
RDF Shape Rule Language
SHRL – pronounced as shurl

Dave Raggett, 14 December 2016

Open source implementation in JavaScript



Shape Rule Language (SHRL)

• The ability to validate data is important for data processing
• XML Schema can be used to validate data in XML
• We likewise need a validation language for RDF

• A means to validate a collection of triples
• Each triple is defined by its subject, predicate and object
• RDF Schema and OWL focus on inferencing not validation

• SHRL is based upon augmented transition networks (ATNs)
• ATNs were developed in early 1970's for natural language processing
• ATNs can be readily applied to traversing RDF graphs
• Simpler and easier to understand than alternatives e.g. SHACL and ShEx
• Facilitates graphic views and editing of rules

• A rule graph defining a set of shapes is applied to a data graph



Shape Rule Language

• RDF implementation of Augmented Transition Networks



The shape in RDF using Turtle
@prefix sh: <http://www.w3.org/ns/shrl#>

@prefix td: <http://www.w3.org/ns/td#>

@prefix ex: <http://example.com/ns#>

ex:rule1

a sh:Shape ;

sh:targetClass td:thing ;

sh:and ex:rule2 .

ex:rule2

sh:rel td:property ;

sh:and ex:rule3 , ex:rule2 .

ex:rule3

rdfs:comment "Every property must have exactly one name" ;

sh:rel td:name ;

sh:minCount 1 ;

sh:maxCount 1 . n.b. the names spaces are yet to be standardizrd
and are given for illustration purposes only



Explanation

• Rule 1 states that it defines a shape and matches RDF nodes that have 
rdf:type td:thing, i.e. nodes that represent a thing

• Rule 2 traverses from subject to object for triples with the predicate 
td:property
• This rule loops back on itself to handle properties with sub-properties

• Rule 3 traverses triples with the predicate td:name and applies 
cardinality constraints to check that there is one and only one name

• If a rule's constraints are violated, its comment is used as an error 
message



SHRL Features

• Each shape must be indicated by a rule with a sh:shape*
• In other words, this rule is an instance of the class "shape"
• Each such rule must select a set of nodes in the data graph

• You can select a particular data node with sh:targetNode node

• Or select all data nodes that have a given class
• sh:targetClass class– selects all x such that "x a class"

• Or select all subjects with a given predicate using sh:rel predicate
• Select all x such that "x predicate y"

• Or select all objects with a given predicate using sh:rev predicate
• Select all y such that "x predicate y"

• Or select nodes on the basis of the predicate class
• sh:relClass and sh:revClass by analogy with targetClass, rel and rev above

• You may use sh:shape with more than one of the above selectors

*Turtle abbreviates “x rdf:type y” as “x a y”



Each rule traverses one or more triples

• Rules without sh:shape must have one of the following

• sh:rel – follow the given predicate from subject to object

• sh:rev – follow the given predicate from object to subject

• sh:relClass – follow predicates that are instances of the given class
• Transitioning from subject to object

• sh:revClass – follow predicates that are instances of the given class
• Transitioning from object to subject

• The traversal determines the set of data nodes to be passed to the 
rule's successors



SHRL Constraints

• sh:minCount and sh:maxCount – cardinality constraints on the triples 
traversed by the rule

• sh:min and sh:max – range constraints on numeric literal nodes

• sh:value – the node must have the given value

• sh:match – regular expression constraining string literal nodes

• a sh:string – the node must be a string literal

• a sh:number – the node must be a numeric literal

• a sh:integer – the node must be an integer literal

• a sh:boolean – the node must be a boolean literal

• a sh:nonLiteral – the node must not be a literal



Rules are chained together

• Rules are chained together with one of the following predicates that 
designate successor rules

• sh:and – all of the successors to this rule must be valid

• sh:or – at least one of the successors to this rule must be valid

• sh:one - exactly one of the successors to this rule must be valid

• sh:not – this rule is only valid if all of its successors are invalid

• If a successor rule is a :sh:shape, its selectors are ignored

ex:rule2
sh:rel td:property ;
sh:and ex:rule3 , ex:rule 2 .

Example rule



Augmentation with Application Code

• You can augment the transition network with application code for
• Constraints across different properties of a thing
• Constraints on the number of levels of nested properties
• Constraints across metadata at different levels of a thing's object model
• Generating output as a side effect of "recognizing a shape"
• sh:scope – declares a new named scope

• Inner scopes override outer scopes with the same name

• sh:eval – invoke the named application defined function
• Operates on the current data node and scope chain
• Is called after processing the successors for this rule
• The function should return false to indicate a failed test

• Future work will allow rule actions to be defined in RDF itself


