
EVM Blockchain Integration

General

The idea is to generate, store, and validate Agreement Proofs on the blockchain

instead of IPFS. This will bring several benefits to the system:

1. Longevity: While IPFS data may disappear if no nodes are interested in

storing the data, on the blockchain, the data is immutable and will remain

forever.

2. Immutability: The data on blockchains like Ethereum or Polygon is much

more difficult to tamper with than the data on IPFS.

3. Publicity: On the blockchain, all data and programming code are public. This

will enable users to trust the proofs created on the blockchain as the logic of

creating the proof, along with the proof itself, is publicly available.

Furthermore, all signatures can be verified on-chain.

Store Proofs Metadata

General

A smart contract will be created to store metadata related to the Agreement

File/Sign Proof and its version. This metadata will then be utilized in other smart

contracts to generate proofs and verify user signatures.

Agreement File Proof Metadata

1

2

3

4

5

6

7

8

9

{

 "types": {

 "EIP712Domain": [

 { "name": "name", "type": "string" },

 { "name": "version", "type": "string" },

 { "name": "chainId", "type": "uint64" },

 { "name": "verifyingContract", "type": "address" }

],

 "Agreement": [

Agreement Sign Proof Metadata

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

 { "name": "from", "type": "address" },

 { "name": "agreementFileCID", "type": "string" },

 { "name": "signers", "type": "Signers" },

 { "name": "app", "type": "string" },

 { "name": "timestamp", "type": "uint64" },

 { "name": "metadata", "type": "string" }

],

 "Signers": [

 { "name": "address", "type": "string" },

 { "name": "metadata", "type": "string" }

]

 },

 "domain": {

 "name": "daosign",

 "version": "0.1.0"

 },

 "primaryType": "Agreement"

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

{

 "types": {

 "EIP712Domain": [

 { "name": "name", "type": "string" },

 { "name": "version", "type": "string" },

 { "name": "chainId", "type": "uint64" },

 { "name": "verifyingContract", "type": "address" }

],

 "Agreement": [

 { "name": "signer", "type": "address" },

 { "name": "agreementFileProofCID", "type": "string" },

 { "name": "app", "type": "string" },

 { "name": "timestamp", "type": "uint64" },

 { "name": "metadata", "type": "string" }

]

 },

 "domain": {

 "name": "daosign",

 "version": "0.1.0"

 },

Store Proofs

General

A smart contract should be created to store Agreement File Proof data, as well

as all Agreement Sign Proofs data. This contract should be able to compute IPFS

CID, which would allow for the generation of Agreement File Proof and

Agreement Sign Proof. However, it should be noted that this contract does not

provide proof verification.

Agreement File Proof

Store only message and signature

Agreement Sign Proof

Store only message and signature

21

22

 "primaryType": "Agreement"

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

{

 "message": {

 "from": "<Creator's address>",

 "agreementFileCID": "<Agreement File CID>",

 "signers": [

 { "address": "<Signer 1 address>", "metadata": "{}" },

 { "address": "<Signer 2 address>", "metadata": "{}" },

 { "address": "<Signer 3 address>", "metadata": "{}" }

],

 "app": "daosign",

 "timestamp": <timestamp in seconds>,

 "metadata": "{}"

 },

 "sig": "<User's signature of Agreement File Proof Data>",

}

1

2

3

{

 "message": {

 "signer": "<signer's address>",

Validate Signatures of the users

General

Create a Solidity library to validate user signatures. The signatures can be either

proofs that are stored on or off-chain, or simply signatures of general-purpose

data.

Gasless transactions for the end users

To send gasless (or meta) transactions, the EIP-2771 is utilized.

Technical Design Diagram

A tentative architecture for the smart contracts has been presented in this

diagram:

4

5

6

7

8

9

10

 "agreementFileProofCID": "<Agreement File Proof CID>",

 "app": "daosign",

 "timestamp": <timestamp in seconds>,

 "metadata": "{}"

 },

 "sig": "<signer's signature>"

}

https://eips.ethereum.org/EIPS/eip-2771

