to true.

form minItems payload length

form maxItems payload length

payload

item payload schema items

type

payload schema properties

key payload

prop key

propSchema key interaction properties

prop prop

propSchema

required schema required

key required key payload

payload

6.2.4 The create interaction data algorithm§

thing

source form schema

idata form form

schema schema

data

source idata data source idata

schema type

type source

type source idata value

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

17 of 75 8/3/20, 6:14 PM

Ege Korkan
Replace

Ege Korkan
Replace
e

Ege Korkan
Underline

3. If is "integer" or "number" and is not a number, or if 's

 is defined and is smaller, or if 's is defined

and is bigger, throw RangeError and abort these steps.

4. If is "string" and is not a string, let 's [[value]] be the result

of running serialize JSON to bytes on . If that is failure, throw

SyntaxError and abort these steps.

5. If is "array", run these sub-steps:

1. If is not an array, throw a TypeError and abort these steps.

2. Let be the length of .

3. If 's is defined and is less than that, or if 's

 is defined and is more than that, throw RangeError and

abort these steps.

4. For each in , let be 's and let

be the result of running the create interaction data steps on ,

and . If this throws, re-throw that exception and abort these

steps.

5. Set 's [[value]] to .

6. If is "object", run these sub-steps:

1. If is not an object, throw TypeError and abort these steps.

2. If 's is not an object, throw TypeError and abort these

steps.

3. For each property in ,

1. Let be the value of .

2. Let be the value of in .

3. Let be the result of running the create interaction data steps

on , and . If this throws, re-throw that

exception and abort these steps.

4. If 's is an array, for each in check if

is a property name in . If an is not found in , throw

SyntaxError and abort these steps.

5. Set 's [[value]] to .

4. Set 's to a new ReadableStream created from 's [[value]] internal

slot as its underlying source.

5. Return .

type source form

minimum source form maximum

source

type source idata

source

type

source

length source

form minItems length form

maxItems length

item source itemschema schema items item

item form

itemschema

data source

type

source

schema properties

key source

value key

propschema key properties

value

value form propschema

schema required item required item

source item source

data source

idata data idata

idata

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

18 of 75 8/3/20, 6:14 PM

Ege Korkan
Underline

Ege Korkan
Underline

Ege Korkan
Underline

For a given ConsumedThing object , in order to parse interaction response given

, and , run these steps:

1. Let be a new InteractionOutput object.

2. Let 's be .

3. Let 's be .

4. Let 's be a new ReadableStream with the payload data of as its

underlying source.

5. Let 's be false.

6. Return .

As illustrated in the next pictures, the InteractionOutput interface is used every time

implementations provide data to scripts, while InteractionInput is used when the

scripts pass data to the implementation.

Figure 1 Data structures used when reading data

When a ConsumedThing reads data, it receives it from the implementation as an

InteractionOutput object.

6.2.5 The parse interaction response algorithm§

thing

response form schema

result

result schema schema

result form form

result data response

result dataUsed

result

6.3 Using InteractionInput and InteractionOutput§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

19 of 75 8/3/20, 6:14 PM

An ExposedThing read handler provides the read data to the implementation as

InteractionInput.

Figure 2 Data structures used when writing data

When a ConsumedThing writes data, it provides it to the implementation as

InteractionInput.

An ExposedThing write handler receives data from to implementation as an

InteractionOutput object.

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

20 of 75 8/3/20, 6:14 PM

Figure 3 Data structures used when invoking an Action

When a ConsumedThing invokes an Action data, it provides the parameters as

InteractionInput and receives the output of the Action as an InteractionOutput object.

An ExposedThing action handler receives arguments from the implementation as an

InteractionOutput object and provides Action output as InteractionInput to the

implementation.

The algorithms in this API define the errors to be reported to application scripts.

The errors reported to the other communication end are mapped and encapsulated

by the Protocol Bindings.

6.4 Error handling§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

21 of 75 8/3/20, 6:14 PM

Figure 4 Error handling in WoT interactions

EDITOR'S NOTE

This topic is still being discussed in Issue #200. A standardized error mapping

would be needed in order to ensure consistency in mapping script errors to

protocol errors and vice versa. In particular, when algorithms say "error received

from the Protocol Bindings", that will be factored out as an explicit error mapping

algorithm. Currently that is encapsulated by implementations.

Represents a client API to operate a Thing. Belongs to the WoT Consumer

conformance class.

7. The ConsumedThing interface§

WebIDL

[SecureContext, Exposed=(Window,Worker)]

interface ConsumedThing {

constructor(ThingDescription td);

Promise<InteractionOutput> readProperty(DOMString propertyName,

 optional InteractionOptions options = null);

Promise<PropertyMap> readAllProperties(optional InteractionOptions options =

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

22 of 75 8/3/20, 6:14 PM

Ege Korkan
Insert text
,

After fetching a Thing Description as a JSON object, one can create a ConsumedThing

object.

To create ConsumedThing with the ThingDescription , run the following steps:

1. Run the expand a TD steps on . If that fails, re-throw the error and abort these

null);

Promise<PropertyMap> readMultipleProperties(

sequence<DOMString> propertyNames,

 optional InteractionOptions options = null);

Promise<void> writeProperty(DOMString propertyName,

InteractionInput value,

 optional InteractionOptions options = null);

Promise<void> writeMultipleProperties(PropertyMap valueMap,

 optional InteractionOptions options = null);

Promise<InteractionOutput> invokeAction(DOMString actionName,

 optional InteractionInput params = null,

 optional InteractionOptions options = null);

Promise<void> observeProperty(DOMString name,

WotListener listener,

 optional InteractionOptions options = null);

Promise<void> unobserveProperty(DOMString name,

 optional InteractionOptions options = null);

Promise<void> subscribeEvent(DOMString name,

WotListener listener,

 optional InteractionOptions options = null);

Promise<void> unsubscribeEvent(DOMString name,

 optional InteractionOptions options = null);

ThingDescription getThingDescription();

};

dictionary InteractionOptions {

unsigned long formIndex;

object uriVariables;

any data;

};

typedef object PropertyMap;

callback WotListener = void(InteractionOutput data);

7.1 Constructing ConsumedThing§

td

td

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

23 of 75 8/3/20, 6:14 PM

steps.

2. Let be a new ConsumedThing object.

3. Let | | be an internal slot of and let be its value.

4. Return .

Returns the internal slot | | of the ConsumedThing object that represents the Thing

Description of the ConsumedThing. Applications may consult the Thing metadata stored

in | | in order to introspect its capabilities before interacting with it.

Holds the interaction options that need to be exposed for application scripts

according to the Thing Description.

The formIndex property, if defined, represents an application hint for which Form

definition, identified by this index, of the TD to use for the given WoT interaction.

Implementations SHOULD use the Form with this index for making the interaction,

but MAY override this value if the index is not found or not valid. If not defined,

implementations SHOULD attempt to use the Form definitions in order of appearance

as listed in the TD for the given Wot Interaction.

The uriVariables property if defined, represents the URI template variables to be

used with the WoT Interaction that are represented as parsed JSON objects defined

in [WOT-TD].

EDITOR'S NOTE

The support for URI variables comes from the need exposed by [WOT-TD] to be

able to describe existing TDs that use them, but it should be possible to write a

Thing Description that would use Actions for representing the interactions that

need URI variables and represent the URI variables as parameters to the Action

and in that case that could be encapsulated by the implementations and the

 parameter could be dismissed from the methods exposed by this API.

The data property if defined, represents additional opaque data that needs to be

passed to the interaction.

thing

td thing td

thing

7.2 The getThingDescription() method§

td

td

7.3 The InteractionOptions dictionary§

options

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

24 of 75 8/3/20, 6:14 PM

Represents a map of Property names as strings to a value that the Property can take.

It is used as a property bag for interactions that involve multiple Properties at once.

EDITOR'S NOTE

It could be defined in Web IDL (as well as ThingDescription) as a maplike interface

from string to any.

Reads a Property value. Takes as arguments and optionally . It

returns a Promise that resolves with a Property value represented as as an

InteractionOutput object or rejects on error. The method MUST run the following

steps:

1. Return a Promise and execute the next steps in parallel.

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

3. Let be the value of | |'s 's .

4. If 's is defined, let be the Form associated with

in 's array, otherwise let be the first Form in 's

 whose is readproperty.

5. If is failure, reject with a SyntaxError and abort these steps.

6. Make a request to the underlying platform (via the Protocol Bindings) to retrieve

the value of the Property given by using and the optional

URI templates given in ' .

7. If the request fails, reject with the error received from the Protocol

Bindings and abort these steps.

8. Let be the response received to the request.

9. Let be the result of running parse interaction response on ,

and . If that fails, reject with a SyntaxError and abort these

steps.

10. Resolve with .

7.4 The PropertyMap type§

7.5 The readProperty() method§

propertyName options

promise

promise

interaction td properties propertyName

option formIndex form formIndex

interaction forms form interaction

forms op

form promise

propertyName form

options uriVariables

promise

response

data response form

interaction promise

promise data

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

25 of 75 8/3/20, 6:14 PM

Reads multiple Property values with one or multiple requests. Takes as arguments

 and optionally . It returns a Promise that resolves with a

PropertyMap object that maps keys from to values returned by this

algorithm. The method MUST run the following steps:

1. Return a Promise and execute the next steps in parallel.

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

3. If 's is defined, let be the Form associated with

in | |'s array, otherwise let be the first Form in | |'s array

whose is readmultipleproperties.

4. If is failure, reject with a SyntaxError and abort these steps.

5. Let be an object and for each string in add a

property with key and the value null.

6. Make a request to the underlying platform (via the Protocol Bindings) to retrieve

the Property values given by with and optional URI

templates given in ' .

7. If this cannot be done with a single request with the Protocol Bindings, reject

 with a NotSupportedError and abort these steps.

8. Process the response and for each in , run the following sub-steps:

1. Let be the value of 's .

2. Let be the value of | |'s 's .

3. Let be the result of running parse interaction response on ,

 and .

9. If the above step throws at any point, reject with that exception and

abort these steps.

10. Resolve with .

Reads all properties of the Thing with one or multiple requests. Takes as

optional argument. It returns a Promise that resolves with a PropertyMap object that

maps keys from Property names to values returned by this algorithm. The method

MUST run the following steps:

7.6 The readMultipleProperties() method§

propertyNames options

propertyNames

promise

promise

option formIndex form formIndex

td forms form td forms

op

form promise

result name propertyNames

name

propertyNames form

options uriVariables

promise

key result

value result key

schema td properties key

property value

form schema

promise

promise result

7.7 The readAllProperties() method§

options

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

26 of 75 8/3/20, 6:14 PM

1. Return a Promise and execute the next steps in parallel.

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

3. If 's is defined, let be the Form associated with

in | |'s array, otherwise let be the first Form in | |'s array

whose is readallproperties.

4. If is failure, reject with a SyntaxError and abort these steps.

5. Make a request to the underlying platform (via the Protocol Bindings) to retrieve

the value of the all the Property definitions from the TD with and optional

URI templates given in ' .

6. If this cannot be done with a single request with the Protocol Bindings of the

Thing, then reject with a NotSupportedError and abort these steps.

7. If the request fails, reject with the error received from the Protocol

Bindings and abort these steps.

8. Process the reply and let be an object with the keys and values obtained in

the reply.

9. Process the response and for each in , run the following sub-steps:

1. Let be the value of 's .

2. Let be the value of | |'s 's .

3. Let be the result of running parse interaction response on ,

 and .

10. Resolve with .

Writes a single Property. Takes as arguments , and optionally

. It returns a Promise that resolves on success and rejects on failure. The

method MUST run the following steps:

1. Return a Promise and execute the next steps in parallel.

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

3. Let be the value of | |'s 's .

4. If 's is defined, let be the Form associated with

in 's array, otherwise let be the first Form in 's

promise

promise

option formIndex form formIndex

td forms form td forms

op

form promise

form

options uriVariables

promise

promise

result

key result

value result key

schema td properties key

property value

form schema

promise result

7.8 The writeProperty() method§

propertyName value

options

promise

promise

interaction td properties propertyName

option formIndex form formIndex

interaction forms form interaction

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

27 of 75 8/3/20, 6:14 PM

 whose is writeproperty.

5. If is failure, reject with a SyntaxError and abort these steps.

6. Let be the result of running the create interaction datasteps on ,

and . If that throws, reject promise with that exception and abort

these steps.

7. Make a request to the underlying platform (via the Protocol Bindings) to write

the Property given by using and the optional URI templates

given in ' .

8. If the request fails, reject with the error received from the Protocol

Bindings and abort these steps.

9. Otherwise resolve .

EDITOR'S NOTE

As discussed in Issue #193, the design decision is that write interactions only

return success or error, not the written value (optionally). TDs should capture the

schema of the Property values, including precision and alternative formats. When

a return value is expected from the interaction, an Action should be used instead

of a Property.

Writes a multiple Property values with one request. Takes as arguments -

as an object with keys being Property names and values as Property values - and

optionally . It returns a Promise that resolves on success and rejects on

failure. The method MUST run the following steps:

1. Return a Promise and execute the next steps in parallel.

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

3. If 's is defined, let be the Form associated with

in | |'s array, otherwise let be the first Form in | |'s array

whose is writemultipleproperties.

4. If is failure, reject with a SyntaxError and abort these steps.

5. Let be an object and for each string in add a

property with key and let its value be null.

forms op

form promise

data value form

interaction

propertyName data

options uriVariables

promise

promise

7.9 The writeMultipleProperties() method§

properties

options

promise

promise

option formIndex form formIndex

td forms form td forms

op

form promise

result name propertyNames

name

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

28 of 75 8/3/20, 6:14 PM

6. Let be an object and for each string in add a

property with key and let its value be the value of | |'s 's .

7. For each key in , take its value as and run the create

interaction data steps on , and the value for 's . If that

throws for any , reject promise with that exception and abort these steps.

8. Make a single request to the underlying platform (via the Protocol Bindings) to

write each Property provided in with optional URI templates given in

' .

9. If this cannot be done with a single request with the Protocol Bindings of the

Thing, then reject with a NotSupportedError and abort these steps.

10. If the request fails, return the error received from the Protocol Bindings and

abort these steps.

11. Otherwise resolve .

User provided callback that is given an argument of type InteractionOutput and is

used for observing Property changes and handling Event notifications. Since

subscribing to Events are WoT interactions and might take options or even data,

they are not modelled with software events.

Makes a request for Property value change notifications. Takes as arguments

, and optionally . It returns a Promise that resolves on

success and rejects on failure. The method MUST run the following steps:

1. Return a Promise and execute the next steps in parallel.

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

3. If is not a Function, reject with a TypeError and abort these steps.

4. Let be the value of | |'s 's .

5. If 's is defined, let be the Form associated with

in 's array, otherwise let be the first Form in 's

 array whose is observeproperty.

6. If is failure, reject with a SyntaxError and abort these steps.

schemas name propertyNames

name td properties name

key properties value

value form schema key

name

properties

options uriVariables

promise

promise

7.10 The WotListener callback§

7.11 The observeProperty() method§

propertyName listener options

promise

promise

listener promise

interaction td properties propertyName

option formIndex form formIndex

interaction forms form interaction

forms op

form promise

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

29 of 75 8/3/20, 6:14 PM

7. Make a request to the underlying platform (via the Protocol Bindings) to observe

Property identified by with and optional URI templates

given in ' .

8. If the request fails, reject with the error received from the Protocol

Bindings and abort these steps.

9. Otherwise resolve .

10. Whenever the underlying platform receives a notification for this subscription

with new Property value , run the following sub-steps:

Let be the result of running parse interaction response with ,

 and . If that throws, reject with that exception and

abort these steps.

Invoke with .

Makes a request for unsubscribing from Property value change notifications. Takes

as arguments and optionally . It returns a Promise that resolves

on success and rejects on failure. The method MUST run the following steps:

1. Return a Promise and execute the next steps in parallel.

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

3. Let be the value of | |'s 's .

4. If 's is defined, let be the Form associated with

in 's array, otherwise let be the first Form in 's

 array whose is unobserveproperty.

5. If is failure, reject with a SyntaxError and abort these steps.

6. Make a request to the underlying platform (via the Protocol Bindings) to stop

observing the Property identified by , with and optional URI

templates given in ' .

7. If the request fails, reject with the error received from the Protocol

Bindings and abort these steps.

8. Otherwise resolve .

propertyName form

options uriVariables

promise

promise

value

reply value

form interaction promise

listener reply

7.12 The unobserveProperty() method§

propertyName options

promise

promise

interaction td properties propertyName

option formIndex form formIndex

interaction forms form interaction

forms op

form promise

propertyName form

options uriVariables

promise

promise

7.13 The invokeAction() method§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

30 of 75 8/3/20, 6:14 PM

Makes a request for invoking an Action and return the result. Takes as arguments

, optionally and optionally . It returns a Promise that

resolves with the result of the Action represented as an InteractionOutput object, or

rejects with an error. The method MUST run the following steps:

1. Return a Promise and execute the next steps in parallel.

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

3. Let be the value of | |'s 's .

4. If 's is defined, let be the Form associated with

in 's array, otherwise let be the first Form in 's

 array whose is invokeaction.

5. If is failure, reject with a SyntaxError and abort these steps.

6. Let be the result of running the create interaction datasteps on ,

 and . If that throws, reject promise with that exception and

abort these steps.

7. Make a request to the underlying platform (via the Protocol Bindings) to invoke

the Action identified by with parameters provided in and

optional URI templates given in 's .

8. If the request fails locally or returns an error over the network, reject

with the error received from the Protocol Bindings and abort these steps.

9. Let be the reply returned in the reply.

10. Let be the result of running parse interaction response with ,

and . If that throws, reject with that exception and abort

these steps.

11. Resolve with .

Makes a request for subscribing to Event notifications. Takes as arguments

, and optionally . It returns a Promise to signal success or

failure. The method MUST run the following steps:

1. Return a Promise and execute the next steps in parallel.

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

actionName params options

promise

promise

interaction td actions actionName

option formIndex form formIndex

interaction forms form interaction

forms op

form promise

args params

form interaction

actionName args

options uriVariables

promise

value

result value form

interaction promise

promise result

7.14 The subscribeEvent() method§

eventName listener options

promise

promise

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

31 of 75 8/3/20, 6:14 PM

3. If is not a Function, reject with a TypeError and abort these steps.

4. Let be the value of | |'s 's .

5. If 's is defined, let be the Form associated with

in 's array, otherwise let be the first Form in 's

 array whose is subscribeevent.

6. If is failure, reject with a SyntaxError and abort these steps.

7. Make a request to the underlying platform (via the Protocol Bindings) to

subscribe to an Event identified by with and optional URI

templates given in ' and optional subscription data given in

's .

8. If the request fails, reject with the error received from the Protocol

Bindings and abort these steps.

9. Otherwise resolve .

10. Whenever the underlying platform receives a notification for this Event

subscription, implementations SHOULD invoke with the result of

running parse interaction response on the data provided with the Event,

and .

Makes a request for unsubscribing from Event notifications. Takes as arguments

 and optionally . It returns a Promise to signal success or failure.

The method MUST run the following steps:

1. Return a Promise and execute the next steps in parallel.

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

3. Let be the value of | |'s 's .

4. If 's is defined, let be the Form associated with

in 's array, otherwise let be the first Form in 's

 array whose is unsubscribeevent.

5. If is failure, reject with a SyntaxError and abort these steps.

6. Make a request to the underlying platform (via the Protocol Bindings) to

unsubscribe from the Event identified by with and optional URI

templates given in ' and optional unsubscribe data given in

's .

listener promise

interaction td events eventName

option formIndex form formIndex

interaction forms form interaction

forms op

form promise

eventName form

options uriVariables

options data

promise

promise

listener

form

interaction

7.15 The unsubscribeEvent() method§

eventName options

promise

promise

interaction td events eventName

option formIndex form formIndex

interaction forms form interaction

forms op

form promise

eventName form

options uriVariables

options data

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

32 of 75 8/3/20, 6:14 PM

7. If the request fails, reject with the error received from the Protocol

Bindings and abort these steps.

8. Resolve .

9. If the underlying platform receives further notifications for this Event

subscription, implementations SHOULD silently suppress them.

The next example illustrates how to fetch a TD by URL, create a ConsumedThing, read

metadata (title), read property value, subscribe to property change, subscribe to a

WoT event, unsubscribe.

promise

promise

7.16 ConsumedThing Examples§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

33 of 75 8/3/20, 6:14 PM

EXAMPLE 2: Thing Client API example

try {

let res = await fetch("https://tds.mythings.org/sensor11");

let td = res.json();

let thing = new ConsumedThing(td);

console.log("Thing " + thing.getThingDescription().title + " consumed.");

} catch(e) {

console.log("TD fetch error: " + e.message); },

};

try {

// subscribe to property change for “temperature”

await thing.observeProperty("temperature", value => {

console.log("Temperature changed to: " + parseData(value));

 });

// subscribe to the “ready” event defined in the TD

await thing.subscribeEvent("ready", eventData => {

console.log("Ready; index: " + parseData(eventData));

// run the “startMeasurement” action defined by TD

await thing.invokeAction("startMeasurement", { units: "Celsius" });

console.log("Measurement started.");

 });

} catch(e) {

console.log("Error starting measurement.");

}

setTimeout(() => {

console.log(“Temperature: “ +

 parseData(await thing.readProperty(“temperature”)));

await thing.unsubscribe(“ready”);

console.log("Unsubscribed from the ‘ready’ event.");

},

10000);

async function parseData(response) {

let value = undefined;

try {

 value = await response.value();

catch(err) {

// if response.value() fails, try low-level stream read

if (response.dataUsed)

return undefined; // or make a second request

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

34 of 75 8/3/20, 6:14 PM

The ExposedThing interface is the server API to operate the Thing that allows defining

request handlers, Property, Action, and Event interactions.

const reader = value.data.getReader();

 value = null;

 reader.read().then(function process({ done, chunk }) {

if (done) {

 value += chunk;

return value;

 }

 value += chunk;

return reader.read().then(process);

 });

 }

return value;

};

8. The ExposedThing interface§

WebIDL

[SecureContext, Exposed=(Window,Worker)]

interface ExposedThing: ConsumedThing {

ExposedThing setPropertyReadHandler(DOMString name,

PropertyReadHandler handler);

ExposedThing setPropertyWriteHandler(DOMString name,

PropertyWriteHandler handler);

ExposedThing setPropertyObserveHandler(DOMString name,

PropertyReadHandler handler);

ExposedThing setPropertyUnobserveHandler(DOMString name,

PropertyReadHandler handler);

ExposedThing setActionHandler(DOMString name, ActionHandler action);

ExposedThing setEventSubscribeHandler(DOMString name,

EventSubscriptionHandler handler);

ExposedThing setEventUnsubscribeHandler(DOMString name,

EventSubscriptionHandler handler);

ExposedThing setEventHandler(DOMString name,

EventListenerHandler eventHandler);

void emitEvent(DOMString name, InteractionInput data);

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

35 of 75 8/3/20, 6:14 PM

The ExposedThing interface extends ConsumedThing. It is constructed from a full or

partial ThingDescription object.

NOTE

Note that an existing ThingDescription object can be optionally modified (for

instance by adding or removing elements on its , and

internal properties) and the resulting object can used for constructing an

ExposedThing object. This is the current way of adding and removing Property,

Action and Event definitions, as illustrated in the examples.

NOTE

Before invoking expose(), the ExposedThing object does not serve any requests.

This allows first constructing ExposedThing and then initialize its Properties and

service handlers before starting serving requests.

Promise<void> expose();

Promise<void> destroy();

};

callback PropertyReadHandler = Promise<any>(

 optional InteractionOptions options = null);

callback PropertyWriteHandler = Promise<void>(

InteractionOutput value,

 optional InteractionOptions options = null);

callback ActionHandler = Promise<InteractionInput>(

InteractionOutput params,

 optional InteractionOptions options = null);

callback EventSubscriptionHandler = Promise<void>(

 optional InteractionOptions options = null);

callback EventListenerHandler = Promise<InteractionInput>();

8.1 Constructing ExposedThing§

properties actions events

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

36 of 75 8/3/20, 6:14 PM

To construct an ExposedThing with the ThingDescription , run the following steps:

1. If invoking this method is not allowed for the current scripting context for

security reasons, throw a SecurityError and abort these steps.

2. Run the expand a TD steps on . If that fails, re-throw the error and abort these

steps.

3. Let be a new ExposedThing object.

4. Let | | be an internal slot of and let be its value.

5. Return .

The readProperty(), readMultipleProperties(), readAllProperties(), writeProperty(),

writeMultipleProperties(), writeAllProperties() methods have the same algorithmic

steps as described in ConsumedThing, with the difference that making a request to the

underlying platform MAY be implemented with local methods or libraries and don't

necessarily need to involve network operations.

The implementation of ConsumedThing interface in an ExposedThing provide the default

methods to interact with the ExposedThing.

After constructing an ExposedThing, a script can initialize its Properties and can set up

the optional read, write and action request handlers (the default ones are provided

by the implementation). The script provided handlers MAY use the default handlers,

thereby extending the default behavior, but they can also bypass them, overriding

the default behavior. Finally, the script would call expose() on the ExposedThing in

order to start serving external requests.

NOTE

The request handlers actually implement the behavior and it is the responsibility

of the developers to keep the Thing Description defined in ExposedThing

synchronized with the implementation of the request handlers.

A function that is called when an external request for reading a Property is received

and defines what to do with such requests. It returns a Promise and resolves with an

td

td

thing

td thing td

thing

8.2 Methods inherited from ConsumedThing§

8.3 The PropertyReadHandler callback§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

37 of 75 8/3/20, 6:14 PM

ReadableStream object or an ECMAScript value conforming to DataSchema, or rejects

with an error if the property is not found or the value cannot be retrieved.

Takes as arguments and . Sets the service handler that defines what to

do when a request is received for reading the specified Property matched by .

Throws on error. Returns a reference to object for supporting chaining.

EDITOR'S NOTE

Note that there is no need to register handlers for handling requests for reading

multiple or all Properties. The request and reply are transmitted in a single

network request, but the ExposedThing may implement them using multiple calls to

the single read handler.

The callback function should implement reading a Property and SHOULD be

called by implementations when a request for reading a Property is received from

the underlying platform.

There MUST be at most one handler for any given Property, so newly added

handlers MUST replace the previous handlers. If no handler is initialized for any

given Property, implementations SHOULD implement a default property read

handler based on the Thing Description provided in the | | internal slot.

When the method is invoked given and , implementations MUST run

the following steps:

1. If invoking this method is not allowed for the current scripting context for

security reasons, throw a SecurityError and abort these steps.

2. Let be the value of | |'s 's .

3. If a Property interaction with is not found, throw NotFoundError and abort

these steps.

4. Set the internal slot | | on to .

When a network request for reading Property is received by the

implementation with , run the following steps:

8.4 The setPropertyReadHandler() method§

name handler

name

this

handler

td

name handler

interaction td properties name

name

readHandler interaction handler

8.5 Handling requests for reading a Property§

name

options

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

38 of 75 8/3/20, 6:14 PM

1. If this operation is not supported, send back a NotSupportedError according to the

Protocol Bindings and abort these steps.

2. If this operation is not allowed, send back a NotAllowedError according to the

Protocol Bindings and abort these steps.

3. Let be the result of running the read server property steps with

and :

1. Let be the value of | |'s 's .

2. If a Property with does not exist, throw NotFoundError and abort these

steps.

3. Let be null.

4. If there is a user provided internal slot | | on , let

 be that.

5. Otherwise, if there is a default read handler provided by the implementation,

let be that.

6. If is null, throw NotSupportedError and abort these steps.

7. Let be the result of invoking with . If that fails, throw

the error and abort these steps.

8. Return .

NOTE

The returned here SHOULD either conform to DataSchema or it

SHOULD be an ReadableStream object created by the .

4. If the previous step has thrown an error, send the error back with the reply

created by following the Protocol Bindings and abort these steps.

5. Serialize and add the returned to the reply created by following the

Protocol Bindings.

When a network request for reading multiple Properties given in an object

 is received with , run the following read multiple

properties steps on and :

1. If this operation is not supported, send back a NotSupportedError according to the

value name

options

interaction td properties name

name

handler

readHandler interaction

handler

handler

handler

value handler options

value

value

handler

value

8.6 Handling requests for reading multiple Poperties§

propertyNames options

propertyNames options

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

39 of 75 8/3/20, 6:14 PM

Protocol Bindings and abort these steps.

2. If this operation is not allowed, send back a NotAllowedError according to the

Protocol Bindings and abort these steps.

3. For each property with key defined in ,

1. Let be the result of running the read server property steps on

and . If that throws, send back the error in the reply created by

following the Protocol Bindingsand abort these steps.

2. Set the value of 's to .

4. Reply to the request by sending a single reply created from

according to the Protocol Bindings.

When a network request for reading all Properties is received with , run the

following steps:

1. If this operation is not supported, send back a NotSupportedError according to the

Protocol Bindings and abort these steps.

2. If this operation is not allowed, send back a NotAllowedError according to the

Protocol Bindings and abort these steps.

3. Let be an object created with all properties defined in the Thing with

values set to null.

4. Run the read multiple properties steps on and .

Takes as arguments and . Sets the service handler that defines what to

do when a request is received for observing the specified Property matched by

. Throws on error. Returns a reference to object for supporting chaining.

The callback function should implement reading a Property and resolve with

an InteractionOutput object or reject with an error.

There MUST be at most one handler for any given Property, so newly added

handlers MUST replace the previous handlers. If no handler is initialized for any

given Property, implementations SHOULD implement a default property read

handler based on the Thing Description.

name propertyNames

value name

options

propertyNames name value

propertyNames

8.7 Handling requests for reading all Properties§

options

properties

properties options

8.8 The setPropertyObserveHandler() method§

name handler

name this

handler

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

40 of 75 8/3/20, 6:14 PM

When the method is invoked given and , implementations MUST run

the following steps:

1. If invoking this method is not allowed for the current scripting context for

security reasons, throw a SecurityError and abort these steps.

2. Let be the value of | |'s 's .

3. If a Property interaction with is not found, throw NotFoundError and abort

these steps.

4. Set the internal slot | | on to .

When a network request for observing a Property is received by the

implementation with , run the following steps:

1. If this operation is not supported, send back a NotSupportedError according to the

Protocol Bindings and abort these steps.

2. If this operation is not allowed, send back a NotAllowedError according to the

Protocol Bindings and abort these steps.

3. Let be the value of | |'s 's . If it does not exist, send

back a NotFoundError in the reply and abort these steps.

4. Save the request sender information together with to 's internal

observer list, in order to be able to notify about Property value changes.

5. Every time the value of changes, run the following sub-steps:

1. Let be null.

2. If there is an | | internal slot associated with on

, let be that.

3. Otherwise, if there is a | | internal slot associated with on

, let be that.

4. If is null, abort these steps.

5. Let be the result of invoking wih .

6. If rejects, abort these steps.

7. If resolves with , then for each in 's internal

observer list, run the following sub-steps:

1. Let be the interaction options saved with .

name handler

interaction td properties name

name

observeHandler interaction handler

8.9 Handling Property observe requests§

name

options

property td properties name

options property

property

handler

observeHandler name

property handler

readHandler name

property handler

handler

promise handler options

promise

promise data observer property

options observer

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

41 of 75 8/3/20, 6:14 PM

2. Create a from and according to the Protocol Bindings.

3. Send to .

Takes as arguments and . Sets the service handler that defines what to

do when a request is received for unobserving the specified Property matched by

. Throws on error. Returns a reference to object for supporting chaining.

The callback function should implement what to do when an unobserve

request is received by the implementation.

There MUST be at most one handler for any given Property, so newly added

handlers MUST replace the previous handlers. If no handler is initialized for any

given Property, implementations SHOULD implement a default handler based on the

Thing Description.

When the method is invoked given and , implementations MUST run

the following steps:

1. If invoking this method is not allowed for the current scripting context for

security reasons, throw a SecurityError and abort these steps.

2. Let be the value of | |'s 's .

3. If a Property interaction with is not found, throw NotFoundError and abort

these steps.

4. Set the internal slot | | on to .

When a network request for unobserving a Property with is received

by the implementation, run the following steps:

1. If this operation is not supported, send back a NotSupportedError according to the

Protocol Bindings and abort these steps.

2. If this operation is not allowed, send back a NotAllowedError according to the

Protocol Bindings and abort these steps.

3. Let be the value of | |'s 's . If it does not exist, send

back a NotFoundError in the reply and abort these steps.

reply data options

reply observer

8.10 The setPropertyUnobserveHandler() method§

name handler

name this

handler

name handler

interaction td properties name

name

unobserveHandler interaction handler

8.11 Handling Property unobserve requests§

name options

property td properties name

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

42 of 75 8/3/20, 6:14 PM

4. If there is an | | defined for on , invoke that with

, send back a reply following the Protocol Bindings and abort these steps.

5. Let be the matching observer found in 's internal observer list. If

not found, send back a NotFoundError in the reply and abort these steps.

6. Remove from 's internal observer list and send back a reply

following the Protocol Bindings.

A function that is called when an external request for writing a Property is received

and defines what to do with such requests. Takes as argument and returns a

Promise, resolved when the value of the Property - identified by the name provided

when setting the handler has been updated -, or rejects with an error if the property

is not found or the value cannot be updated.

EDITOR'S NOTE

Note that the code in this callback function can read the property before updating

it in order to find out the old value, if needed. Therefore the old value is not

provided to this function.

NOTE

The value is provided by implementations as an InteractionOutput object in order

to be able to represent values that are not described by a DataSchema, such as

streams.

Takes as arguments and . Sets the service handler that defines what to

do when a request is received for writing the Property matched by given when

setting the handler. Throws on error. Returns a reference to object for

supporting chaining.

unobserveHandler name property

options

sender property

sender property

8.12 The PropertyWriteHandler callback§

value

8.13 The setPropertyWriteHandler() method§

name handler

name

this

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

43 of 75 8/3/20, 6:14 PM

NOTE

Note that even for readonly Properties it is possible to specify a write handler, as

explained in Issue 199. In this case, the write handler may define in an

application-specific way to fail the request.

There MUST be at most one write handler for any given Property, so newly added

handlers MUST replace the previous handlers. If no write handler is initialized for

any given Property, implementations SHOULD implement default property update if

the Property is writeable and notifying observers on change if the Property is

observeable, based on the Thing Description.

When the method is invoked given and , implementations MUST run

the following steps:

1. If invoking this method is not allowed for the current scripting context for

security reasons, throw a SecurityError and abort these steps.

2. Let be the value of | |'s 's .

3. If a Property interaction with is not found, throw NotFoundError and abort

these steps.

4. Set the internal slot | | on to .

When a network request for writing a Property with a new value and

 is received, implementations MUST run the following update property

steps, given , , and set to "single":

1. If this operation is not supported, send back a NotSupportedError according to the

Protocol Bindings and abort these steps.

2. If this operation is not allowed, send back a NotAllowedError according to the

Protocol Bindings and abort these steps.

3. Let be the value of | |'s 's .

4. If a Property with does not exist, return a NotFoundError in the reply and

abort these steps.

5. Let be null.

6. If there is a user provided internal slot | | on , let

name handler

interaction td properties name

name

writeHandler interaction handler

8.14 Handling requests for writing a Property§

name value

options

name value options mode

interaction td properties name

name

handler

writeHandler interaction handler

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

44 of 75 8/3/20, 6:14 PM

be that.

7. Otherwise, if there is a default write handler provided by the implementation, let

 be that.

8. Otherwise, if is null, send back a NotSupportedError with the reply and

abort these steps.

9. Let be the result of invoking with and . If it fails,

return the error in the reply and abort these steps.

10. If is "single", reply to the request reporting success, following the Protocol

Bindings and abort these steps.

When a network request for writing multiple Properties given in an object

 is received with , run the following steps:

1. If this operation is not supported, send back a NotSupportedError according to the

Protocol Bindings and abort these steps.

2. If this operation is not allowed, send back a NotAllowedError according to the

Protocol Bindings and abort these steps.

3. For each property with key and value defined in , run

the update property steps with , , and set to "multiple".

If that fails, reply to the request with that error and abort these steps.

4. Reply to the request by sending a single reply according to the Protocol

Bindings.

A function that is called when an external request for invoking an Action is received

and defines what to do with such requests. It is invoked with and optionally

with an object. It returns a Promise that rejects with an error or resolves with

the value returned by the Action as InteractionInput.

NOTE

Application scripts MAY return a ReadableStream object from an ActionHandler.

Implementations will then use the stream for constructing the Action's response.

handler

handler

promise handler name options

mode

8.15 Handling requests for writing multiple Properties§

propertyNames options

name value propertyNames

name value options mode

8.16 The ActionHandler callback§

params

options

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

45 of 75 8/3/20, 6:14 PM

Takes as arguments and . Sets the handler function that defines what to

do when a request is received to invoke the Action matched by . Throws on

error. Returns a reference to object for supporting chaining.

The callback function will implement an Action and SHOULD be called by

implementations when a request for invoking the Action is received from the

underlying platform.

There MUST be at most one handler for any given Action, so newly added handlers

MUST replace the previous handlers.

When the method is invoked given and , run the following steps:

1. If invoking this method is not allowed for the current scripting context for

security reasons, throw a SecurityError and abort these steps.

2. Let be the value of | |'s 's .

3. If an Action with name is not found, throw a NotFoundError and abort these

steps.

4. Set the internal slot | | on to .

When a network request for invoking the Action identified by is received with

 and optionally with , run the following steps:

1. If this operation is not supported, send back a NotSupportedError according to the

Protocol Bindings and abort these steps.

2. If this operation is not allowed, send back a NotAllowedError according to the

Protocol Bindings and abort these steps.

3. Let be the value of | |'s 's .

4. If an Action identified by does not exist, return a NotFoundError in the reply

and abort these steps.

5. Let be null.

6. If there is a user provided internal slot | | on , let

 be its value.

7. If is null, return a NotSupportedError with the reply created by following

8.17 The setActionHandler() method§

name action

name

this

action

name action

interaction td actions name

name

actionHandler interaction action

8.18 Handling Action requests§

name

inputs options

interaction td properties name

name

handler

actionHandler interaction

handler

handler

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

46 of 75 8/3/20, 6:14 PM

the Protocol Bindings and abort these steps.

8. Let be the result of invoking with , and .

9. If rejects, send the error with the reply and abort these steps.

10. When resolves with , use to create and send the reply

according to the Protocol Bindings.

A function that is called when an associated Event is triggered and provides the data

to be sent with the Event to subscribers. Returns a Promise that resolves with

InteractionInput value that represents the Event data, or rejects with an error.

NOTE

Applications MAY return ReadableStream from an EventListenerHandler

Implementations will then use the stream provided in InteractionOutput when

constructing the event notification.

A function that is called when an external request for subscribing to an Event is

received and defines what to do with such requests. It is invoked with a

object provided by the implementation and coming from subscribers. It returns a

Promise that rejects with an error or resolves when the subscription is accepted.

Takes as arguments and . Sets the handler function that defines what

to do when a subscription request is received for the specified Event matched by

. Throws on error. Returns a reference to object for supporting chaining.

The callback function SHOULD implement what to do when an subscribe

request is received, for instance necessary initializations. Note that the handler for

emitting Events is set separately.

There MUST be at most one event subscribe handler for any given Event, so newly

added handlers MUST replace the previous handlers.

promise handler name inputs options

promise

promise data data

8.19 The EventListenerHandler callback§

8.20 The EventSubscriptionHandler callback§

options

8.21 The setEventSubscribeHandler() method§

name handler

name this

handler

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

47 of 75 8/3/20, 6:14 PM

When the method is invoked given and , run the following steps:

1. If invoking this method is not allowed for the current scripting context for

security reasons, throw a SecurityError and abort these steps.

2. Let be the value of | |'s 's .

3. If an Event with the name is not found, throw a NotFoundError and abort

these steps.

4. Set the internal slot | | on to .

5. Return this.

When an Event subscription request for is received by the underlying platform

with optional , run the following steps:

1. If this operation is not supported, send back a NotSupportedError according to the

Protocol Bindings and abort these steps.

2. If this operation is not allowed, send back a NotAllowedError according to the

Protocol Bindings and abort these steps.

3. Let be the value of | |'s 's .

4. If an Event with the name is not found, send back a NotFoundError and abort

these steps.

5. If has an associated | | internal slot, invoke it with

and abort these steps.

6. Otherwise, if no | | is defined, then implement the default

subscriber mechanism:

1. Let be a tuple formed of (from which and

 may be used) and the subscriber information needed to create an Event

notification response.

2. Add to the internal listener list of .

Takes as arguments and . Sets the handler function that defines what

to do when the specified Event matched by is unsubscribed from. Throws on

error. Returns a reference to object for supporting chaining.

name handler

interaction td events name

name

subscribeHandler interaction handler

8.22 Handling Event subscribe requests§

name

options

interaction td events name

name

name subscribeHandler options

subscribeHandler

subscriber options uriVariables

data

subscriber interaction

8.23 The setEventUnsubscribeHandler() method§

name handler

name

this

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

48 of 75 8/3/20, 6:14 PM

The callback function SHOULD implement what to do when an unsubscribe

request is received.

There MUST be at most one handler for any given Event, so newly added handlers

MUST replace the previous handlers.

When the method is invoked with and , run the following steps:

1. If invoking this method is not allowed for the current scripting context for

security reasons, throw a SecurityError and abort these steps.

2. Let be the value of | |'s 's .

3. If an Event with the name is not found, throw a NotFoundError and abort

these steps.

4. Set the internal slot | | on to .

5. Return this.

When an Event unsubscribe request for is received by the underlying platform

optionally with , run the following steps:

1. If this operation is not supported, send back a NotSupportedError according to the

Protocol Bindings and abort these steps.

2. If this operation is not allowed, send back a NotAllowedError according to the

Protocol Bindings and abort these steps.

3. Let be the value of | |'s 's .

4. If an Event with the name is not found, send back a NotFoundError and abort

these steps.

5. If has an associated | | internal slot that is a function,

invoke it with and abort these steps.

6. Otherwise let be the tuple saved in 's internal listener list.

7. Remove from 's internal listener list.

8. Return this.

handler

name handler

interaction td events name

name

unsubscribeHandler interaction handler

8.24 Handling Event unsubscribe requests§

name

options

interaction td events name

name

name unsubscribeHandler

options

subscriber interaction

subscriber interaction

8.25 The setEventHandler() method§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

49 of 75 8/3/20, 6:14 PM

Takes as arguments and . Sets the event handler function for the

specified Event matched by . Throws on error. Returns a reference to

object for supporting chaining.

The callback function will implement what to do when the event is

emitted. It SHOULD resolve with a value that represents the Event data, or reject

with an error.

There MUST be at most one handler for any given Event, so newly added handlers

MUST replace the previous handlers.

When the method is invoked with and , run the following steps:

1. If invoking this method is not allowed for the current scripting context for

security reasons, throw a SecurityError and abort these steps.

2. Let be the value of | |'s 's .

3. If an Event with the name is not found, throw a NotFoundError and abort

these steps.

4. Set the internal slot | | of to .

5. Return this.

When an Event with name is emitted with either by the underlying

platform or by the emitEvent() method, run the following steps:

1. Let be the value of | |'s 's .

2. If is not defined or null,

1. Let be the value of the | | internal slot of

.

2. If is failure, abort these steps.

3. Let be the result of awaiting to resolve the invocation of .

If it rejects, abort these steps.

3. For each in the internal listener list of , run the following

sub-steps:

1. Create an Event notification according to the Protocol Bindings

from and , including its .

2. Send to the subscriber identified by .

name eventHandler

name this

eventHandler

name eventHandler

interaction td events name

name

eventHandler interaction eventHandler

8.26 Handling Events§

name data

interaction td events name

data

eventHandler eventHandler

interaction

eventHandler

data eventHandler

subscriber interaction

response

data subscriber options

response subscriber

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

50 of 75 8/3/20, 6:14 PM

Takes as arguments denoting an Event name and . Triggers emitting the

Event with the given data. The method MUST run the following steps:

1. If invoking this method is not allowed for the current scripting context for

security reasons, throw a SecurityError and abort these steps.

2. Let be the value of | |'s 's .

3. If an Event with the name is not found, throw a NotFoundError and abort

these steps.

4. Make a request to the underlying platform to emit an Event with , using the

Protocol Bindings.

NOTE

This will trigger the handling events steps.

Start serving external requests for the Thing, so that WoT Interactions using

Properties, Actions and Events will be possible. The method MUST run the following

steps:

1. Return a Promise and execute the next steps in parallel.

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

3. Run the expand a TD steps on the internal slot | |.

4. Run the validate a TD on | |. If that fails, reject with a TypeError and

abort these steps.

5. For each Property definition in | |'s , initialize an |internal observer

list| internal slot in order to store observe request data needed to notify the

observers on value changes.

6. For each Event definition is | |'s , initialize an |internal listener list|

internal slot in order to store subscription request data needed to notify the

Event listeners.

7. Set up the WoT Interactions based on introspecting | | as explained in [WOT-

TD] and [WOT-PROTOCOL-BINDINGS]. Make a request to the underlying

8.27 The emitEvent() method§

name data

interaction td events name

name

data

8.28 The expose() method§

promise

promise

td

td promise

td properties

td events

td

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

51 of 75 8/3/20, 6:14 PM

platform to initialize the Protocol Bindings and then start serving external

requests for WoT Interactions (read, write and observe Properties, invoke

Actions and manage Event subscriptions), based on the Protocol Bindings.

8. If there was an error during the request, reject with an Error object

 with 's set to the error code seen by the Protocol Bindings

and abort these steps.

9. Otherwise resolve and abort these steps.

Stop serving external requests for the Thing and destroy the object. Note that

eventual unregistering should be done before invoking this method. The method

MUST run the following steps:

1. Return a Promise and execute the next steps in parallel.

2. If invoking this method is not allowed for the current scripting context for

security reasons, reject with a SecurityError and abort these steps.

3. Make a request to the underlying platform to stop serving external requests for

WoT Interactions, based on the Protocol Bindings.

4. If there was an error during the request, reject with an Error object

 with its set to the error code seen by the Protocol Bindings and

abort these steps.

5. Otherwise resolve and abort these steps.

The next example illustrates how to create an ExposedThing based on a partial TD

object constructed beforehands.

promise

error error message

promise

8.29 The destroy() method§

promise

promise

promise

error message

promise

8.30 ExposedThing Examples§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

52 of 75 8/3/20, 6:14 PM

The next example illustrates how to add or modify a Property definition on an

existing ExposedThing: take its property, add or modify it, then create another

ExposedThing with that.

EXAMPLE 3: Create ExposedThing with a simple Property

try {

let temperaturePropertyDefinition = {

type: "number",

minimum: -50,

maximum: 10000

 };

let tdFragment = {

properties: {

temperature: temperaturePropertyDefinition

 },

actions: {

reset: {

description: "Reset the temperature sensor",

input: {

temperature: temperatureValueDefinition

 },

output: null,

forms: []

 },

 },

events: {

onchange: temperatureValueDefinition

 }

 };

let thing1 = await WOT.produce(tdFragment);

// initialize Properties

await thing1.writeProperty("temperature", 0);

// add service handlers

 thing1.setPropertyReadHandler("temperature", () => {

return readLocalTemperatureSensor(); // Promise

 });

// start serving requests

await thing1.expose();

} catch (err) {

console.log("Error creating ExposedThing: " + err);

}

td

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

53 of 75 8/3/20, 6:14 PM

EXAMPLE 4: Add an object Property

try {

// create a deep copy of thing1's TD

let instance = JSON.parse(JSON.stringify(thing1.td));

const statusValueDefinition = {

type: "object",

properties: {

brightness: {

type: "number",

minimum: 0.0,

maximum: 100.0,

required: true

 },

rgb: {

type: "array",

"minItems": 3,

"maxItems": 3,

items : {

"type" : "number",

"minimum": 0,

"maximum": 255

 }

 }

 };

 instance["name"] = "mySensor";

 instance.properties["brightness"] = {

type: "number",

minimum: 0.0,

maximum: 100.0,

required: true,

 };

 instance.properties["status"] = statusValueDefinition;

 instance.actions["getStatus"] = {

description: "Get status object",

input: null,

output: {

status : statusValueDefinition;

 },

forms: [...]

 };

 instance.events["onstatuschange"] = statusValueDefinition;

 instance.forms = [...]; // update

var thing2 = new ExposedThing(instance);

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

54 of 75 8/3/20, 6:14 PM

Discovery is a distributed application that requires provisioning and support from

participating network nodes (clients, servers, directory services). This API models

the client side of typical discovery schemes supported by various IoT deployments.

The ThingDiscovery object is constructed given a filter and provides the properties

and methods controlling the discovery process.

EDITOR'S NOTE

The ThingDiscovery interface has a next() method and a done property, but it is not

an Iterable. Look into Issue 177 for rationale.

The discovery results internal slot is an internal queue for temporarily storing the

found ThingDescription objects until they are consumed by the application using the

next() method. Implementations MAY optimize the size of this queue based on e.g.

the available resources and the frequency of invoking the next() method.

// TODO: add service handlers

await thing2.expose();

 });

} catch (err) {

console.log("Error creating ExposedThing: " + err);

}

9. The ThingDiscovery interface§

WebIDL

[SecureContext, Exposed=(Window,Worker)]

interface ThingDiscovery {

constructor(optional ThingFilter filter = null);

 readonly attribute ThingFilter? filter;

 readonly attribute boolean active;

 readonly attribute boolean done;

 readonly attribute Error? error;

void start();

Promise<ThingDescription> next();

void stop();

};

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

55 of 75 8/3/20, 6:14 PM

The filter property represents the discovery filter of type ThingFilter specified for

the discovery.

The active property is true when the discovery is actively ongoing on protocol level

(i.e. new TDs may still arrive) and false otherwise.

The done property is true if the discovery has been completed with no more results to

report and discovery results is also empty.

The error property represents the last error that occured during the discovery

process. Typically used for critical errors that stop discovery.

To create ThingDiscovery with a or type ThingFilter, run the following steps:

1. If is not an object or null, throw a TypeError and abort these steps.

2. Let be a new ThingDiscovery object.

3. Set the filter property to .

4. Set the active and done properties to false. Set the error property to null.

5. Return .

The start() method sets active to true. The stop() method sets the active property to

, but done may be still false if there are ThingDescription objects in the discovery

results not yet consumed with next().

During successive calls of next(), the active property may be true or false, but the

done property is set to false by next() only when both the active property is false

and discovery results is empty.

Represents the discovery type to be used:

"any" does not provide any restriction

9.1 Constructing ThingDiscovery§

filter

filter

discovery

filter

discovery

false

9.2 The DiscoveryMethod enumeration§

WebIDL

typedef DOMString DiscoveryMethod;

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

56 of 75 8/3/20, 6:14 PM

"local" for discovering Things defined in the same device or connected to the

device by wired or wireless means.

"directory" for discovery based on a service provided by a Thing Directory.

"multicast" for discovering Things in the device's network by using a supported

multicast protocol.

Represents an object containing the constraints for discovering Things as key-value

pairs.

The method property represents the discovery type that should be used in the

discovery process. The possible values are defined by the DiscoveryMethod

enumeration that MAY be extended by string values defined by solutions (with no

guarantee of interoperability).

The url property represents additional information for the discovery method, such as

the URL of the target entity serving the discovery request, for instance the URL of a

Thing Directory (if method is "directory"), or otherwise the URL of a directly

targeted Thing.

The query property represents a query string accepted by the implementation, for

instance a SPARQL or JSON query. Support may be implemented locally in the WoT

Runtime or remotely as a service in a Thing Directory.

The fragment property represents a template object used for matching property by

property against discovered Things.

Starts the discovery process. The method MUST run the following steps:

9.3 The ThingFilter dictionary§

WebIDL

dictionary ThingFilter {

 (DiscoveryMethod or DOMString) method = "any";

USVString? url;

USVString? query;

object? fragment;

};

9.4 The start() method§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

57 of 75 8/3/20, 6:14 PM

1. If invoking this method is not allowed for the current scripting context for

security reasons, set the error property to a SecurityError and abort these steps.

2. If discovery is not supported by the implementation, set the error property to

NotSupportedError and abort these steps.

3. Let denote the filter property.

4. If the is defined,

If 's is defined, pass it as an opaque string to the underlying

implementation to be matched against discovered items. The underlying

implementation is responsible to parse it e.g. as a SPARQL or JSON query

and match it against the Thing Descriptions found during the discovery

process. If queries are not supported, set |this.error| to NotSupportedError and

abort these steps.

5. Create the discovery results internal slot for storing discovered ThingDescription

objects.

6. Request the underlying platform to start the discovery process, with the

following parameters:

If |filter|s is not defined or the value is "any", use the widest

discovery method supported by the underlying platform.

Otherwise if |filter|s is "local", use the local Thing Directory for

discovery. Usually that defines Things deployed in the same device, or

connected to the device in slave mode (e.g. sensors connected via Bluetooth

or a serial connection).

Otherwise if |filter|s is "directory", use the remote Thing Directory

specified in |filter.url|.

Otherwise if |filter|s is "multicast", use all the multicast discovery

protocols supported by the underlying platform.

7. When the underlying platform has started the discovery process, set the active

property to true.

8. Whenever a new Thing Description is discovered by the underlying platform,

run the following sub-steps:

1. Fetch as a JSON object . If that fails, set the error property to

SyntaxError, discard and continue the discovery process.

2. If 's is defined, check if is a match for the query. The

matching algorithm is encapsulated by implementations. If that returns

false, discard and continue the discovery process.

3. If 's is defined, for each property defined in it, check if that

filter

filter

filter query

method

method

method

method

td

td json

td

filter query json

td

filter fragment

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

58 of 75 8/3/20, 6:14 PM

property exists in 's properties and has the same value. If this is false in

any checks, discard and continue the discovery process.

4. Otherwise add to the discovery results.

5. At this point implementations MAY control the flow of the discovery process

(depending on memory constraints, for instance temporarily stop discovery if

the queue is getting too large, or resume discovery when the queue is

emptied sufficiently).

9. Whenever an error occurs during the discovery process,

1. Let be a new Error object. Set 's to "DiscoveryError".

2. If there was an error code or message provided by the Protocol Bindings, set

's to that value as string.

3. Set error property to .

4. If the error is irrecoverable and discovery has been stopped by the

underlying platform, set the active property to false.

10. When the underlying platform reports the discovery process has completed, set

the active property to false.

Provides the next discovered ThingDescription object. The method MUST run the

following steps:

1. Return a Promise and execute the next steps in parallel.

2. If the active property is true, wait until the discovery results internal slot is not

empty.

3. If discovery results is empty and the active property is false, set the done

property to true and reject .

4. Remove the first ThingDescription object from discovery results.

5. Resolve with and abort these steps.

Stops or suppresses the discovery process. It might not be supported by all

discovery methods and endpoints, however, any further discovery results or errors

will be discarded and the discovery is marked inactive. The method MUST run the

json

td

td

error error name

error message

error

9.5 The next() method§

promise

promise

td

promise td

9.6 The stop() method§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

59 of 75 8/3/20, 6:14 PM

following steps:

1. Request the underlying platform to stop the discovery process. If this returns an

error, or if it is not possible, for instance when discovery is based on open ended

multicast requests, the implementation SHOULD discard subsequent discovered

items.

2. Set the active property to false.

The following example finds ThingDescription objects of Things that are exposed by

local hardware, regardless how many instances of WoT Runtime it is running. Note

that the discovery can end (become inactive) before the internal discovery results

queue is emptied, so we need to continue reading ThingDescription objects until done.

This is typical with local and directory type discoveries.

The next example finds ThingDescription objects of Things listed in a Thing Directory

service. We set a timeout for safety.

9.7 Discovery Examples§

EXAMPLE 5: Discover Things exposed by local hardware

let discovery = new ThingDiscovery({ method: "local" });

do {

let td = await discovery.next();

console.log("Found Thing Description for " + td.title);

let thing = new ConsumedThing(td);

console.log("Thing name: " + thing.getThingDescription().title);

} while (!discovery.done);

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

60 of 75 8/3/20, 6:14 PM

The next example is for an open-ended multicast discovery, which likely won't

complete soon (depending on the underlying protocol), so stopping it with a timeout

is a good idea. It will likely deliver results one by one.

EXAMPLE 6: Discover Things via directory

let discoveryFilter = {

method: "directory",

url: "http://directory.wotservice.org"

};

let discovery = new ThingDiscovery(discoveryFilter);

setTimeout(() => {

 discovery.stop();

console.log("Discovery stopped after timeout.");

 },

3000);

do {

let td = await discovery.next();

console.log("Found Thing Description for " + td.title);

let thing = new ConsumedThing(td);

console.log("Thing name: " + thing.getThingDescription().title);

} while (!discovery.done);

if (discovery.error) {

console.log("Discovery stopped because of an error: " + error.message);

}

EXAMPLE 7: Discover Things in a network

let discovery = new ThingDiscovery({ method: "multicast" });

setTimeout(() => {

 discovery.stop();

console.log("Stopped open-ended discovery");

 },

10000);

do {

let td = await discovery.next();

let thing = new ConsumedThing(td);

console.log("Thing name: " + thing.getThingDescription().title);

} while (!discovery.done);

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

61 of 75 8/3/20, 6:14 PM

A detailed discussion of security and privacy considerations for the Web of Things,

including a threat model that can be adapted to various circumstances, is presented

in the informative document [WOT-SECURITY-GUIDELINES]. This section discusses

only security and privacy risks and possible mitigations directly relevant to the

scripts and WoT Scripting API.

A suggested set of best practices to improve security for WoT devices and services

has been documented in [WOT-SECURITY-BEST-PRACTICES]. That document may

be updated as security measures evolve. Following these practices does not

guarantee security, but it might help avoid common known vulnerabilities.

The WoT security risks and possible mitigations are concerning the following

groups:

Implementors of WoT Runtimes that do not implement a Scripting Runtime. The

[WOT-ARCHITECTURE] document provides generic security guidelines for this

group.

Implementors of the WoT Scripting API in a WoT Scripting Runtime. This is the

main scope and is covered in the Scripting Runtime Security and Privacy Risks

sub-section that contains normative text regarding security.

WoT script developers, covered in the Script Security and Privacy Risks sub-

section that contains informative recommendations concerning security.

This section is normative and contains specific risks relevant for the WoT Scripting

Runtime.

A typical way to compromise any process is to send it a corrupted input via one of

the exposed interfaces. This can be done to a script instance using WoT interface it

exposes.

Mitigation:
Implementors of this API SHOULD perform validation on all script inputs. In

addition to input validation, fuzzing should be used to verify that the input

processing is done correctly. There are many tools and techniques in existence

10. Security and Privacy§

10.1 Scripting Runtime Security and Privacy Risks§

10.1.1 Corrupted Input Security and Privacy Risk§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

62 of 75 8/3/20, 6:14 PM

to do such validation. More details can be found in [WOT-SECURITY-TESTING].

In case a script is compromised or misbehaving, the underlying physical device (and

potentially surrounded environment) can be damaged if a script can use directly

exposed native device interfaces. If such interfaces lack safety checks on their

inputs, they might bring the underlying physical device (or environment) to an

unsafe state (i.e. device overheats and explodes).

Mitigation:
The WoT Scripting Runtime SHOULD avoid directly exposing the native device

interfaces to the script developers. Instead, a WoT Scripting Runtime should

provide a hardware abstraction layer for accessing the native device interfaces.

Such hardware abstraction layer should refuse to execute commands that might

put the device (or environment) to an unsafe state. Additionally, in order to

reduce the damage to a physical WoT device in cases a script gets compromised,

it is important to minimize the number of interfaces that are exposed or

accessible to a particular script based on its functionality.

If the WoT Scripting Runtime supports post-manufacturing provisioning or updates

of scripts, WoT Scripting Runtime or any related data (including security

credentials), it can be a major attack vector. An attacker can try to modify any above

described element during the update or provisioning process or simply provision

attacker's code and data directly.

Mitigation:
Post-manufacturing provisioning or update of scripts, WoT Scripting Runtime or

any related data should be done in a secure fashion. A set of recommendations

for secure update and post-manufacturing provisioning can be found in [WOT-

SECURITY-GUIDELINES].

Typically the WoT Scripting Runtime needs to store the security credentials that are

provisioned to a WoT device to operate in WoT network. If an attacker can

compromise the confidentiality or integrity of these credentials, then it can obtain

access to the WoT assets, impersonate WoT things or devices or create Denial-Of-

10.1.2 Physical Device Direct Access Security and Privacy Risk§

10.1.3 Provisioning and Update Security Risk§

10.1.4 Security Credentials Storage Security and Privacy Risk§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

63 of 75 8/3/20, 6:14 PM

Service (DoS) attacks.

Mitigation:
The WoT Scripting Runtime should securely store the provisioned security

credentials, guaranteeing their integrity and confidentiality. In case there are

more than one tenant on a single WoT-enabled device, a WoT Scripting Runtime

should guarantee isolation of each tenant provisioned security credentials.

Additionally, in order to minimize a risk that provisioned security credentials get

compromised, the WoT Scripting Runtime should not expose any API for scripts

to query the provisioned security credentials.

This section is non-normative.

This section describes specific risks relevant for script developers.

A script instance may receive data formats defined by the TD, or data formats

defined by the applications. While the WoT Scripting Runtime SHOULD perform

validation on all input fields defined by the TD, scripts may be still exploited by input

data.

Mitigation:
Script developers should perform validation on all application defined script

inputs. In addition to input validation, fuzzing could be used to verify that the

input processing is done correctly. There are many tools and techniques in

existence to do such validation. More details can be found in [WOT-SECURITY-

TESTING].

If a script performs a heavy functional processing on received requests before the

request is authenticated, it presents a great risk for Denial-Of-Service (DOS) attacks.

Mitigation:
Scripts should avoid heavy functional processing without prior successful

authentication of requestor. The set of recommended authentication mechanisms

can be found in [WOT-SECURITY-BEST-PRACTICES].

10.2 Script Security and Privacy Risks§

10.2.1 Corrupted Script Input Security and Privacy Risk§

10.2.2 Denial Of Service Security Risk§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

64 of 75 8/3/20, 6:14 PM

During the lifetime of a WoT network, a content of a TD can change. This includes its

identifier, which might not be an immutable one and might be updated periodically.

Mitigation:
Scripts should use this API to subscribe for notifications on TD changes and do

not rely on TD values to remain persistent.

EDITOR'S NOTE

While stale TDs can present a potential problem for WoT network operation, it

might not be a security risk.

The generic WoT terminology is defined in [WOT-ARCHITECTURE]: Thing, Thing

Description (in short TD), Web of Things (in short WoT), WoT Interface (same as

WoT network interface), Protocol Bindings, WoT Runtime, Consuming a

Thing Description, Thing Directory, WoT Interactions, Property, Action,

Event, DataSchema, Form etc.

JSON-LD is defined in [JSON-LD] as a JSON document that is augmented with

support for Linked Data.

JSON schema is defined in these specifications.

The terms URL, URL scheme, URL host, URL path, URL record, parse a URL,

absolute-URL string, path-absolute-URL string, basic URL parser are defined

in [URL].

The terms MIME type, Parsing a MIME type, Serializing a MIME type, valid

MIME type string, JSON MIME type are defined in [MIMESNIFF].

The terms UTF-8 encoding, UTF-8 decode, encode, decode are defined in

[ENCODING].

string, parse JSON from bytes and serialize JSON to bytes, are defined in

[INFRA].

Promise, Error, JSON, JSON.stringify, JSON.parse, internal method and internal

slot are defined in [ECMASCRIPT].

10.2.3 Stale TD Security Risk§

11. Terminology and conventions§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

65 of 75 8/3/20, 6:14 PM

The terms browsing context, top-level browsing context, global object,

current settings object, executing algorithms in parallel are defined in [HTML5]

and are used in the context of browser implementations.

The term secure context is defined in [WEBAPPSEC].

IANA media types (formerly known as MIME types) are defined in RFC2046.

The terms hyperlink reference and relation type are defined in [HTML5] and

RFC8288.

API rationale usually belongs to a separate document, but in the WoT case the

complexity of the context justifies including basic rationale here.

The WoT Interest Group and Working Group have explored different approaches to

application development for WoT that have been all implemented and tested.

It is possible to develop WoT applications that only use the WoT network interface,

typically exposed by a WoT gateway that presents a REST-ful API towards clients and

implements IoT protocol plugins that communicate with supported IoT deployments.

One such implementation is the Mozilla WebThings platform.

WoT Things show good synergy with software objects, so a Thing can be represented

as a software object, with Properties represented as object properties, Actions as

methods, and Events as events. In addition, metadata is stored in special properties.

Consuming and exposing is done with factory methods that produce a software

object that directly represents a remote Thing and its interactions. One such

implementation is the Arena Web Hub project.

In the next example, a Thing that represents interactions with a lock would look like

the following: the property and the open() method are directly exposed on the

A. API design rationale§

A.1 Approaches to WoT application development§

A.1.1 No Scripting API§

A.1.2 Simple Scripting API§

status

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

66 of 75 8/3/20, 6:14 PM

object.

Since the direct mapping of Things to software objects have had some challenges,

this specification takes another approach that exposes software objects to represent

the Thing metadata as data property and the WoT interactions as methods. One

implementation is node-wot in the the Eclipse ThingWeb project, which is the

current reference implementation of the API specified in this document.

The same example now would look like the following: the property and the

open() method are represented indirectly.

In conclusion, the WoT WG decided to explore the third option that closely follows

the [WOT-TD] specification. Based on this, a simple API can also be implemented.

Since Scripting is an optional module in WoT, this leaves room for applications that

only use the WoT network interface. Therefore all three approaches above are

supported by [WOT-TD].

Moreover, the WoT network interface can be implemented in many languages and

runtimes. Consider this API an example for what needs to be taken into

consideration when designing a Scripting API for WoT.

EXAMPLE 8: Open a lock with a simple API

let lock = await WoT.consume(‘https://td.my.com/lock-00123’);

console.log(lock.status);

lock.open('withThisKey');

A.1.3 This API, aligned with [WOT-TD]§

status

EXAMPLE 9: Open a lock

let res = await fetch(‘https://td.my.com/lock-00123’);

let td = await res.json();

let lock = new ConsumedThing(td);

console.log(lock.readProperty(‘status’));

lock.invokeAction(‘open’, 'withThisKey');

A.2 Fetching and validating a TD§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

67 of 75 8/3/20, 6:14 PM

The fetch(url) method has been part of this API in earlier versions. However, now

fetching a TD given a URL should be done with an external method, such as the

Fetch API or a HTTP client library, which offer already standardized options on

specifying fetch details. The reason is that while simple fetch operations (covering

most use cases) could be done in this API, when various fetch options were needed,

there was no point in duplicating existing work to re-expose those options in this

API.

Since fetching a TD has been scoped out, and TD validation is defined externally in

[WOT-TD], that is scoped out, too. This specification expects a TD as parsed JSON

object that has been validated according to the [WOT-TD] specification.

The factory methods for consuming and exposing Things are asynchronous and fully

validate the input TD. In addition, one can also construct ConsumedThing and

ExposedThing by providing a parsed and validated TD. Platform initialization is then

done when needed during the WoT interactions. So applications that prefer

validating a TD themselves, may use the constructors, whereas applications that

leave validation to implementations and prefer interactions initialized up front

SHOULD use the factory methods on the WoT API object.

Earlier drafts used the Observer construct, but since it has not become standard, a

new design was needed that was light enough for embedded implementations.

Therefore observing Property changes and handling WoT Events is done with

callback registrations.

This API ended up not using software events at all, for the following reasons:

Subscription to WoT Events may be different from handling software events

(subscription might need parameters, might involve security tokens etc).

Most implementations are for Node.js and browser implementations will likely

be libraries (because possible dependency management issues in native

implementations), using Events has been challenging.

A.3 Factory vs constructors§

A.4 Observers§

A.5 Using Events§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

68 of 75 8/3/20, 6:14 PM

Observing Property changes and handling WoT Events is done with the solution

above.

The reason to use function names like readProperty(), readMultipleProperties() etc.

instead of a generic polymorphic read() function is that the current names map

exactly to the "op" vocabulary from the Form definition in [WOT-TD].

The following is a list of major changes to the document. Major versions of this

specification are the following:

First Public Working Draft September 2017.

Working Draft April 2018.

Working Draft November 2018.

This version, introducing the following major changes:

Remove fetch() for fetching a TD (delegated to external API).

Remove Observer and use W3C TAG recommended design patterns.

Align the discovery API to other similar APIs (such as W3C Generic Sensor

API).

Remove the large data definition API for constructing TDs and leverage

using ThingDescription instead.

Add missing algorithms and rework most existing ones.

Allow constructors for ConsumedThing and ExposedThing.

Add API rationale as an appendix to this document.

For a complete list of changes, see the github change log. You can also view the

recently closed issues.

The following problems are being discussed and need most attention:

Script management and runtime related issues (https://github.com/w3c/wot-

A.6 Polymorphic functions§

B. Changes§

C. Open issues§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

69 of 75 8/3/20, 6:14 PM

scripting-api/issues/)

An explicit API for adding and removing Property, Action and Event definitions

on ExposedThing (it was present in earlier versions, but removed for complexity

and a simpler way to do it.

D. Full Web IDL§

WebIDL

typedef object ThingDescription;

[SecureContext, Exposed=(Window,Worker)]

namespace WOT {

 // methods defined in UA conformance classes

};

partial namespace WOT {

Promise<ConsumedThing> consume(ThingDescription td);

};

partial namespace WOT {

Promise<ExposedThing> produce(ThingDescription td);

};

partial namespace WOT {

ThingDiscovery discover(optional ThingFilter filter = null);

};

typedef any DataSchemaValue;

typedef (ReadableStream or DataSchemaValue) InteractionInput;

[SecureContext, Exposed=(Window,Worker)]

interface InteractionOutput {

 readonly attribute ReadableStream? data;

 readonly attribute boolean dataUsed;

 readonly attribute Form? form;

 readonly attribute DataSchema? schema;

Promise<ArrayBuffer> arrayBuffer();

Promise<any> value();

};

[SecureContext, Exposed=(Window,Worker)]

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

70 of 75 8/3/20, 6:14 PM

interface ConsumedThing {

constructor(ThingDescription td);

Promise<InteractionOutput> readProperty(DOMString propertyName,

 optional InteractionOptions options = null);

Promise<PropertyMap> readAllProperties(optional InteractionOptions options =

null);

Promise<PropertyMap> readMultipleProperties(

sequence<DOMString> propertyNames,

 optional InteractionOptions options = null);

Promise<void> writeProperty(DOMString propertyName,

InteractionInput value,

 optional InteractionOptions options = null);

Promise<void> writeMultipleProperties(PropertyMap valueMap,

 optional InteractionOptions options = null);

Promise<InteractionOutput> invokeAction(DOMString actionName,

 optional InteractionInput params = null,

 optional InteractionOptions options = null);

Promise<void> observeProperty(DOMString name,

WotListener listener,

 optional InteractionOptions options = null);

Promise<void> unobserveProperty(DOMString name,

 optional InteractionOptions options = null);

Promise<void> subscribeEvent(DOMString name,

WotListener listener,

 optional InteractionOptions options = null);

Promise<void> unsubscribeEvent(DOMString name,

 optional InteractionOptions options = null);

ThingDescription getThingDescription();

};

dictionary InteractionOptions {

unsigned long formIndex;

object uriVariables;

any data;

};

typedef object PropertyMap;

callback WotListener = void(InteractionOutput data);

[SecureContext, Exposed=(Window,Worker)]

interface ExposedThing: ConsumedThing {

ExposedThing setPropertyReadHandler(DOMString name,

PropertyReadHandler handler);

ExposedThing setPropertyWriteHandler(DOMString name,

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

71 of 75 8/3/20, 6:14 PM

PropertyWriteHandler handler);

ExposedThing setPropertyObserveHandler(DOMString name,

PropertyReadHandler handler);

ExposedThing setPropertyUnobserveHandler(DOMString name,

PropertyReadHandler handler);

ExposedThing setActionHandler(DOMString name, ActionHandler action);

ExposedThing setEventSubscribeHandler(DOMString name,

EventSubscriptionHandler handler);

ExposedThing setEventUnsubscribeHandler(DOMString name,

EventSubscriptionHandler handler);

ExposedThing setEventHandler(DOMString name,

EventListenerHandler eventHandler);

void emitEvent(DOMString name, InteractionInput data);

Promise<void> expose();

Promise<void> destroy();

};

callback PropertyReadHandler = Promise<any>(

 optional InteractionOptions options = null);

callback PropertyWriteHandler = Promise<void>(

InteractionOutput value,

 optional InteractionOptions options = null);

callback ActionHandler = Promise<InteractionInput>(

InteractionOutput params,

 optional InteractionOptions options = null);

callback EventSubscriptionHandler = Promise<void>(

 optional InteractionOptions options = null);

callback EventListenerHandler = Promise<InteractionInput>();

[SecureContext, Exposed=(Window,Worker)]

interface ThingDiscovery {

constructor(optional ThingFilter filter = null);

 readonly attribute ThingFilter? filter;

 readonly attribute boolean active;

 readonly attribute boolean done;

 readonly attribute Error? error;

void start();

Promise<ThingDescription> next();

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

72 of 75 8/3/20, 6:14 PM

Special thanks to former editor Johannes Hund (until August 2017, when at Siemens

AG) and Kazuaki Nimura (until December 2018) for developing this specification.

Also, the editors would like to thank Dave Raggett, Matthias Kovatsch, Michael

Koster, Elena Reshetova, Michael McCool as well as the other WoT WG members for

their comments, contributions and guidance.

[ECMASCRIPT]
ECMAScript Language Specification. Ecma International. URL: https://tc39.es

/ecma262/

[ENCODING]
Encoding Standard. Anne van Kesteren. WHATWG. Living Standard. URL:

https://encoding.spec.whatwg.org/

[HTML]
HTML Standard. Anne van Kesteren; Domenic Denicola; Ian Hickson; Philip

Jägenstedt; Simon Pieters. WHATWG. Living Standard. URL:

https://html.spec.whatwg.org/multipage/

[HTML5]
HTML5. Ian Hickson; Robin Berjon; Steve Faulkner; Travis Leithead; Erika Doyle

Navara; Theresa O'Connor; Silvia Pfeiffer. W3C. 27 March 2018. W3C

Recommendation. URL: https://www.w3.org/TR/html5/

void stop();

};

typedef DOMString DiscoveryMethod;

dictionary ThingFilter {

 (DiscoveryMethod or DOMString) method = "any";

USVString? url;

USVString? query;

object? fragment;

};

E. Acknowledgements§

F. References§

F.1 Normative references§

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

73 of 75 8/3/20, 6:14 PM

[INFRA]
Infra Standard. Anne van Kesteren; Domenic Denicola. WHATWG. Living

Standard. URL: https://infra.spec.whatwg.org/

[JSON-LD]
JSON-LD 1.0. Manu Sporny; Gregg Kellogg; Markus Lanthaler. W3C. 16 January

2014. W3C Recommendation. URL: https://www.w3.org/TR/json-ld/

[MIMESNIFF]
MIME Sniffing Standard. Gordon P. Hemsley. WHATWG. Living Standard. URL:

https://mimesniff.spec.whatwg.org/

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF.

March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF.

May 2017. Best Current Practice. URL: https://tools.ietf.org/html/rfc8174

[TYPESCRIPT]
TypeScript Language Specification. Microsoft. 1 October 2012. URL:

https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md

[URL]
URL Standard. Anne van Kesteren. WHATWG. Living Standard. URL:

https://url.spec.whatwg.org/

[WEBAPPSEC]
Secure Contexts. W3C. 17 July 2015. URL: https://w3c.github.io/webappsec

/specs/powerfulfeatures

[WEBIDL]
Web IDL. Boris Zbarsky. W3C. 15 December 2016. W3C Editor's Draft. URL:

https://heycam.github.io/webidl/

[WOT-ARCHITECTURE]
Web of Things Architecture. W3C. 16 May 2019. URL: https://www.w3.org

/TR/2019/CR-wot-architecture-20190516/

[WOT-PROTOCOL-BINDINGS]
Web of Things Protocol Binding Templates. W3C. 20 August 2017. URL:

https://w3c.github.io/wot-binding-templates/

[WOT-SECURITY-BEST-PRACTICES]
Web of Things Security and Privacy Best Practices. W3C. WIP. URL:

https://github.com/w3c/wot-security/blob/master/wot-security-best-practices.md

[WOT-SECURITY-GUIDELINES]
Web of Things Security and Privacy Guidelines. W3C. 28 August 2017. URL:

https://w3c.github.io/wot-security/

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

74 of 75 8/3/20, 6:14 PM

[WOT-SECURITY-TESTING]
Web of Things Security Testing and Validation. W3C. WIP. URL:

https://github.com/w3c/wot-security/blob/master/wot-security-testing.md

[WOT-TD]
WoT Thing Description . W3C. 16 May 2019. URL: https://www.w3.org/TR/2019

/CR-wot-thing-description-20190516/

↑

Web of Things (WoT) Scripting API https://w3c.github.io/wot-scripting-api/

75 of 75 8/3/20, 6:14 PM

