Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
executable file 13609 lines (12116 sloc) 543 KB
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<meta name="description" content="Universal Open Source Client-Side Paper Wallet Generator for BitCoins and other cryptocurrencies. Create your own paper wallet in a few easy steps : Generate, Print and Fold !">
<meta name="keywords" content="universal, paper, wallet, generator, cryptocurrencies, bitcoin, litecoin, dogecoin" />
<!--
Notice of Copyrights and Licenses:
---------------------------------------
The WalletGenerator.net project, software and embedded resources are copyright WalletGenerator.net.
The WalletGenerator.net name and logo are not part of the open source license.
Portions of the all-in-one HTML document contain JavaScript codes that are the copyrights of others.
The individual copyrights are included throughout the document along with their licenses. Included
JavaScript libraries are separated with HTML script tags.
Summary of JavaScript functions with a redistributable license:
JavaScript function License
------------------- --------------
Array.prototype.map Public Domain
window.Crypto BSD License
window.SecureRandom BSD License
window.EllipticCurve BSD License
window.BigInteger BSD License
window.QRCode MIT License
window.Bitcoin MIT License
jsqrcode Apache License, 2.0
The WalletGenerator.net software is available under The MIT License (MIT)
Copyright (c) 2014 WalletGenerator.net
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
GitHub Repository: https://github.com/MichaelMure/WalletGenerator.net
-->
<title>WalletGenerator.net - Universal Paper wallet generator for Bitcoin and other cryptocurrencies</title>
<script type="text/javascript">
// Array.prototype.map function is in the public domain.
// Production steps of ECMA-262, Edition 5, 15.4.4.19
// Reference: http://es5.github.com/#x15.4.4.19
if (!Array.prototype.map) {
Array.prototype.map = function (callback, thisArg) {
var T, A, k;
if (this == null) {
throw new TypeError(" this is null or not defined");
}
// 1. Let O be the result of calling ToObject passing the |this| value as the argument.
var O = Object(this);
// 2. Let lenValue be the result of calling the Get internal method of O with the argument "length".
// 3. Let len be ToUint32(lenValue).
var len = O.length >>> 0;
// 4. If IsCallable(callback) is false, throw a TypeError exception.
// See: http://es5.github.com/#x9.11
if ({}.toString.call(callback) != "[object Function]") {
throw new TypeError(callback + " is not a function");
}
// 5. If thisArg was supplied, let T be thisArg; else let T be undefined.
if (thisArg) {
T = thisArg;
}
// 6. Let A be a new array created as if by the expression new Array(len) where Array is
// the standard built-in constructor with that name and len is the value of len.
A = new Array(len);
// 7. Let k be 0
k = 0;
// 8. Repeat, while k < len
while (k < len) {
var kValue, mappedValue;
// a. Let Pk be ToString(k).
// This is implicit for LHS operands of the in operator
// b. Let kPresent be the result of calling the HasProperty internal method of O with argument Pk.
// This step can be combined with c
// c. If kPresent is true, then
if (k in O) {
// i. Let kValue be the result of calling the Get internal method of O with argument Pk.
kValue = O[k];
// ii. Let mappedValue be the result of calling the Call internal method of callback
// with T as the this value and argument list containing kValue, k, and O.
mappedValue = callback.call(T, kValue, k, O);
// iii. Call the DefineOwnProperty internal method of A with arguments
// Pk, Property Descriptor {Value: mappedValue, Writable: true, Enumerable: true, Configurable: true},
// and false.
// In browsers that support Object.defineProperty, use the following:
// Object.defineProperty(A, Pk, { value: mappedValue, writable: true, enumerable: true, configurable: true });
// For best browser support, use the following:
A[k] = mappedValue;
}
// d. Increase k by 1.
k++;
}
// 9. return A
return A;
};
}
</script>
<script type="text/javascript">
/*!
* Crypto-JS v2.5.4 Crypto.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
if (typeof Crypto == "undefined" || !Crypto.util) {
(function () {
var base64map = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
// Global Crypto object
var Crypto = window.Crypto = {};
// Crypto utilities
var util = Crypto.util = {
// Bit-wise rotate left
rotl: function (n, b) {
return (n << b) | (n >>> (32 - b));
},
// Bit-wise rotate right
rotr: function (n, b) {
return (n << (32 - b)) | (n >>> b);
},
// Swap big-endian to little-endian and vice versa
endian: function (n) {
// If number given, swap endian
if (n.constructor == Number) {
return util.rotl(n, 8) & 0x00FF00FF |
util.rotl(n, 24) & 0xFF00FF00;
}
// Else, assume array and swap all items
for (var i = 0; i < n.length; i++)
n[i] = util.endian(n[i]);
return n;
},
// Generate an array of any length of random bytes
randomBytes: function (n) {
for (var bytes = []; n > 0; n--)
bytes.push(Math.floor(Math.random() * 256));
return bytes;
},
// Convert a byte array to big-endian 32-bit words
bytesToWords: function (bytes) {
for (var words = [], i = 0, b = 0; i < bytes.length; i++, b += 8)
words[b >>> 5] |= (bytes[i] & 0xFF) << (24 - b % 32);
return words;
},
// Convert big-endian 32-bit words to a byte array
wordsToBytes: function (words) {
for (var bytes = [], b = 0; b < words.length * 32; b += 8)
bytes.push((words[b >>> 5] >>> (24 - b % 32)) & 0xFF);
return bytes;
},
// Convert a byte array to a hex string
bytesToHex: function (bytes) {
for (var hex = [], i = 0; i < bytes.length; i++) {
hex.push((bytes[i] >>> 4).toString(16));
hex.push((bytes[i] & 0xF).toString(16));
}
return hex.join("");
},
// Convert a hex string to a byte array
hexToBytes: function (hex) {
for (var bytes = [], c = 0; c < hex.length; c += 2)
bytes.push(parseInt(hex.substr(c, 2), 16));
return bytes;
},
// Convert a byte array to a base-64 string
bytesToBase64: function (bytes) {
for (var base64 = [], i = 0; i < bytes.length; i += 3) {
var triplet = (bytes[i] << 16) | (bytes[i + 1] << 8) | bytes[i + 2];
for (var j = 0; j < 4; j++) {
if (i * 8 + j * 6 <= bytes.length * 8)
base64.push(base64map.charAt((triplet >>> 6 * (3 - j)) & 0x3F));
else base64.push("=");
}
}
return base64.join("");
},
// Convert a base-64 string to a byte array
base64ToBytes: function (base64) {
// Remove non-base-64 characters
base64 = base64.replace(/[^A-Z0-9+\/]/ig, "");
for (var bytes = [], i = 0, imod4 = 0; i < base64.length; imod4 = ++i % 4) {
if (imod4 == 0) continue;
bytes.push(((base64map.indexOf(base64.charAt(i - 1)) & (Math.pow(2, -2 * imod4 + 8) - 1)) << (imod4 * 2)) |
(base64map.indexOf(base64.charAt(i)) >>> (6 - imod4 * 2)));
}
return bytes;
}
};
// Crypto character encodings
var charenc = Crypto.charenc = {};
// UTF-8 encoding
var UTF8 = charenc.UTF8 = {
// Convert a string to a byte array
stringToBytes: function (str) {
return Binary.stringToBytes(unescape(encodeURIComponent(str)));
},
// Convert a byte array to a string
bytesToString: function (bytes) {
return decodeURIComponent(escape(Binary.bytesToString(bytes)));
}
};
// Binary encoding
var Binary = charenc.Binary = {
// Convert a string to a byte array
stringToBytes: function (str) {
for (var bytes = [], i = 0; i < str.length; i++)
bytes.push(str.charCodeAt(i) & 0xFF);
return bytes;
},
// Convert a byte array to a string
bytesToString: function (bytes) {
for (var str = [], i = 0; i < bytes.length; i++)
str.push(String.fromCharCode(bytes[i]));
return str.join("");
}
};
})();
}
</script>
<script type="text/javascript">
/*!
* Crypto-JS v2.5.4 SHA256.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
// Constants
var K = [0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2];
// Public API
var SHA256 = C.SHA256 = function (message, options) {
var digestbytes = util.wordsToBytes(SHA256._sha256(message));
return options && options.asBytes ? digestbytes :
options && options.asString ? Binary.bytesToString(digestbytes) :
util.bytesToHex(digestbytes);
};
// The core
SHA256._sha256 = function (message) {
// Convert to byte array
if (message.constructor == String) message = UTF8.stringToBytes(message);
/* else, assume byte array already */
var m = util.bytesToWords(message),
l = message.length * 8,
H = [0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19],
w = [],
a, b, c, d, e, f, g, h, i, j,
t1, t2;
// Padding
m[l >> 5] |= 0x80 << (24 - l % 32);
m[((l + 64 >> 9) << 4) + 15] = l;
for (var i = 0; i < m.length; i += 16) {
a = H[0];
b = H[1];
c = H[2];
d = H[3];
e = H[4];
f = H[5];
g = H[6];
h = H[7];
for (var j = 0; j < 64; j++) {
if (j < 16) w[j] = m[j + i];
else {
var gamma0x = w[j - 15],
gamma1x = w[j - 2],
gamma0 = ((gamma0x << 25) | (gamma0x >>> 7)) ^
((gamma0x << 14) | (gamma0x >>> 18)) ^
(gamma0x >>> 3),
gamma1 = ((gamma1x << 15) | (gamma1x >>> 17)) ^
((gamma1x << 13) | (gamma1x >>> 19)) ^
(gamma1x >>> 10);
w[j] = gamma0 + (w[j - 7] >>> 0) +
gamma1 + (w[j - 16] >>> 0);
}
var ch = e & f ^ ~e & g,
maj = a & b ^ a & c ^ b & c,
sigma0 = ((a << 30) | (a >>> 2)) ^
((a << 19) | (a >>> 13)) ^
((a << 10) | (a >>> 22)),
sigma1 = ((e << 26) | (e >>> 6)) ^
((e << 21) | (e >>> 11)) ^
((e << 7) | (e >>> 25));
t1 = (h >>> 0) + sigma1 + ch + (K[j]) + (w[j] >>> 0);
t2 = sigma0 + maj;
h = g;
g = f;
f = e;
e = (d + t1) >>> 0;
d = c;
c = b;
b = a;
a = (t1 + t2) >>> 0;
}
H[0] += a;
H[1] += b;
H[2] += c;
H[3] += d;
H[4] += e;
H[5] += f;
H[6] += g;
H[7] += h;
}
return H;
};
// Package private blocksize
SHA256._blocksize = 16;
SHA256._digestsize = 32;
})();
</script>
<script type="text/javascript">
/*!
* Crypto-JS v2.5.4 PBKDF2.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
C.PBKDF2 = function (password, salt, keylen, options) {
// Convert to byte arrays
if (password.constructor == String) password = UTF8.stringToBytes(password);
if (salt.constructor == String) salt = UTF8.stringToBytes(salt);
/* else, assume byte arrays already */
// Defaults
var hasher = options && options.hasher || C.SHA1,
iterations = options && options.iterations || 1;
// Pseudo-random function
function PRF(password, salt) {
return C.HMAC(hasher, salt, password, { asBytes: true });
}
// Generate key
var derivedKeyBytes = [],
blockindex = 1;
while (derivedKeyBytes.length < keylen) {
var block = PRF(password, salt.concat(util.wordsToBytes([blockindex])));
for (var u = block, i = 1; i < iterations; i++) {
u = PRF(password, u);
for (var j = 0; j < block.length; j++) block[j] ^= u[j];
}
derivedKeyBytes = derivedKeyBytes.concat(block);
blockindex++;
}
// Truncate excess bytes
derivedKeyBytes.length = keylen;
return options && options.asBytes ? derivedKeyBytes :
options && options.asString ? Binary.bytesToString(derivedKeyBytes) :
util.bytesToHex(derivedKeyBytes);
};
})();
</script>
<script type="text/javascript">
/*!
* Crypto-JS v2.5.4 HMAC.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
C.HMAC = function (hasher, message, key, options) {
// Convert to byte arrays
if (message.constructor == String) message = UTF8.stringToBytes(message);
if (key.constructor == String) key = UTF8.stringToBytes(key);
/* else, assume byte arrays already */
// Allow arbitrary length keys
if (key.length > hasher._blocksize * 4)
key = hasher(key, { asBytes: true });
// XOR keys with pad constants
var okey = key.slice(0),
ikey = key.slice(0);
for (var i = 0; i < hasher._blocksize * 4; i++) {
okey[i] ^= 0x5C;
ikey[i] ^= 0x36;
}
var hmacbytes = hasher(okey.concat(hasher(ikey.concat(message), { asBytes: true })), { asBytes: true });
return options && options.asBytes ? hmacbytes :
options && options.asString ? Binary.bytesToString(hmacbytes) :
util.bytesToHex(hmacbytes);
};
})();
</script>
<script type="text/javascript">
/*!
* Crypto-JS v2.5.4 AES.js
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009-2013, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8;
// Precomputed SBOX
var SBOX = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16];
// Compute inverse SBOX lookup table
for (var INVSBOX = [], i = 0; i < 256; i++) INVSBOX[SBOX[i]] = i;
// Compute multiplication in GF(2^8) lookup tables
var MULT2 = [],
MULT3 = [],
MULT9 = [],
MULTB = [],
MULTD = [],
MULTE = [];
function xtime(a, b) {
for (var result = 0, i = 0; i < 8; i++) {
if (b & 1) result ^= a;
var hiBitSet = a & 0x80;
a = (a << 1) & 0xFF;
if (hiBitSet) a ^= 0x1b;
b >>>= 1;
}
return result;
}
for (var i = 0; i < 256; i++) {
MULT2[i] = xtime(i, 2);
MULT3[i] = xtime(i, 3);
MULT9[i] = xtime(i, 9);
MULTB[i] = xtime(i, 0xB);
MULTD[i] = xtime(i, 0xD);
MULTE[i] = xtime(i, 0xE);
}
// Precomputed RCon lookup
var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
// Inner state
var state = [[], [], [], []],
keylength,
nrounds,
keyschedule;
var AES = C.AES = {
/**
* Public API
*/
encrypt: function (message, password, options) {
options = options || {};
// Determine mode
var mode = options.mode || new C.mode.OFB;
// Allow mode to override options
if (mode.fixOptions) mode.fixOptions(options);
var
// Convert to bytes if message is a string
m = (
message.constructor == String ?
UTF8.stringToBytes(message) :
message
),
// Generate random IV
iv = options.iv || util.randomBytes(AES._blocksize * 4),
// Generate key
k = (
password.constructor == String ?
// Derive key from pass-phrase
C.PBKDF2(password, iv, 32, { asBytes: true }) :
// else, assume byte array representing cryptographic key
password
);
// Encrypt
AES._init(k);
mode.encrypt(AES, m, iv);
// Return ciphertext
m = options.iv ? m : iv.concat(m);
return (options && options.asBytes) ? m : util.bytesToBase64(m);
},
decrypt: function (ciphertext, password, options) {
options = options || {};
// Determine mode
var mode = options.mode || new C.mode.OFB;
// Allow mode to override options
if (mode.fixOptions) mode.fixOptions(options);
var
// Convert to bytes if ciphertext is a string
c = (
ciphertext.constructor == String ?
util.base64ToBytes(ciphertext) :
ciphertext
),
// Separate IV and message
iv = options.iv || c.splice(0, AES._blocksize * 4),
// Generate key
k = (
password.constructor == String ?
// Derive key from pass-phrase
C.PBKDF2(password, iv, 32, { asBytes: true }) :
// else, assume byte array representing cryptographic key
password
);
// Decrypt
AES._init(k);
mode.decrypt(AES, c, iv);
// Return plaintext
return (options && options.asBytes) ? c : UTF8.bytesToString(c);
},
/**
* Package private methods and properties
*/
_blocksize: 4,
_encryptblock: function (m, offset) {
// Set input
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = m[offset + col * 4 + row];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[col][row];
}
for (var round = 1; round < nrounds; round++) {
// Sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = SBOX[state[row][col]];
}
// Shift rows
state[1].push(state[1].shift());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].unshift(state[3].pop());
// Mix columns
for (var col = 0; col < 4; col++) {
var s0 = state[0][col],
s1 = state[1][col],
s2 = state[2][col],
s3 = state[3][col];
state[0][col] = MULT2[s0] ^ MULT3[s1] ^ s2 ^ s3;
state[1][col] = s0 ^ MULT2[s1] ^ MULT3[s2] ^ s3;
state[2][col] = s0 ^ s1 ^ MULT2[s2] ^ MULT3[s3];
state[3][col] = MULT3[s0] ^ s1 ^ s2 ^ MULT2[s3];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[round * 4 + col][row];
}
}
// Sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = SBOX[state[row][col]];
}
// Shift rows
state[1].push(state[1].shift());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].unshift(state[3].pop());
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[nrounds * 4 + col][row];
}
// Set output
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
m[offset + col * 4 + row] = state[row][col];
}
},
_decryptblock: function (c, offset) {
// Set input
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = c[offset + col * 4 + row];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[nrounds * 4 + col][row];
}
for (var round = 1; round < nrounds; round++) {
// Inv shift rows
state[1].unshift(state[1].pop());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].push(state[3].shift());
// Inv sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = INVSBOX[state[row][col]];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[(nrounds - round) * 4 + col][row];
}
// Inv mix columns
for (var col = 0; col < 4; col++) {
var s0 = state[0][col],
s1 = state[1][col],
s2 = state[2][col],
s3 = state[3][col];
state[0][col] = MULTE[s0] ^ MULTB[s1] ^ MULTD[s2] ^ MULT9[s3];
state[1][col] = MULT9[s0] ^ MULTE[s1] ^ MULTB[s2] ^ MULTD[s3];
state[2][col] = MULTD[s0] ^ MULT9[s1] ^ MULTE[s2] ^ MULTB[s3];
state[3][col] = MULTB[s0] ^ MULTD[s1] ^ MULT9[s2] ^ MULTE[s3];
}
}
// Inv shift rows
state[1].unshift(state[1].pop());
state[2].push(state[2].shift());
state[2].push(state[2].shift());
state[3].push(state[3].shift());
// Inv sub bytes
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] = INVSBOX[state[row][col]];
}
// Add round key
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++)
state[row][col] ^= keyschedule[col][row];
}
// Set output
for (var row = 0; row < AES._blocksize; row++) {
for (var col = 0; col < 4; col++)
c[offset + col * 4 + row] = state[row][col];
}
},
/**
* Private methods
*/
_init: function (k) {
keylength = k.length / 4;
nrounds = keylength + 6;
AES._keyexpansion(k);
},
// Generate a key schedule
_keyexpansion: function (k) {
keyschedule = [];
for (var row = 0; row < keylength; row++) {
keyschedule[row] = [
k[row * 4],
k[row * 4 + 1],
k[row * 4 + 2],
k[row * 4 + 3]
];
}
for (var row = keylength; row < AES._blocksize * (nrounds + 1); row++) {
var temp = [
keyschedule[row - 1][0],
keyschedule[row - 1][1],
keyschedule[row - 1][2],
keyschedule[row - 1][3]
];
if (row % keylength == 0) {
// Rot word
temp.push(temp.shift());
// Sub word
temp[0] = SBOX[temp[0]];
temp[1] = SBOX[temp[1]];
temp[2] = SBOX[temp[2]];
temp[3] = SBOX[temp[3]];
temp[0] ^= RCON[row / keylength];
} else if (keylength > 6 && row % keylength == 4) {
// Sub word
temp[0] = SBOX[temp[0]];
temp[1] = SBOX[temp[1]];
temp[2] = SBOX[temp[2]];
temp[3] = SBOX[temp[3]];
}
keyschedule[row] = [
keyschedule[row - keylength][0] ^ temp[0],
keyschedule[row - keylength][1] ^ temp[1],
keyschedule[row - keylength][2] ^ temp[2],
keyschedule[row - keylength][3] ^ temp[3]
];
}
}
};
})();
</script>
<script type="text/javascript">
/*!
* Crypto-JS 2.5.4 BlockModes.js
* contribution from Simon Greatrix
*/
(function (C) {
// Create pad namespace
var C_pad = C.pad = {};
// Calculate the number of padding bytes required.
function _requiredPadding(cipher, message) {
var blockSizeInBytes = cipher._blocksize * 4;
var reqd = blockSizeInBytes - message.length % blockSizeInBytes;
return reqd;
}
// Remove padding when the final byte gives the number of padding bytes.
var _unpadLength = function (cipher, message, alg, padding) {
var pad = message.pop();
if (pad == 0) {
throw new Error("Invalid zero-length padding specified for " + alg
+ ". Wrong cipher specification or key used?");
}
var maxPad = cipher._blocksize * 4;
if (pad > maxPad) {
throw new Error("Invalid padding length of " + pad
+ " specified for " + alg
+ ". Wrong cipher specification or key used?");
}
for (var i = 1; i < pad; i++) {
var b = message.pop();
if (padding != undefined && padding != b) {
throw new Error("Invalid padding byte of 0x" + b.toString(16)
+ " specified for " + alg
+ ". Wrong cipher specification or key used?");
}
}
};
// No-operation padding, used for stream ciphers
C_pad.NoPadding = {
pad: function (cipher, message) { },
unpad: function (cipher, message) { }
};
// Zero Padding.
//
// If the message is not an exact number of blocks, the final block is
// completed with 0x00 bytes. There is no unpadding.
C_pad.ZeroPadding = {
pad: function (cipher, message) {
var blockSizeInBytes = cipher._blocksize * 4;
var reqd = message.length % blockSizeInBytes;
if (reqd != 0) {
for (reqd = blockSizeInBytes - reqd; reqd > 0; reqd--) {
message.push(0x00);
}
}
},
unpad: function (cipher, message) {
while (message[message.length - 1] == 0) {
message.pop();
}
}
};
// ISO/IEC 7816-4 padding.
//
// Pads the plain text with an 0x80 byte followed by as many 0x00
// bytes are required to complete the block.
C_pad.iso7816 = {
pad: function (cipher, message) {
var reqd = _requiredPadding(cipher, message);
message.push(0x80);
for (; reqd > 1; reqd--) {
message.push(0x00);
}
},
unpad: function (cipher, message) {
var padLength;
for (padLength = cipher._blocksize * 4; padLength > 0; padLength--) {
var b = message.pop();
if (b == 0x80) return;
if (b != 0x00) {
throw new Error("ISO-7816 padding byte must be 0, not 0x" + b.toString(16) + ". Wrong cipher specification or key used?");
}
}
throw new Error("ISO-7816 padded beyond cipher block size. Wrong cipher specification or key used?");
}
};
// ANSI X.923 padding
//
// The final block is padded with zeros except for the last byte of the
// last block which contains the number of padding bytes.
C_pad.ansix923 = {
pad: function (cipher, message) {
var reqd = _requiredPadding(cipher, message);
for (var i = 1; i < reqd; i++) {
message.push(0x00);
}
message.push(reqd);
},
unpad: function (cipher, message) {
_unpadLength(cipher, message, "ANSI X.923", 0);
}
};
// ISO 10126
//
// The final block is padded with random bytes except for the last
// byte of the last block which contains the number of padding bytes.
C_pad.iso10126 = {
pad: function (cipher, message) {
var reqd = _requiredPadding(cipher, message);
for (var i = 1; i < reqd; i++) {
message.push(Math.floor(Math.random() * 256));
}
message.push(reqd);
},
unpad: function (cipher, message) {
_unpadLength(cipher, message, "ISO 10126", undefined);
}
};
// PKCS7 padding
//
// PKCS7 is described in RFC 5652. Padding is in whole bytes. The
// value of each added byte is the number of bytes that are added,
// i.e. N bytes, each of value N are added.
C_pad.pkcs7 = {
pad: function (cipher, message) {
var reqd = _requiredPadding(cipher, message);
for (var i = 0; i < reqd; i++) {
message.push(reqd);
}
},
unpad: function (cipher, message) {
_unpadLength(cipher, message, "PKCS 7", message[message.length - 1]);
}
};
// Create mode namespace
var C_mode = C.mode = {};
/**
* Mode base "class".
*/
var Mode = C_mode.Mode = function (padding) {
if (padding) {
this._padding = padding;
}
};
Mode.prototype = {
encrypt: function (cipher, m, iv) {
this._padding.pad(cipher, m);
this._doEncrypt(cipher, m, iv);
},
decrypt: function (cipher, m, iv) {
this._doDecrypt(cipher, m, iv);
this._padding.unpad(cipher, m);
},
// Default padding
_padding: C_pad.iso7816
};
/**
* Electronic Code Book mode.
*
* ECB applies the cipher directly against each block of the input.
*
* ECB does not require an initialization vector.
*/
var ECB = C_mode.ECB = function () {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var ECB_prototype = ECB.prototype = new Mode;
// Concrete steps for Mode template
ECB_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// Encrypt each block
for (var offset = 0; offset < m.length; offset += blockSizeInBytes) {
cipher._encryptblock(m, offset);
}
};
ECB_prototype._doDecrypt = function (cipher, c, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// Decrypt each block
for (var offset = 0; offset < c.length; offset += blockSizeInBytes) {
cipher._decryptblock(c, offset);
}
};
// ECB never uses an IV
ECB_prototype.fixOptions = function (options) {
options.iv = [];
};
/**
* Cipher block chaining
*
* The first block is XORed with the IV. Subsequent blocks are XOR with the
* previous cipher output.
*/
var CBC = C_mode.CBC = function () {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var CBC_prototype = CBC.prototype = new Mode;
// Concrete steps for Mode template
CBC_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// Encrypt each block
for (var offset = 0; offset < m.length; offset += blockSizeInBytes) {
if (offset == 0) {
// XOR first block using IV
for (var i = 0; i < blockSizeInBytes; i++)
m[i] ^= iv[i];
} else {
// XOR this block using previous crypted block
for (var i = 0; i < blockSizeInBytes; i++)
m[offset + i] ^= m[offset + i - blockSizeInBytes];
}
// Encrypt block
cipher._encryptblock(m, offset);
}
};
CBC_prototype._doDecrypt = function (cipher, c, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
// At the start, the previously crypted block is the IV
var prevCryptedBlock = iv;
// Decrypt each block
for (var offset = 0; offset < c.length; offset += blockSizeInBytes) {
// Save this crypted block
var thisCryptedBlock = c.slice(offset, offset + blockSizeInBytes);
// Decrypt block
cipher._decryptblock(c, offset);
// XOR decrypted block using previous crypted block
for (var i = 0; i < blockSizeInBytes; i++) {
c[offset + i] ^= prevCryptedBlock[i];
}
prevCryptedBlock = thisCryptedBlock;
}
};
/**
* Cipher feed back
*
* The cipher output is XORed with the plain text to produce the cipher output,
* which is then fed back into the cipher to produce a bit pattern to XOR the
* next block with.
*
* This is a stream cipher mode and does not require padding.
*/
var CFB = C_mode.CFB = function () {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var CFB_prototype = CFB.prototype = new Mode;
// Override padding
CFB_prototype._padding = C_pad.NoPadding;
// Concrete steps for Mode template
CFB_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4,
keystream = iv.slice(0);
// Encrypt each byte
for (var i = 0; i < m.length; i++) {
var j = i % blockSizeInBytes;
if (j == 0) cipher._encryptblock(keystream, 0);
m[i] ^= keystream[j];
keystream[j] = m[i];
}
};
CFB_prototype._doDecrypt = function (cipher, c, iv) {
var blockSizeInBytes = cipher._blocksize * 4,
keystream = iv.slice(0);
// Encrypt each byte
for (var i = 0; i < c.length; i++) {
var j = i % blockSizeInBytes;
if (j == 0) cipher._encryptblock(keystream, 0);
var b = c[i];
c[i] ^= keystream[j];
keystream[j] = b;
}
};
/**
* Output feed back
*
* The cipher repeatedly encrypts its own output. The output is XORed with the
* plain text to produce the cipher text.
*
* This is a stream cipher mode and does not require padding.
*/
var OFB = C_mode.OFB = function () {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var OFB_prototype = OFB.prototype = new Mode;
// Override padding
OFB_prototype._padding = C_pad.NoPadding;
// Concrete steps for Mode template
OFB_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4,
keystream = iv.slice(0);
// Encrypt each byte
for (var i = 0; i < m.length; i++) {
// Generate keystream
if (i % blockSizeInBytes == 0)
cipher._encryptblock(keystream, 0);
// Encrypt byte
m[i] ^= keystream[i % blockSizeInBytes];
}
};
OFB_prototype._doDecrypt = OFB_prototype._doEncrypt;
/**
* Counter
* @author Gergely Risko
*
* After every block the last 4 bytes of the IV is increased by one
* with carry and that IV is used for the next block.
*
* This is a stream cipher mode and does not require padding.
*/
var CTR = C_mode.CTR = function () {
// Call parent constructor
Mode.apply(this, arguments);
};
// Inherit from Mode
var CTR_prototype = CTR.prototype = new Mode;
// Override padding
CTR_prototype._padding = C_pad.NoPadding;
CTR_prototype._doEncrypt = function (cipher, m, iv) {
var blockSizeInBytes = cipher._blocksize * 4;
var counter = iv.slice(0);
for (var i = 0; i < m.length; ) {
// do not lose iv
var keystream = counter.slice(0);
// Generate keystream for next block
cipher._encryptblock(keystream, 0);
// XOR keystream with block
for (var j = 0; i < m.length && j < blockSizeInBytes; j++, i++) {
m[i] ^= keystream[j];
}
// Increase counter
if (++(counter[blockSizeInBytes - 1]) == 256) {
counter[blockSizeInBytes - 1] = 0;
if (++(counter[blockSizeInBytes - 2]) == 256) {
counter[blockSizeInBytes - 2] = 0;
if (++(counter[blockSizeInBytes - 3]) == 256) {
counter[blockSizeInBytes - 3] = 0;
++(counter[blockSizeInBytes - 4]);
}
}
}
}
};
CTR_prototype._doDecrypt = CTR_prototype._doEncrypt;
})(Crypto);
</script>
<script type="text/javascript">
/*!
* Crypto-JS v2.0.0 RIPEMD-160
* http://code.google.com/p/crypto-js/
* Copyright (c) 2009, Jeff Mott. All rights reserved.
* http://code.google.com/p/crypto-js/wiki/License
*
* A JavaScript implementation of the RIPEMD-160 Algorithm
* Version 2.2 Copyright Jeremy Lin, Paul Johnston 2000 - 2009.
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
* Distributed under the BSD License
* See http://pajhome.org.uk/crypt/md5 for details.
* Also http://www.ocf.berkeley.edu/~jjlin/jsotp/
* Ported to Crypto-JS by Stefan Thomas.
*/
(function () {
// Shortcuts
var C = Crypto,
util = C.util,
charenc = C.charenc,
UTF8 = charenc.UTF8,
Binary = charenc.Binary;
// Convert a byte array to little-endian 32-bit words
util.bytesToLWords = function (bytes) {
var output = Array(bytes.length >> 2);
for (var i = 0; i < output.length; i++)
output[i] = 0;
for (var i = 0; i < bytes.length * 8; i += 8)
output[i >> 5] |= (bytes[i / 8] & 0xFF) << (i % 32);
return output;
};
// Convert little-endian 32-bit words to a byte array
util.lWordsToBytes = function (words) {
var output = [];
for (var i = 0; i < words.length * 32; i += 8)
output.push((words[i >> 5] >>> (i % 32)) & 0xff);
return output;
};
// Public API
var RIPEMD160 = C.RIPEMD160 = function (message, options) {
var digestbytes = util.lWordsToBytes(RIPEMD160._rmd160(message));
return options && options.asBytes ? digestbytes :
options && options.asString ? Binary.bytesToString(digestbytes) :
util.bytesToHex(digestbytes);
};
// The core
RIPEMD160._rmd160 = function (message) {
// Convert to byte array
if (message.constructor == String) message = UTF8.stringToBytes(message);
var x = util.bytesToLWords(message),
len = message.length * 8;
/* append padding */
x[len >> 5] |= 0x80 << (len % 32);
x[(((len + 64) >>> 9) << 4) + 14] = len;
var h0 = 0x67452301;
var h1 = 0xefcdab89;
var h2 = 0x98badcfe;
var h3 = 0x10325476;
var h4 = 0xc3d2e1f0;
for (var i = 0; i < x.length; i += 16) {
var T;
var A1 = h0, B1 = h1, C1 = h2, D1 = h3, E1 = h4;
var A2 = h0, B2 = h1, C2 = h2, D2 = h3, E2 = h4;
for (var j = 0; j <= 79; ++j) {
T = safe_add(A1, rmd160_f(j, B1, C1, D1));
T = safe_add(T, x[i + rmd160_r1[j]]);
T = safe_add(T, rmd160_K1(j));
T = safe_add(bit_rol(T, rmd160_s1[j]), E1);
A1 = E1; E1 = D1; D1 = bit_rol(C1, 10); C1 = B1; B1 = T;
T = safe_add(A2, rmd160_f(79 - j, B2, C2, D2));
T = safe_add(T, x[i + rmd160_r2[j]]);
T = safe_add(T, rmd160_K2(j));
T = safe_add(bit_rol(T, rmd160_s2[j]), E2);
A2 = E2; E2 = D2; D2 = bit_rol(C2, 10); C2 = B2; B2 = T;
}
T = safe_add(h1, safe_add(C1, D2));
h1 = safe_add(h2, safe_add(D1, E2));
h2 = safe_add(h3, safe_add(E1, A2));
h3 = safe_add(h4, safe_add(A1, B2));
h4 = safe_add(h0, safe_add(B1, C2));
h0 = T;
}
return [h0, h1, h2, h3, h4];
}
function rmd160_f(j, x, y, z) {
return (0 <= j && j <= 15) ? (x ^ y ^ z) :
(16 <= j && j <= 31) ? (x & y) | (~x & z) :
(32 <= j && j <= 47) ? (x | ~y) ^ z :
(48 <= j && j <= 63) ? (x & z) | (y & ~z) :
(64 <= j && j <= 79) ? x ^ (y | ~z) :
"rmd160_f: j out of range";
}
function rmd160_K1(j) {
return (0 <= j && j <= 15) ? 0x00000000 :
(16 <= j && j <= 31) ? 0x5a827999 :
(32 <= j && j <= 47) ? 0x6ed9eba1 :
(48 <= j && j <= 63) ? 0x8f1bbcdc :
(64 <= j && j <= 79) ? 0xa953fd4e :
"rmd160_K1: j out of range";
}
function rmd160_K2(j) {
return (0 <= j && j <= 15) ? 0x50a28be6 :
(16 <= j && j <= 31) ? 0x5c4dd124 :
(32 <= j && j <= 47) ? 0x6d703ef3 :
(48 <= j && j <= 63) ? 0x7a6d76e9 :
(64 <= j && j <= 79) ? 0x00000000 :
"rmd160_K2: j out of range";
}
var rmd160_r1 = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
];
var rmd160_r2 = [
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
];
var rmd160_s1 = [
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6
];
var rmd160_s2 = [
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
];
/*
* Add integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*/
function safe_add(x, y) {
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}
/*
* Bitwise rotate a 32-bit number to the left.
*/
function bit_rol(num, cnt) {
return (num << cnt) | (num >>> (32 - cnt));
}
})();
</script>
<script type="text/javascript">
/*!
* Random number generator with ArcFour PRNG
*
* NOTE: For best results, put code like
* <body onclick='SecureRandom.seedTime();' onkeypress='SecureRandom.seedTime();'>
* in your main HTML document.
*
* Copyright Tom Wu, bitaddress.org BSD License.
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
*/
(function () {
// Constructor function of Global SecureRandom object
var sr = window.SecureRandom = function () { };
// Properties
sr.state;
sr.pool;
sr.pptr;
// Pool size must be a multiple of 4 and greater than 32.
// An array of bytes the size of the pool will be passed to init()
sr.poolSize = 256;
// --- object methods ---
// public method
// ba: byte array
sr.prototype.nextBytes = function (ba) {
var i;
if (window.crypto && window.crypto.getRandomValues && window.Uint8Array) {
try {
var rvBytes = new Uint8Array(ba.length);
window.crypto.getRandomValues(rvBytes);
for (i = 0; i < ba.length; ++i)
ba[i] = sr.getByte() ^ rvBytes[i];
return;
} catch (e) {
alert(e);
}
}
for (i = 0; i < ba.length; ++i) ba[i] = sr.getByte();
};
// --- static methods ---
// Mix in the current time (w/milliseconds) into the pool
// NOTE: this method should be called from body click/keypress event handlers to increase entropy
sr.seedTime = function () {
sr.seedInt(new Date().getTime());
}
sr.getByte = function () {
if(!ninja.seeder.isDone()) {
alert("Premature initialisation of the random generator. Something is really wrong, do not generate wallets.");
return NaN;
}
if (sr.state == null) {
sr.seedTime();
sr.state = sr.ArcFour(); // Plug in your RNG constructor here
sr.state.init(sr.pool);
sr.pptr = 0;
}
// TODO: allow reseeding after first request
return sr.state.next();
}
// Mix in a 32-bit integer into the pool
sr.seedInt = function (x) {
sr.seedInt8(x);
sr.seedInt8((x >> 8));
sr.seedInt8((x >> 16));
sr.seedInt8((x >> 24));
}
// Mix in a 16-bit integer into the pool
sr.seedInt16 = function (x) {
sr.seedInt8(x);
sr.seedInt8((x >> 8));
}
// Mix in a 8-bit integer into the pool
sr.seedInt8 = function (x) {
sr.pool[sr.pptr++] ^= x & 255;
if (sr.pptr >= sr.poolSize) sr.pptr -= sr.poolSize;
}
// Arcfour is a PRNG
sr.ArcFour = function () {
function Arcfour() {
this.i = 0;
this.j = 0;
this.S = new Array();
}
// Initialize arcfour context from key, an array of ints, each from [0..255]
function ARC4init(key) {
var i, j, t;
for (i = 0; i < 256; ++i)
this.S[i] = i;
j = 0;
for (i = 0; i < 256; ++i) {
j = (j + this.S[i] + key[i % key.length]) & 255;
t = this.S[i];
this.S[i] = this.S[j];
this.S[j] = t;
}
this.i = 0;
this.j = 0;
}
function ARC4next() {
var t;
this.i = (this.i + 1) & 255;
this.j = (this.j + this.S[this.i]) & 255;
t = this.S[this.i];
this.S[this.i] = this.S[this.j];
this.S[this.j] = t;
return this.S[(t + this.S[this.i]) & 255];
}
Arcfour.prototype.init = ARC4init;
Arcfour.prototype.next = ARC4next;
return new Arcfour();
};
// Initialize the pool with junk if needed.
if (sr.pool == null) {
sr.pool = new Array();
sr.pptr = 0;
var t;
if (window.crypto && window.crypto.getRandomValues && window.Uint8Array) {
try {
// Use webcrypto if available
var ua = new Uint8Array(sr.poolSize);
window.crypto.getRandomValues(ua);
for (t = 0; t < sr.poolSize; ++t)
sr.pool[sr.pptr++] = ua[t];
} catch (e) { alert(e); }
}
while (sr.pptr < sr.poolSize) { // extract some randomness from Math.random()
t = Math.floor(65536 * Math.random());
sr.pool[sr.pptr++] = t >>> 8;
sr.pool[sr.pptr++] = t & 255;
}
sr.pptr = Math.floor(sr.poolSize * Math.random());
sr.seedTime();
// entropy
var entropyStr = "";
// screen size and color depth: ~4.8 to ~5.4 bits
entropyStr += (window.screen.height * window.screen.width * window.screen.colorDepth);
entropyStr += (window.screen.availHeight * window.screen.availWidth * window.screen.pixelDepth);
// time zone offset: ~4 bits
var dateObj = new Date();
var timeZoneOffset = dateObj.getTimezoneOffset();
entropyStr += timeZoneOffset;
// user agent: ~8.3 to ~11.6 bits
entropyStr += navigator.userAgent;
// browser plugin details: ~16.2 to ~21.8 bits
var pluginsStr = "";
for (var i = 0; i < navigator.plugins.length; i++) {
pluginsStr += navigator.plugins[i].name + " " + navigator.plugins[i].filename + " " + navigator.plugins[i].description + " " + navigator.plugins[i].version + ", ";
}
var mimeTypesStr = "";
for (var i = 0; i < navigator.mimeTypes.length; i++) {
mimeTypesStr += navigator.mimeTypes[i].description + " " + navigator.mimeTypes[i].type + " " + navigator.mimeTypes[i].suffixes + ", ";
}
entropyStr += pluginsStr + mimeTypesStr;
// cookies and storage: 1 bit
entropyStr += navigator.cookieEnabled + typeof (sessionStorage) + typeof (localStorage);
// language: ~7 bit
entropyStr += navigator.language;
// history: ~2 bit
entropyStr += window.history.length;
// location
entropyStr += window.location;
var entropyBytes = Crypto.SHA256(entropyStr, { asBytes: true });
for (var i = 0 ; i < entropyBytes.length ; i++) {
sr.seedInt8(entropyBytes[i]);
}
}
})();
</script>
<script type="text/javascript">
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/faa10f0f6a1fff0b9a99fffb9bc30cee33b17212/src/ecdsa.js
/*!
* Basic Javascript Elliptic Curve implementation
* Ported loosely from BouncyCastle's Java EC code
* Only Fp curves implemented for now
*
* Copyright Tom Wu, bitaddress.org BSD License.
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
*/
(function () {
// Constructor function of Global EllipticCurve object
var ec = window.EllipticCurve = function () { };
// ----------------
// ECFieldElementFp constructor
// q instanceof BigInteger
// x instanceof BigInteger
ec.FieldElementFp = function (q, x) {
this.x = x;
// TODO if(x.compareTo(q) >= 0) error
this.q = q;
};
ec.FieldElementFp.prototype.equals = function (other) {
if (other == this) return true;
return (this.q.equals(other.q) && this.x.equals(other.x));
};
ec.FieldElementFp.prototype.toBigInteger = function () {
return this.x;
};
ec.FieldElementFp.prototype.negate = function () {
return new ec.FieldElementFp(this.q, this.x.negate().mod(this.q));
};
ec.FieldElementFp.prototype.add = function (b) {
return new ec.FieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q));
};
ec.FieldElementFp.prototype.subtract = function (b) {
return new ec.FieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q));
};
ec.FieldElementFp.prototype.multiply = function (b) {
return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q));
};
ec.FieldElementFp.prototype.square = function () {
return new ec.FieldElementFp(this.q, this.x.square().mod(this.q));
};
ec.FieldElementFp.prototype.divide = function (b) {
return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q));
};
ec.FieldElementFp.prototype.getByteLength = function () {
return Math.floor((this.toBigInteger().bitLength() + 7) / 8);
};
// D.1.4 91
/**
* return a sqrt root - the routine verifies that the calculation
* returns the right value - if none exists it returns null.
*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*/
ec.FieldElementFp.prototype.sqrt = function () {
if (!this.q.testBit(0)) throw new Error("even value of q");
// p mod 4 == 3
if (this.q.testBit(1)) {
// z = g^(u+1) + p, p = 4u + 3
var z = new ec.FieldElementFp(this.q, this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE), this.q));
return z.square().equals(this) ? z : null;
}
// p mod 4 == 1
var qMinusOne = this.q.subtract(BigInteger.ONE);
var legendreExponent = qMinusOne.shiftRight(1);
if (!(this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE))) return null;
var u = qMinusOne.shiftRight(2);
var k = u.shiftLeft(1).add(BigInteger.ONE);
var Q = this.x;
var fourQ = Q.shiftLeft(2).mod(this.q);
var U, V;
do {
var rand = new SecureRandom();
var P;
do {
P = new BigInteger(this.q.bitLength(), rand);
}
while (P.compareTo(this.q) >= 0 || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent, this.q).equals(qMinusOne)));
var result = ec.FieldElementFp.fastLucasSequence(this.q, P, Q, k);
U = result[0];
V = result[1];
if (V.multiply(V).mod(this.q).equals(fourQ)) {
// Integer division by 2, mod q
if (V.testBit(0)) {
V = V.add(this.q);
}
V = V.shiftRight(1);
return new ec.FieldElementFp(this.q, V);
}
}
while (U.equals(BigInteger.ONE) || U.equals(qMinusOne));
return null;
};
/*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*/
ec.FieldElementFp.fastLucasSequence = function (p, P, Q, k) {
// TODO Research and apply "common-multiplicand multiplication here"
var n = k.bitLength();
var s = k.getLowestSetBit();
var Uh = BigInteger.ONE;
var Vl = BigInteger.TWO;
var Vh = P;
var Ql = BigInteger.ONE;
var Qh = BigInteger.ONE;
for (var j = n - 1; j >= s + 1; --j) {
Ql = Ql.multiply(Qh).mod(p);
if (k.testBit(j)) {
Qh = Ql.multiply(Q).mod(p);
Uh = Uh.multiply(Vh).mod(p);
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Vh = Vh.multiply(Vh).subtract(Qh.shiftLeft(1)).mod(p);
}
else {
Qh = Ql;
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
Vh = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
}
}
Ql = Ql.multiply(Qh).mod(p);
Qh = Ql.multiply(Q).mod(p);
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Ql = Ql.multiply(Qh).mod(p);
for (var j = 1; j <= s; ++j) {
Uh = Uh.multiply(Vl).mod(p);
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
Ql = Ql.multiply(Ql).mod(p);
}
return [Uh, Vl];
};
// ----------------
// ECPointFp constructor
ec.PointFp = function (curve, x, y, z, compressed) {
this.curve = curve;
this.x = x;
this.y = y;
// Projective coordinates: either zinv == null or z * zinv == 1
// z and zinv are just BigIntegers, not fieldElements
if (z == null) {
this.z = BigInteger.ONE;
}
else {
this.z = z;
}
this.zinv = null;
// compression flag
this.compressed = !!compressed;
};
ec.PointFp.prototype.getX = function () {
if (this.zinv == null) {
this.zinv = this.z.modInverse(this.curve.q);
}
var r = this.x.toBigInteger().multiply(this.zinv);
this.curve.reduce(r);
return this.curve.fromBigInteger(r);
};
ec.PointFp.prototype.getY = function () {
if (this.zinv == null) {
this.zinv = this.z.modInverse(this.curve.q);
}
var r = this.y.toBigInteger().multiply(this.zinv);
this.curve.reduce(r);
return this.curve.fromBigInteger(r);
};
ec.PointFp.prototype.equals = function (other) {
if (other == this) return true;
if (this.isInfinity()) return other.isInfinity();
if (other.isInfinity()) return this.isInfinity();
var u, v;
// u = Y2 * Z1 - Y1 * Z2
u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q);
if (!u.equals(BigInteger.ZERO)) return false;
// v = X2 * Z1 - X1 * Z2
v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q);
return v.equals(BigInteger.ZERO);
};
ec.PointFp.prototype.isInfinity = function () {
if ((this.x == null) && (this.y == null)) return true;
return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO);
};
ec.PointFp.prototype.negate = function () {
return new ec.PointFp(this.curve, this.x, this.y.negate(), this.z);
};
ec.PointFp.prototype.add = function (b) {
if (this.isInfinity()) return b;
if (b.isInfinity()) return this;
// u = Y2 * Z1 - Y1 * Z2
var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(this.curve.q);
// v = X2 * Z1 - X1 * Z2
var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(this.curve.q);
if (BigInteger.ZERO.equals(v)) {
if (BigInteger.ZERO.equals(u)) {
return this.twice(); // this == b, so double
}
return this.curve.getInfinity(); // this = -b, so infinity
}
var THREE = new BigInteger("3");
var x1 = this.x.toBigInteger();
var y1 = this.y.toBigInteger();
var x2 = b.x.toBigInteger();
var y2 = b.y.toBigInteger();
var v2 = v.square();
var v3 = v2.multiply(v);
var x1v2 = x1.multiply(v2);
var zu2 = u.square().multiply(this.z);
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q);
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q);
// z3 = v^3 * z1 * z2
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q);
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
};
ec.PointFp.prototype.twice = function () {
if (this.isInfinity()) return this;
if (this.y.toBigInteger().signum() == 0) return this.curve.getInfinity();
// TODO: optimized handling of constants
var THREE = new BigInteger("3");
var x1 = this.x.toBigInteger();
var y1 = this.y.toBigInteger();
var y1z1 = y1.multiply(this.z);
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q);
var a = this.curve.a.toBigInteger();
// w = 3 * x1^2 + a * z1^2
var w = x1.square().multiply(THREE);
if (!BigInteger.ZERO.equals(a)) {
w = w.add(this.z.square().multiply(a));
}
w = w.mod(this.curve.q);
//this.curve.reduce(w);
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q);
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q);
// z3 = 8 * (y1 * z1)^3
var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q);
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
};
// Simple NAF (Non-Adjacent Form) multiplication algorithm
// TODO: modularize the multiplication algorithm
ec.PointFp.prototype.multiply = function (k) {
if (this.isInfinity()) return this;
if (k.signum() == 0) return this.curve.getInfinity();
var e = k;
var h = e.multiply(new BigInteger("3"));
var neg = this.negate();
var R = this;
var i;
for (i = h.bitLength() - 2; i > 0; --i) {
R = R.twice();
var hBit = h.testBit(i);
var eBit = e.testBit(i);
if (hBit != eBit) {
R = R.add(hBit ? this : neg);
}
}
return R;
};
// Compute this*j + x*k (simultaneous multiplication)
ec.PointFp.prototype.multiplyTwo = function (j, x, k) {
var i;
if (j.bitLength() > k.bitLength())
i = j.bitLength() - 1;
else
i = k.bitLength() - 1;
var R = this.curve.getInfinity();
var both = this.add(x);
while (i >= 0) {
R = R.twice();
if (j.testBit(i)) {
if (k.testBit(i)) {
R = R.add(both);
}
else {
R = R.add(this);
}
}
else {
if (k.testBit(i)) {
R = R.add(x);
}
}
--i;
}
return R;
};
// patched by bitaddress.org and Casascius for use with Bitcoin.ECKey
// patched by coretechs to support compressed public keys
ec.PointFp.prototype.getEncoded = function (compressed) {
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
var len = 32; // integerToBytes will zero pad if integer is less than 32 bytes. 32 bytes length is required by the Bitcoin protocol.
var enc = ec.integerToBytes(x, len);
// when compressed prepend byte depending if y point is even or odd
if (compressed) {
if (y.isEven()) {
enc.unshift(0x02);
}
else {
enc.unshift(0x03);
}
}
else {
enc.unshift(0x04);
enc = enc.concat(ec.integerToBytes(y, len)); // uncompressed public key appends the bytes of the y point
}
return enc;
};
ec.PointFp.decodeFrom = function (curve, enc) {
var type = enc[0];
var dataLen = enc.length - 1;
// Extract x and y as byte arrays
var xBa = enc.slice(1, 1 + dataLen / 2);
var yBa = enc.slice(1 + dataLen / 2, 1 + dataLen);
// Prepend zero byte to prevent interpretation as negative integer
xBa.unshift(0);
yBa.unshift(0);
// Convert to BigIntegers
var x = new BigInteger(xBa);
var y = new BigInteger(yBa);
// Return point
return new ec.PointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y));
};
ec.PointFp.prototype.add2D = function (b) {
if (this.isInfinity()) return b;
if (b.isInfinity()) return this;
if (this.x.equals(b.x)) {
if (this.y.equals(b.y)) {
// this = b, i.e. this must be doubled
return this.twice();
}
// this = -b, i.e. the result is the point at infinity
return this.curve.getInfinity();
}
var x_x = b.x.subtract(this.x);
var y_y = b.y.subtract(this.y);
var gamma = y_y.divide(x_x);
var x3 = gamma.square().subtract(this.x).subtract(b.x);
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
return new ec.PointFp(this.curve, x3, y3);
};
ec.PointFp.prototype.twice2D = function () {
if (this.isInfinity()) return this;
if (this.y.toBigInteger().signum() == 0) {
// if y1 == 0, then (x1, y1) == (x1, -y1)
// and hence this = -this and thus 2(x1, y1) == infinity
return this.curve.getInfinity();
}
var TWO = this.curve.fromBigInteger(BigInteger.valueOf(2));
var THREE = this.curve.fromBigInteger(BigInteger.valueOf(3));
var gamma = this.x.square().multiply(THREE).add(this.curve.a).divide(this.y.multiply(TWO));
var x3 = gamma.square().subtract(this.x.multiply(TWO));
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
return new ec.PointFp(this.curve, x3, y3);
};
ec.PointFp.prototype.multiply2D = function (k) {
if (this.isInfinity()) return this;
if (k.signum() == 0) return this.curve.getInfinity();
var e = k;
var h = e.multiply(new BigInteger("3"));
var neg = this.negate();
var R = this;
var i;
for (i = h.bitLength() - 2; i > 0; --i) {
R = R.twice();
var hBit = h.testBit(i);
var eBit = e.testBit(i);
if (hBit != eBit) {
R = R.add2D(hBit ? this : neg);
}
}
return R;
};
ec.PointFp.prototype.isOnCurve = function () {
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
var a = this.curve.getA().toBigInteger();
var b = this.curve.getB().toBigInteger();
var n = this.curve.getQ();
var lhs = y.multiply(y).mod(n);
var rhs = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(n);
return lhs.equals(rhs);
};
ec.PointFp.prototype.toString = function () {
return '(' + this.getX().toBigInteger().toString() + ',' + this.getY().toBigInteger().toString() + ')';
};
/**
* Validate an elliptic curve point.
*
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
*/
ec.PointFp.prototype.validate = function () {
var n = this.curve.getQ();
// Check Q != O
if (this.isInfinity()) {
throw new Error("Point is at infinity.");
}
// Check coordinate bounds
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
if (x.compareTo(BigInteger.ONE) < 0 || x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
throw new Error('x coordinate out of bounds');
}
if (y.compareTo(BigInteger.ONE) < 0 || y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
throw new Error('y coordinate out of bounds');
}
// Check y^2 = x^3 + ax + b (mod n)
if (!this.isOnCurve()) {
throw new Error("Point is not on the curve.");
}
// Check nQ = 0 (Q is a scalar multiple of G)
if (this.multiply(n).isInfinity()) {
// TODO: This check doesn't work - fix.
throw new Error("Point is not a scalar multiple of G.");
}
return true;
};
// ----------------
// ECCurveFp constructor
ec.CurveFp = function (q, a, b) {
this.q = q;
this.a = this.fromBigInteger(a);
this.b = this.fromBigInteger(b);
this.infinity = new ec.PointFp(this, null, null);
this.reducer = new Barrett(this.q);
}
ec.CurveFp.prototype.getQ = function () {
return this.q;
};
ec.CurveFp.prototype.getA = function () {
return this.a;
};
ec.CurveFp.prototype.getB = function () {
return this.b;
};
ec.CurveFp.prototype.equals = function (other) {
if (other == this) return true;
return (this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b));
};
ec.CurveFp.prototype.getInfinity = function () {
return this.infinity;
};
ec.CurveFp.prototype.fromBigInteger = function (x) {
return new ec.FieldElementFp(this.q, x);
};
ec.CurveFp.prototype.reduce = function (x) {
this.reducer.reduce(x);
};
// for now, work with hex strings because they're easier in JS
// compressed support added by bitaddress.org
ec.CurveFp.prototype.decodePointHex = function (s) {
var firstByte = parseInt(s.substr(0, 2), 16);
switch (firstByte) { // first byte
case 0:
return this.infinity;
case 2: // compressed
case 3: // compressed
var yTilde = firstByte & 1;
var xHex = s.substr(2, s.length - 2);
var X1 = new BigInteger(xHex, 16);
return this.decompressPoint(yTilde, X1);
case 4: // uncompressed
case 6: // hybrid
case 7: // hybrid
var len = (s.length - 2) / 2;
var xHex = s.substr(2, len);
var yHex = s.substr(len + 2, len);
return new ec.PointFp(this,
this.fromBigInteger(new BigInteger(xHex, 16)),
this.fromBigInteger(new BigInteger(yHex, 16)));
default: // unsupported
return null;
}
};
ec.CurveFp.prototype.encodePointHex = function (p) {
if (p.isInfinity()) return "00";
var xHex = p.getX().toBigInteger().toString(16);
var yHex = p.getY().toBigInteger().toString(16);
var oLen = this.getQ().toString(16).length;
if ((oLen % 2) != 0) oLen++;
while (xHex.length < oLen) {
xHex = "0" + xHex;
}
while (yHex.length < oLen) {
yHex = "0" + yHex;
}
return "04" + xHex + yHex;
};
/*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*
* Number yTilde
* BigInteger X1
*/
ec.CurveFp.prototype.decompressPoint = function (yTilde, X1) {
var x = this.fromBigInteger(X1);
var alpha = x.multiply(x.square().add(this.getA())).add(this.getB());
var beta = alpha.sqrt();
// if we can't find a sqrt we haven't got a point on the curve - run!
if (beta == null) throw new Error("Invalid point compression");
var betaValue = beta.toBigInteger();
var bit0 = betaValue.testBit(0) ? 1 : 0;
if (bit0 != yTilde) {
// Use the other root
beta = this.fromBigInteger(this.getQ().subtract(betaValue));
}
return new ec.PointFp(this, x, beta, null, true);
};
ec.fromHex = function (s) { return new BigInteger(s, 16); };
ec.integerToBytes = function (i, len) {
var bytes = i.toByteArrayUnsigned();
if (len < bytes.length) {
bytes = bytes.slice(bytes.length - len);
} else while (len > bytes.length) {
bytes.unshift(0);
}
return bytes;
};
// Named EC curves
// ----------------
// X9ECParameters constructor
ec.X9Parameters = function (curve, g, n, h) {
this.curve = curve;
this.g = g;
this.n = n;
this.h = h;
}
ec.X9Parameters.prototype.getCurve = function () { return this.curve; };
ec.X9Parameters.prototype.getG = function () { return this.g; };
ec.X9Parameters.prototype.getN = function () { return this.n; };
ec.X9Parameters.prototype.getH = function () { return this.h; };
// secp256k1 is the Curve used by Bitcoin
ec.secNamedCurves = {
// used by Bitcoin
"secp256k1": function () {
// p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
var p = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F");
var a = BigInteger.ZERO;
var b = ec.fromHex("7");
var n = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141");
var h = BigInteger.ONE;
var curve = new ec.CurveFp(p, a, b);
var G = curve.decodePointHex("04"
+ "79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798"
+ "483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8");
return new ec.X9Parameters(curve, G, n, h);
}
};
// secp256k1 called by Bitcoin's ECKEY
ec.getSECCurveByName = function (name) {
if (ec.secNamedCurves[name] == undefined) return null;
return ec.secNamedCurves[name]();
}
})();
</script>
<script type="text/javascript">
/*!
* Basic JavaScript BN library - subset useful for RSA encryption. v1.3
*
* Copyright (c) 2005 Tom Wu
* All Rights Reserved.
* BSD License
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
*
* Copyright Stephan Thomas
* Copyright bitaddress.org
*/
(function () {
// (public) Constructor function of Global BigInteger object
var BigInteger = window.BigInteger = function BigInteger(a, b, c) {
if (a != null)
if ("number" == typeof a) this.fromNumber(a, b, c);
else if (b == null && "string" != typeof a) this.fromString(a, 256);
else this.fromString(a, b);
};
// Bits per digit
var dbits;
// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary & 0xffffff) == 0xefcafe);
// return new, unset BigInteger
function nbi() { return new BigInteger(null); }
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i, x, w, j, c, n) {
while (--n >= 0) {
var v = x * this[i++] + w[j] + c;
c = Math.floor(v / 0x4000000);
w[j++] = v & 0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i, x, w, j, c, n) {
var xl = x & 0x7fff, xh = x >> 15;
while (--n >= 0) {
var l = this[i] & 0x7fff;
var h = this[i++] >> 15;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
w[j++] = l & 0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i, x, w, j, c, n) {
var xl = x & 0x3fff, xh = x >> 14;
while (--n >= 0) {
var l = this[i] & 0x3fff;
var h = this[i++] >> 14;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
c = (l >> 28) + (m >> 14) + xh * h;
w[j++] = l & 0xfffffff;
}
return c;
}
if (j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
BigInteger.prototype.am = am2;
dbits = 30;
}
else if (j_lm && (navigator.appName != "Netscape")) {
BigInteger.prototype.am = am1;
dbits = 26;
}
else { // Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3;
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1 << dbits) - 1);
BigInteger.prototype.DV = (1 << dbits);
var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2, BI_FP);
BigInteger.prototype.F1 = BI_FP - dbits;
BigInteger.prototype.F2 = 2 * dbits - BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr, vv;
rr = "0".charCodeAt(0);
for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
function int2char(n) { return BI_RM.charAt(n); }
function intAt(s, i) {
var c = BI_RC[s.charCodeAt(i)];
return (c == null) ? -1 : c;
}
// return bigint initialized to value
function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
// returns bit length of the integer x
function nbits(x) {
var r = 1, t;
if ((t = x >>> 16) != 0) { x = t; r += 16; }
if ((t = x >> 8) != 0) { x = t; r += 8; }
if ((t = x >> 4) != 0) { x = t; r += 4; }
if ((t = x >> 2) != 0) { x = t; r += 2; }
if ((t = x >> 1) != 0) { x = t; r += 1; }
return r;
}
// (protected) copy this to r
BigInteger.prototype.copyTo = function (r) {
for (var i = this.t - 1; i >= 0; --i) r[i] = this[i];
r.t = this.t;
r.s = this.s;
};
// (protected) set from integer value x, -DV <= x < DV
BigInteger.prototype.fromInt = function (x) {
this.t = 1;
this.s = (x < 0) ? -1 : 0;
if (x > 0) this[0] = x;
else if (x < -1) this[0] = x + this.DV;
else this.t = 0;
};
// (protected) set from string and radix
BigInteger.prototype.fromString = function (s, b) {
var k;
if (b == 16) k = 4;
else if (b == 8) k = 3;
else if (b == 256) k = 8; // byte array
else if (b == 2) k = 1;
else if (b == 32) k = 5;
else if (b == 4) k = 2;
else { this.fromRadix(s, b); return; }
this.t = 0;
this.s = 0;
var i = s.length, mi = false, sh = 0;
while (--i >= 0) {
var x = (k == 8) ? s[i] & 0xff : intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if (sh == 0)
this[this.t++] = x;
else if (sh + k > this.DB) {
this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
this[this.t++] = (x >> (this.DB - sh));
}
else
this[this.t - 1] |= x << sh;
sh += k;
if (sh >= this.DB) sh -= this.DB;
}
if (k == 8 && (s[0] & 0x80) != 0) {
this.s = -1;
if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
}
this.clamp();
if (mi) BigInteger.ZERO.subTo(this, this);
};
// (protected) clamp off excess high words
BigInteger.prototype.clamp = function () {
var c = this.s & this.DM;
while (this.t > 0 && this[this.t - 1] == c) --this.t;
};
// (protected) r = this << n*DB
BigInteger.prototype.dlShiftTo = function (n, r) {
var i;
for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i];
for (i = n - 1; i >= 0; --i) r[i] = 0;
r.t = this.t + n;
r.s = this.s;
};
// (protected) r = this >> n*DB
BigInteger.prototype.drShiftTo = function (n, r) {
for (var i = n; i < this.t; ++i) r[i - n] = this[i];
r.t = Math.max(this.t - n, 0);
r.s = this.s;
};
// (protected) r = this << n
BigInteger.prototype.lShiftTo = function (n, r) {
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << cbs) - 1;
var ds = Math.floor(n / this.DB), c = (this.s << bs) & this.DM, i;
for (i = this.t - 1; i >= 0; --i) {
r[i + ds + 1] = (this[i] >> cbs) | c;
c = (this[i] & bm) << bs;
}
for (i = ds - 1; i >= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t + ds + 1;
r.s = this.s;
r.clamp();
};
// (protected) r = this >> n
BigInteger.prototype.rShiftTo = function (n, r) {
r.s = this.s;
var ds = Math.floor(n / this.DB);
if (ds >= this.t) { r.t = 0; return; }
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << bs) - 1;
r[0] = this[ds] >> bs;
for (var i = ds + 1; i < this.t; ++i) {
r[i - ds - 1] |= (this[i] & bm) << cbs;
r[i - ds] = this[i] >> bs;
}
if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs;
r.t = this.t - ds;
r.clamp();
};
// (protected) r = this - a
BigInteger.prototype.subTo = function (a, r) {
var i = 0, c = 0, m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] - a[i];
r[i<