EVM Blockchain Integration

General

The idea is to generate, store, and validate Agreement Proofs on the blockchain

instead of IPFS. This will bring several benefits to the system:

1. Longevity: While IPFS data may disappear if no nodes are interested in
storing the data, on the blockchain, the data is immutable and will remain

forever.

2. Immutability: The data on blockchains like Ethereum or Polygon is much

more difficult to tamper with than the data on IPFS.
3. Publicity: On the blockchain, all data and programming code are public. This

will enable users to trust the proofs created on the blockchain as the logic of
creating the proof, along with the proof itself, is publicly available.

Furthermore, all signatures can be verified on-chain.

Store Proofs Metadata

General

A smart contract will be created to store metadata related to the Agreement
File/Sign Proof and its version. This metadata will then be utilized in other smart

contracts to generate proofs and verify user signatures.

Agreement File Proof Metadata

"types": {
"EIP712Domain": [
{ "name": "name", "type": "string" },
{ "name": "version", "type": "string" },
{ "name": "chailnId", "type": "uinte4" },
{ "name": "verifyingContract", "type": "address" }
1,

"Agreement": [

O 00 N o U1l A W N B



10 { "name": "from", "type": "address" },

11 { "name": "agreementFileCID", "type": "string" },
12 { "name": "signers", "type": "Signers" },
13 { "name": "app", "type": "string" },

14 { "name": "timestamp", "type": "uinte4" },
15 { "name": "metadata", "type": "string" }
16 1,

17 "Signers": [

18 { "name": "address", "type": "string" },
19 { "name": "metadata", "type": "string" }
20 ]

21 },

22 "domain": {

23 "name": "daosign",

24 "version": "0.1.0"

25 }s

26 "primaryType": "Agreement"

27 }

Agreement Sign Proof Metadata

N {

2 "types": {

3 "EIP712Domain": [

4 { "name": "name", "type": "string" },

5 { "name": "version", "type": "string" },

6 { "name": "chainId", "type": "uint64" },

7 { "name": "verifyingContract", "type": "address" }
8 1,

9 "Agreement": [

10 { "name": "signer", "type": "address" },

11 { "name": "agreementFileProofCID", "type": "string" },
12 { "name": "app", "type": "string" },

13 { "name": "timestamp", "type": "uinte4" },

14 { "name": "metadata", "type": "string" }

15 ]

16 }s

17 "domain": {

18 "name": "daosign",

19 "version": "0.1.0"

20 e



21 "primaryType": "Agreement"
22}

Store Proofs

General

A smart contract should be created to store Agreement File Proof data, as well
as all Agreement Sign Proofs data. This contract should be able to compute IPFS
CID, which would allow for the generation of Agreement File Proof and
Agreement Sign Proof. However, it should be noted that this contract does not

provide proof verification.

Agreement File Proof

Store only message and signature

1 {

2 "message": {

3 "from": "<Creator's address>",

4 "agreementFileCID": "<Agreement File CID>",

5 "signers": [

6 { "address": "<Signer 1 address>", "metadata": "{}" },
7 { "address": "<Signer 2 address>", "metadata": "{}" },
8 { "address": "<Signer 3 address>", "metadata": "{}" }
9 1,

10 "app": "daosign",

11 "timestamp": <timestamp in seconds>,

12 "metadata": "{}"

13 s

14 "sig": "<User's signature of Agreement File Proof Data>",
15 }

Agreement Sign Proof

Store only message and signature

2 "message": {

3 "signer": "<signer's address>",



4 "agreementFileProofCID": "<Agreement File Proof CID>",
5 "app": "daosign",

6 "timestamp": <timestamp in seconds>,

7 "metadata": "{}"

8 }s

9 "sig": "<signer's signature>"

10 }

Validate Signatures of the users

General

Create a Solidity library to validate user signatures. The signatures can be either
proofs that are stored on or off-chain, or simply signatures of general-purpose
data.

Gasless transactions for the end users

To send gasless (or meta) transactions, the EIP-2771 is utilized.

Signer Relay Eorwarder Contract

signs & sends request
(off-chain)

sendAndVerify(request) _
bl

1

1

1

1

1

1

1

1

1

:] |
verify signature !
1

1

i

1

1

1

1

1

]

|
| GE’E / [Scope of this ERC]

execute
(with client-addr appended) _

-megSender() f]:)
check msg.sender,
extract client addr

Signer Relay Eorwarder Contract

Technical Design Diagram

A tentative architecture for the smart contracts has been presented in this

diagram:


https://eips.ethereum.org/EIPS/eip-2771

User

[off-chain] signed request

Gas Relay SC

[on-chain] verified request with gas fees

Trusted Forwarder SC

execute
Proofs Generation / Storage SC Proofs Verification Library Validates
Proof generation . any signatures
Initialize Initialize

and storage

1. Store Agreement File/Sign Proof . Proofs Metadata and Proofs Storaage
Metadata for this proof version SC addresses

Write
Read
1. Store Agreement File/Sign Proof Data
2. Generate IPFS CID for the proof . (on-chain proof) By Proof CID, signer's
3. Store the proof for the user address, and proof ID in Proofs
Storage SC - validate the signature

2. (off-chain proof) By Proof type (File or
Sign), message data, Proof CID,
Read signer's address, and proof ID in
Proofs Storage SC - validate the
1. View Agreement File/Sign Proof for the signature
user 3. (custom data) By given data, signer's
2. Precompute on fly and view address, and signature — validate the
Agreement Proof for the user signature
Proofs metadata storage Proofs Metadata Storage SC
for different versions B Note
Initialize

In the future we may want to extend the functionality of the platform to use Blockchain. In this case
1. Init owner of the smart contract. we may need to add chainId and verifyingContract fields in the domain block of Agreement

File Proof and Agreement Sign Proof.

Write Chain ID will enforce MetaMask to sign the payload only at the requested network, and Verifying

Contract will indicate the address of a smart contract that can verify the signature.
1. Update Agreement File/Signature
proof metadata

25 “chainId": 1,
26 "verifyingContract":

Read

1. View proofs metadata version
2. View proofs metadata




