Skip to content
Switch branches/tags

Latest commit


Git stats


Failed to load latest commit information.


This is an implementation of the ICCV'19 paper "Pixel2Mesh++: Multi-View 3D Mesh Generation via Deformation".

Our method takes multi-view images as input and the network outputs a refined 3D mesh model via deformation.

Please check our paper and the project webpage for more details.

If you have any question, please contact Chao Wen (cwen18 at fudan dot edu dot cn).


If you use this code for any purpose, please consider citing:

  title={Pixel2Mesh++: Multi-View 3D Mesh Generation via Deformation},
  author={Chao Wen and Yinda Zhang and Zhuwen Li and Yanwei Fu},



  • Python3.6
  • numpy
  • Tensorflow==1.12.0
  • tflearn==0.3.2
  • opencv-python
  • pyyaml
  • scipy

Our code has been tested with Python 3.6, TensorFlow 1.12.0, CUDA 9.0 on Ubuntu 16.04.

Compile CUDA-op

If you use Chamfer Distance for training or evaluation, we have included the cuda implementations of Fan et. al. in external/.

We recommend readers to follow the official tutorial of Tensorflow for how to compile the CUDA code. Please refer to official tutorial.

Addition from author's first documentation

The official tutorial's link doesn't work anymore. I've followed this link instead.

The make command didn't work for me. I had to modify it to compile the code for another CUDA version (10 in my case). I've added archives for the original .so and .cu.o files. There are also changes inside the Makefile file you'll need to look into if you want to compile your own version.

In order to make things work, copy the content from the archive of your CUDA version into the external folder.


We used the ShapeNet dataset for 3D models, and rendered views from 3D-R2N2. When using the provided data make sure to respect the shapenet license.

The training/testing split can be found in data/train_list.txt and data/test_list.txt.

If you are interested in using our data, please check ./data for terms of usage.

Pre-trained Model

We provide pre-trained models on ShapeNet datasets. Please check ./data for download links.

Quick Demo

First, please refer to the documentation in ./data to download the pre-trained model.

Then, execute the script below, the input images for demo has placed in data/demo/ and the final mesh will be output to data/demo/predict.obj:


Input images, coarse shape and shape generated by pixel2mesh++


Our released code consists of a coarse shape generation and the refined block.

For training, you should first train the coarse shape generation network, then generate intermediate results, and finally train the multi-view deformation network.


For training coarse shape generation, please set your own configuration in cfgs/mvp2m.yaml. Specifically, the meaning of the setting items is as follows. For more details, please refer to modulles/

  • train_file_path: the path of your own train split file which contains training data name for each instance
  • train_image_path: input image path
  • train_data_path: ground-truth model path
  • coarse_result_***: the configuration items related to the coarse intermediate mesh should be same as the training data

Then execute the script:

python -f cfgs/mvp2m.yaml


Before training multi-view deformation network, you should generated coarse intermediate mesh.

python -f cfgs/mvp2m.yaml


For training multi-view deformation network, please set your own configuration in cfgs/p2mpp.yaml.

The configuration item is similar to Step1. In particular, train_mesh_root should be set to the output path of intermediate coarse shape generation. Then execute the script:

python -f cfgs/p2mpp.yaml


First, download the pre-trained model from the link in ./data.

Then the model can output predict mesh as follows.

Step 1

Generate coarse shape, you also need to set your own configuration in cfgs/mvp2m.yaml as mentioned previously, then execute the script:

python -f cfgs/mvp2m.yaml


You should set test_mesh_root in cfgs/p2mpp.yaml to the output folder in step1 and test_image_path,test_file_path as it mentioned in Training step.

Then execute the script:

python -f cfgs/p2mpp.yaml

For evaluate F-score and Chamfer distance you can execute the script below, and the evaluation result will be output and stored in result/refine_p2mpp/log:

python -f cfgs/p2mpp.yaml
python -f cfgs/p2mpp.yaml

Please check that you config the correct ground truth path, image path and test split file path in yaml config file.

Due to the stochastic nature during training. The released pre-trained model has slightly better F-score 67.23, CD 0.381 compared to F-score 66.48, CD 0.486 in the paper.


This software is for research purpose only. Please contact us for the licence of commercial purposes. All rights are preserved.


BSD 3-Clause License


Pixel2Mesh++: Multi-View 3D Mesh Generation via Deformation. In ICCV2019.








No releases published


No packages published