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ABSTRACT
Impoverished descriptions and convoluted schema labels are com-
mon challenges in data-centric tasks such as schema matching and
data linking, especially when datasets can span domains. To ad-
dress these issues, we consider the task of schema label generation.
Typically, schema labels are created by dataset providers and are
useful for users to understand a dataset. The motivation behind
the task is that a lot of data linking systems require overlapping
information between two datasets and rely on unique identifiers
of schema labels. Moreover, it is common for schema labels in dif-
ferent datasets to have different identifiers even when they refer
to the same concept. With no naming standard for schema labels,
unintelligible labels are widely found in real-world datasets. For
example, many schema labels contain abbreviations and compound
nouns that hinder automated matching of attributes in correspond-
ing datasets. Through schema label generation, more common (and
thus understandable) schema labels can be provided to allow for
broader schema matches in contexts such as dataset search and
data linking. We develop a variety of features based on analysis of
dataset content to enable machine learning methods to recommend
useful labels. We test our approach on two real-world data collec-
tions and demonstrate that our method is able to outperform the
alternative approach.
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1 INTRODUCTION
Organizations and individuals worldwide make datasets public
and enable users to freely explore such valuable resources. An
increasing number of online data sources, such as governmental
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data portals (e.g., data.gov1, data.gov.uk2 and data.gov.sg3), and
more general facilities like datahub4 (alongside older sites such as
the UCI machine learning repository5), suit the diverse needs of
data experts, researchers, and journalists. More data also means
more challenges. It becomes a non-trivial task to effectively inte-
grate datasets from different resources. In order to help agencies
to manage their data, the U.S. government released a policy6 to
instruct (government) data providers to provide metadata with their
datasets. It is a great opportunity for technical communities to bring
heterogeneous data together for diverse applications and also a big
challenge which may require advanced approaches to manage the
datasets. However, many datasets do not adopt metadata standards
so that open source data management systems (e.g., CKAN7) are
unable to be utilized. Another challenge is that different agencies
are likely to have different data formats and standards [27] resulting
difficulties in merging heterogeneous datasets.

Among all types of data, tabular data or the data table is one of
the most important. It presents relational data in a compact way
and is commonly used in different applications such as knowledge
management and web data presentation. A data table usually has a
header row, consisting of schema labels (attribute names), followed
by data rows storing the actual data values of corresponding at-
tributes. In this paper, we focus on this simple data table format
although there are data tables with more complex structures where
headers are nested. Tabular data is widely used in different commu-
nities because it clearly shows the relationships of different entities
and facilitates data analysis. Many tools can easily work on tabular
data for analysis and visualization.

Current data linking systems usually rely on the overlapping
information in data itself or more commonly, the corresponding
metadata fields such as title, tags, description and publisher. How-
ever, non-dictionary words (NDWs) commonly appear in data tables
and can have a significant impact on data linking. The existence of
NDWs in schema labels is also a well-known problem in schema
matching systems [21, 24].

To address this problem, we propose a supervised method which
recommends alternative schema labels. Considering Tables 1 and
2 from different domains, though we can easily identify that the
column “latitude” in Table 1 refers to the same concept as “lat” in
Table 2, it is not an easy task for data linking and schema matching
systems. If we can recommend the column “lat” with new schema

1https://www.data.gov/
2https://data.gov.uk/
3https://data.gov.sg/
4http://datahub.io/
5http://archive.ics.uci.edu/ml/index.php
6https://project-open-data.cio.gov/policy-memo/
7https://ckan.org
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Table 1: Sample from a dataset of NYC Farmers Markets.

Farmers Market Name ... State Zip Code Latitude Longitude
Carroll Gardens Greenmarket ... NY 11231 41 -74
Cortelyou Greenmarket ... NY 11226 41 -74
Cypress Hills Youthmarket ... NY 11208 41 -74
East New York Farm Stand ... NY 11207 41 -74
East New York Farmers’ Market ... NY 11207 41 -74
Fort Greene Park Greenmarket ... NY 11205 41 -74

... ... ... ... ... ...
Graham Avenue Farmers’ Market ... NY 11206 41 -74

Table 2: Sample from an Oceanographic dataset.

cruiseid year si month_gmt day_gmt time_gmt ... lat lon
EN319 1999 T.Durbin 2 21 29.3 ... 41.4922 -71.4187
EN323 1999 J.Ledwell 5 14 1146.88 ... 41.5234 -70.6723
EN330 1999 C.Greene 10 23 140.4 ... 42.5035 -66.8025
OC342 1999 B.Houghton 5 24 19.5 ... 41.0683 -67.4617
... ... ... ... ... ... ... ... ...
OC343 1999 D.Hebert 6 25 731.47 ... 40.9997 -67.6014

labels such as “latitude”, “location”, it can not only facilitate inte-
grating the column of Table 2 with other columns, but also help
users to better understand the meaning of this column.

We construct a variety of features from column content and en-
able machine learning models to generate alternative schema labels.
To evaluate our method, we test on datasets with different hetero-
geneity and show that the features are effective for the schema label
prediction task. Additionally, we experiment on integer columns,
float columns, string columns and show that our method provides
consistent performance on those different columns types.

We summarize our contributions as follows:

• We propose a domain-independent method for schema label
prediction.

• We run experiments on real world datasets with varying
degrees of heterogeneity and demonstrate the effectiveness
of our methods on the task of schema label prediction. Our
experimental results suggest that the difficulty of the task
increases with the heterogeneity of the datasets.

• We evaluate our method on columns of three basic data
types (integers, floats, and strings) and demonstrate that our
method outperforms the baseline on each of them.

2 RELATEDWORK
Though there is no prior work on the specific task of schema label
prediction, work in the area of schema matching and data linking
is related to our task and discussed below.

2.1 Schema Matching
In the database community, schema matching is a critical problem
for integrating heterogeneous data sources, which aims to find
pairwise-attribute correspondence in different schemas. It is similar
to our task, except that they do not require that the pair of schema
labels are exactly the same.

According to the classification of Rahm and Bernstein [20], there
are two major types of schema matchers: schema-only matchers
and instance-based matchers. Schema-only matchers are limited
to schema information such as schema name, description and data
type. For example, Sorrentino et al. [25] develop a lexical annotation
technique to help identify similar schema labels. However, the
result of lexical annotation is strongly affected by the presence
of non-dictionary words in schema labels such as abbreviations
and compound words. For this reason, they expand abbreviations
with the help of an online dictionary and enrich WordNet with
meanings of compound nouns. The output of their system can be
used as the input of another schema matching system and improve
the performance of schema matching. Ratinov and Gudes [21] solve
the abbreviation issue by manually designing abbreviation patterns
and reduce it to a supervised pattern classification problem. As we
can see, the quality of schema labels have a huge impact on schema-
only matchers and thus those methods put effort into the analysis
of abbreviations and compound nouns in schema labels. Even for
well-known schema-only matchers, such as Artemis [4], Cupid
[14] and COMA [6], they require a specified external dictionary to
measure the similarity of schema labels at some steps. In real world
datasets, abbreviation and compound nouns cannot cover all the
complex patterns of schema labels. Sometimes the column name
of a data table has no real meaning or is even missing. Moreover,
available schema information of real world datasets is limited.

Our method is closer to instance-based methods where we give
insight into the data content. Since we train a supervised model
to use a set of existing schema labels to annotate other schema
labels, the results are less sensitive to NDWs. Besides, the similarity
between two schema labels relies on the similarity of corresponding
content rather than the surface form of the label text.

Automatch [2] uses machine learning techniques to automate
the schema matching process. Their model acquires probabilistic
knowledge stored in an attribute dictionary which characterizes
different attributes by a set of possible values and their probability
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estimates. Actually, this method is similar to our baseline method
which characterizes a column by its bag-of-Words representation.
As mentioned by the authors, there could be endless possible values
for a column, especially for those whose data types are continuous
variables. Therefore, instead of considering each column value as
a feature, we consider each character of each column value as a
feature. We also explore other higher level features from column
content and better characterize different schema labels.

2.2 Data Linking
In recent decades, a large number of datasets have been published
in different data repositories and it becomes an infeasible task to
manually link different datasets. Under this context, data linking
has become an important task which aims to automatically interlink
datasets and facilitate their reuse.

Nikolov et al. [17, 18] present a keyword-based method with two
main steps. In the first step, they use a subset of labels in the dataset
as keywords to search for potentially relevant entities in external
data sources. In the second step, they filter out irrelevant datasets
by measuring semantic similarities used in ontology matching tech-
niques. Leme et al. [11] propose a probabilistic method for Linked
Data datasets. For a set of known datasets, they first construct a
directed graph from the metadata to describe their connections.
Then given a new dataset, they rank those datasets given a rank
score function. A similar graph-based method is proposed by Lopes
et al. [13] which treats dataset linking as a link prediction problem
in social network. Ellefi et al. [1] propose a recommendation ap-
proach for data linking. They adopt the notion of dataset profiles,
where a dataset is characterized as its textual descriptions and a
set of schema labels. Therefore, given a source dataset, a cluster
of comparable datasets can be retrieved based on their semantic
similarities to a source dataset and each dataset can be ranked by
tf-idf cosine similarity. A similar approach is proposed in [8], where
a topic-dataset bipartite graph is produced during the topic mod-
eling process; thus a dataset can be represented as a set of topics
and a topic can be modeled as a set of significant datasets. There-
fore a candidate dataset can be interlinked based on connectivity
within the topic-profiles graph. In [5], the authors propose a user
feedback-based approach to incrementally identify new datasets for
domain-specific linked data applications. They first filter datasets
according to the application queries and then use user feedback to
analyze the relevance of candidate datasets.

As pointed by Nikolov et al. [17], finding the degree of overlap
among datasets is critical for data linking. Schema label prediction
can be a potential solution to increase the connectivity of heteroge-
neous datasets by recommending a dataset with schema labels that
have appeared in other datasets.

2.3 Semantic Table Interpretation
As embedded data on web pages, Web tables take an important
role in applications like knowledge base construction [22, 23, 32]
and question answering [12, 19]. Therefore, it becomes crucial to
recover semantics of Web tables.

There are three main tasks in semantic table interpretation [33]:
1) annotate columns in a table with semantic concepts; 2) identify
the semantic relations between columns; and 3) cell disambiguation

by linking them to entities in a knowledge base. Among the three
tasks, the first task is the closest to our work. TableMiner [33] uses
features from context inside and outside of the table to help annotate
columns containing entity mentions. Venetis et al. [29] leverage a
database to attach a class label to a column if a sufficient number
of the values in the column are identified with the corresponding
label in the database. Wang et al. [30] use Probase to annotate a
Table with related concepts. Similarly, a large number of works
[15, 16, 26] also make use of knowledge bases to interpret Web
Tables.

Different from Web tables, real-world datasets usually have
not enough context such as surrounding paragraphs or semantic
markups inserted in the Webpage. Moreover, there are few entities
that can be linked to a knowledge base since the concepts contained
in a dataset are usually too narrow (e.g., street names on a map) or
too broad. The method proposed in this paper only uses generic
features extracted from the datasets and therefore only annotates
columns with labels from the datasets rather than concepts from
other resources.

3 PROBLEM STATEMENT
In this paper, we focus on finding alternative schema labels (column
names) based on analysis of the content of the column.

We consider data tables with n columns andm + 1 rows with the
following format: 

c1 c2 ... cn
v1,1 v1,2 ... v1,n
... ... ... ...

vm,1 vm,2 ... vm,n


For convenience, we use the following naming conventions in the
rest of the paper:

• schema label (or column name): c j , where j ∈ [1, ...,n].
• schema content (or column content): Cj = {v1, j , ...,vm, j },
j ∈ [1, ...,n]

• column: (c j ,Cj ), j ∈ [1, ...,n].
GivenCj and k target labels L = {l1, l2, ..., lk }, our objective is to

learn a function that models P(l | f (Cj )), (l ∈ L)where f is a function
extracting features from Cj . The features will be introduced in the
following section. A perfect prediction should satisfy:

c j = argmax
l ∈L

P(l | f (Cj ))

4 SCHEMA LABEL PREDICTION FEATURES
Our approach to predicting schema labels is to leverage features
extracted from column content. Past research has indicated that
useful features are important for table understanding [10, 31]. We
assume that a schema label and evidence observed from the column
content are highly related. One obvious example is that column
contents corresponding to different data types are significantly
different. Though column data types are not provided directly for
the majority of public datasets, machine learning models are able
to identify such features automatically [28].

Our task is much more challenging than just inferring the data
type, since the number of data types is small and constant while
the number of possible schema labels is uncertain but large. It also
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means our model should be able to capture the differences among
columns with the same data type. As shown in Table 1, a column
of zip codes usually have data cells consisting of five digits, while a
column of latitudes usually have data cells that are real numbers
ranging from -90 to 90. If there is a column in the data table without
a header and we know all the values in the column are five-digit
numbers, the header is more likely to be “Zip Code” instead of
“latitude”. Therefore, for possible numerical columns, themaximum
value andminimal value are important features to characterize them.
However, not all columns are numerical columns. Then for non-
numerical columns, we instead use the average maximum value and
average minimal value of other columns in order to appropriately
minimize the impact of these features.

We define content unique ratio and content histogram to describe
the distribution of cell values. Content ratio [7] is usually used as
a feature to categorize the class of table where the ratio of cells
containing content of a specific type is calculated. Similarly, we use
content unique ratio to categorize a columnwhere the proportion of
the number of unique cells over the number of all cells is calculated.
In Table 1, the content unique ratio is 1/102 ≈ 0.01 for “State” if
the table has 102 rows and all cell values under this schema label
are all “NY”. In contrast, the content unique ratio is 102/102 = 1 for
“Farmers Market Name” if all cell values under this schema label
are different.

A content histogram contains more accurate information about
the content distribution than the content unique ratio. To obtain the
content histogram, we rank the unique cell values by frequencies
(low-frequency first) and generate a vector where the ith dimen-
sion is the frequency of the ith ranked cell value. For different
column contents, we could obtain the vectors of various lengths.
For data.Gov and WikiTables which are two datasets used in our
experiment, the medians are 26 and 13 respectively. Therefore,
we generate the content histogram by resampling the vector to a
20-dimensional vector using FFT transformations8. We show the
content histogram of “Farmers Market Name” and “Zip Code” of
Table 1 in Figures 1a and 1b, respectively. The flatter shape of esti-
mated frequencies of “Farmers Market Name” indicates the content
distribution is closer to a uniform distribution than “Zip Code”.

If we treat each column content as a document, then the schema
label prediction can be seen as a document classification task, where
classes are possible schema labels. So it is reasonable to incorporate
bag-of-words (BoWs) representation as features. For column c , we
construct the BoWs features as

Bc = { f req(u1), ..., f req(ui ), ..., f req(un )},

where n is the vocabulary size, ui is the ith word in the vocabulary
and f req represents the function calculating the frequency of ui
in c . To save memory, we only use character-level unigrams in
BoWs (e.g., “EN319” is decomposed into “E”,“N”,“3”,“1” and “9”). In
our experiment, we use BoWs features to construct the baseline
method. The difference is that instead of considering character-level
unigrams, we use TF-IDF representation of tokens extracted from
column content.

8We use the method from https://docs.scipy.org/doc/scipy-0.17.0/reference/generated/
scipy.signal.resample.html

(a) 20-dimensional content histogram of “Farmers Mar-
ket Name” in Table 1.

(b) 20-dimensional content histogram of “Zip Code” in
Table 1.

Figure 1: Examples of content histograms.

In a study of table header detection [9], Fang et al. showed that
single row features could differentiate header rows and data rows.
Inspired by their work, we extract the following single column fea-
tures on each column instead of each row: number of characters,
percentage of numeric characters, percentage of alphabetic char-
acters, percentage of symbolic characters, percentage of numeric
cells, average cell length, maximum cell length and minimum cell
length. These features could be considered as an extension of the
BoWs features which summarize the statistics of BoWs.

We summarize all the features in Table 3.

Table 3: A list of curated features for schema label prediction

ID Feature length Description
1 1 maximum value in the column content
2 1 minimum value in the column content
3 1 content unique ratio
4 20 content histogram
5 # of unique unigrams9 BoWs (character-level unigram)
6 1 number of characters
7 1 percentage of numeric characters
8 1 percentage of alphabetic characters
9 1 percentage of symbolic characters
10 1 percentage of numeric cells
11 1 average cell length
12 1 maximum cell length
13 1 minimum cell length

5 EXPERIMENTAL EVALUATION
In this section, we first discuss the datasets used in our experiments.
Then we evaluate our method from two perspectives. In exact
schema label prediction and normalized schema label prediction, we
evaluate performance of the model and demonstrate the usefulness
of the aforementioned features.

5.1 Datasets
For our first dataset, we collected all available comma-separated
value (CSV) files (7485 in good format) from Data.gov which are
9741 for data.Gov and 54982 for WikiTables.
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contributed by more than 50 U.S. government agencies. This dataset
covers a variety of topics such as agriculture, climate, economy, and
health. Web tables are also tabular tables and have an important
role in applications like Web Data search and knowledge base con-
struction. Therefore, we also experiment on WikiTables [3], which
contains 1.6M tables extracted from Wikipedia.

Figure 2: Rank-sorted frequencies of column labels

We observe that raw schema labels exhibit properties similar to
terms in natural language, in that the rank-sorted frequencies of
schema labels produce a curve which approximates the well-known
Zipf’s law and reflects the heterogeneity of schema labels.

5.2 Exact schema label prediction
We first evaluate our method on the task of exact schema label
prediction. Considering a collection of tabular datasets where many
schema labels are blank, our goal is to predict the missing schema la-
bels by the corresponding column content. Specifically, we consider
two questions: 1) How useful are features extracted from dataset
content for schema label prediction? and 2) Does heterogeneity of
the dataset collection make the task more difficult?

To answer the first question, we build machine learning models
using the features proposed in Section 4, and evaluate the prediction
results under different metrics. We treat schema label prediction
as a multiclass classification task, where each schema label in the
training set represents a class. We calculate macro-averaged and
micro-averaged precision, recall and F-score of predictions on the
test set. Macro-average is the mean of scores of all the classes,
thus giving equal weight to each class. Micro-average, giving equal
weight to each prediction decision, is the score obtained by globally
counting the total true positives, false negatives and false positives.
Larger classes have a larger contribution to the micro-average. In
the multiclass classification scenario, the micro-average precision,
recall and F-score are the same, thus we only show the Micro F-
score in our results. We also report the top-n accuracy which is the
fraction of test data for which the correct label is among the top-n
labels considered most probable by the model.

The second question can be implicitly answered by comparing
the results of the following datasets:

• Gov_Rand: 300 datasets are randomly selected fromData.gov.
• Gov_NY: 300 datasets are randomly selected from Data.gov
published by NYC Open Data10.

10https://opendata.cityofnewyork.us/

• Wiki_Rand: We experiment on 554218 tables from Wik-
iTables which have at least 4 columns and 6 rows. Since
a lot of tables are in unexpected format, we further filter
those columns whose schema labels appear no more than
100 times.

The sizes of each dataset and training and testing partitions are
found in Table 4.

Different data owners usually publish datasets in different do-
mains, with different vocabularies and thus have different pattern
of schema label creation. Thus, the difficulty caused by hetero-
geneity can also be shown by comparing the results on Gov_Rand
and Gov_NY. Since there are only 327 datasets published by NYC
Open Data, we randomly select 300 datasets for both Gov_Rand and
Gov_NY so that the results from the models are more comparable.

Table 4: Statistics of extracted columns

Dataset #train #test #classes
Gov_Rand 3833 1644 4048

Gov_Rand (freq >1) 1415 607 593
Gov_NY 2799 1200 2494

Gov_NY (freq >1) 1391 597 483
Wiki_Rand 806755 1882425 2234

Figure 3: Top-n accuracy of exact schema label prediction

For our experiment, we train random forest classifiers using the
curated features introduced in Section 4. The default parameters of
scikit-learn implementation11 are used except that the number of
11http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html
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Table 5: Micro average and Macro-average scores of exact schema label prediction

Features Dataset Micro-F Macro-P Macro-R Macro-F

Curated

Wiki_Rand 0.42 0.30 0.21 0.23
Gov_Rand (freq >1) 0.85 0.79 0.83 0.80

Gov_Rand 0.30 0.13 0.15 0.14
Gov_NY (freq >1) 0.86 0.79 0.83 0.80

Gov_NY 0.45 0.18 0.21 0.19

BoWs

Wiki_Rand 0.34 0.34 0.16 0.19
Gov_Rand (freq >1) 0.35 0.23 0.27 0.23

Gov_Rand 0.11 0.05 0.06 0.05
Gov_NY (freq >1) 0.28 0.12 0.14 0.12

Gov_NY 0.13 0.03 0.04 0.03

Combined
(Curated+ BoWs)

Wiki_Rand 0.43 0.30 0.22 0.24
Gov_Rand (freq >1) 0.86 0.84 0.83 0.82

Gov_Rand 0.37 0.24 0.25 0.24
Gov_NY (freq >1) 0.94 0.82 0.85 0.83

Gov_NY 0.49 0.31 0.32 0.30

trees in the forest is set up to 25 (to reduce memory requirements).
As a baseline, we use the same classifier setting training on TF-IDF
features extracted from column contents where each cell is tok-
enized.12 It is important to notice that a large number of numeric
values appear in the datasets which result in an extremely large
vocabulary size. Thus dimension reduction is helpful in order to
improve the classification efficiency. Truncated SVD13 (a.k.a., LSA)
is used to reduce the dimensionality of the TF-IDF representation
and BoWs features to 300. We also concatenate the curated features
with baseline BoWs features in order to see whether the combina-
tion of features could further improve the results. For Gov_Rand
and Gov_NY, we split each of them into 70% training set and 30%
testing set. Since the number of classes in Gov_Rand and Gov_NY
is very large but the dataset size is relatively small, the results could
be significantly affected by infrequent schema labels, especially
those that only appear once. As a result, many labels in the testing
set do not appear in the training set. Therefore, we also experiment
on Gov_Rand and Gov_NY after filtering those columns whose
schema label only appears once and we call them Gov_Rand(freq
>1) and Gov_NY(freq >1) respectively.

Though the prediction must be wrong for the exact matching
task, we still report the results of no filtering process and consider
the evaluation of “wrong” predictions in the next section.

Experiment results are reported in Table 5. We observe that our
curated features approach achieves better results than the baseline
on all datasets. For both methods, scores on Gov_NY are higher
than scores on Gov_Rand, which suggests the heterogeneity caused
by data creators indeed increases the difficulty of the task. After
filtering those schema labels that only appear once, the scores of
both methods significantly increase, since the cases in which a class
in the testing set does not appear in the training set have decreased.
However, our method has a more considerable degree of improve-
ment than the baseline and achieves an F-score greater than 0.8 for
both the Macro-average and Micro-average. This indicates that our
method has decent performance on popular schema labels. When

12http://www.nltk.org/_modules/nltk/tokenize/toktok.html
13http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.
TruncatedSVD.html

applied to WikiTables, we notice that the gap of performance be-
tween our method and baseline is narrower. It is likely that schema
label prediction is more like a text classification problem with re-
gard to WikiTables. Compared to datasets on data.Gov, WikiTables
have tabular data with smaller size, since tables with thousands of
rows can hardly be displayed on a web page. A lot of datasets on
data.gov are statistics and it is very likely that the content of single
column is occupied by numbers. As content extracted from an en-
cyclopedia, WikiTables have more text description about entities
and thus the content of a column is closer to a document.

Figure 3 shows the top-n accuracy results. The performance on
datasets from data.gov has no improvement when n is bigger than
3. As we discussed before, many of the labels in the testing set do
not appear in the training set, and this sets an upper bound on the
accuracy of exact schema label matching. For example, there are
594 columns whose labels only appear in the testing set of Gov_NY,
therefore the accuracy can never exceed (1200− 594)/1200 = 50.5%.
While for Wiki_Rand, the accuracy increases when n increases for
both methods.

We calculated the gini importance of curated features of model
trained on Gov_NY. For BoWs features and content histogram,
we simply sum up the importance scores of all the dimensions.
As a result, BoWs features and content histogram make the most
contribution. If we consider each dimension as a single feature, then
the most important three features are total number of characters,
content unique ratio and the first dimension of content histogram.

From the above observations, we know that our method outper-
forms the baseline in all cases. Moreover, combining our method
with baseline features can further improve the performance as ex-
pected. Since we only use character-level unigram features in our
method and adding word-level TF-IDF features could relief this
weakness. The prediction results can be significantly improved
by filtering infrequent labels which means our methods can effi-
ciently predict the schema labels especially for those popular ones.
We also confirm that the difficulty of the task increases with the
heterogeneity of the datasets.
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5.3 Normalized schema label prediction
Exact schema label prediction is a pretty strict evaluation, since
a true-positive requires the predicted schema label to perfectly
match the original label of the tested column content. However,
there are thousands of classes and the distribution is imbalanced
as shown in Figure 2. It is possible that a class in the training set
may not appear in the testing set. However, a “wrong” prediction
could be potentially useful if it refers to the same concept. For
example, consider the target label “Nationality”: a semantically
correct prediction from the model could be “Country”. Therefore,
we should not consider “Country” as a wrong prediction since they
refer to the same concept. More examples are shown in Table 6.

Table 6: Examples of “wrong” predictions

Original labels Predictions
Year Season

Opponent Team
Pos Position

Score in the final Score

In order to relieve the situation, we first do case-folding on
schema labels and then rank them by their frequencies in Gov_Rand
and Wiki_Rand. From the top 2000 schema labels, we normalize a
label by another label in this set which is a synonym of the original
label and more human readable. In addition, 89 labels annotated as
uninterpretable are removed.

Similar to Section 5.2, we train separate models based on differ-
ent features and datasets. The results of normalized schema label
prediction on Gov_Rand and Wiki_Rand are reported in Figure 4
and Table 7. As expected, the scores under different metrics sig-
nificantly increase. Besides, we notice that the top-n accuracy still
grows whenn is bigger than 3 on Gov_Rand, which is different from
exact schema label prediction. It further indicates that our model
can capture the relation between a schema label and its content.

Figure 4: Top-nAccuracy of normalized schema label predic-
tion

Table 7: Micro average and Macro-average scores of normal-
ized schema label prediction

Features Dataset MicroF MacroP MacroR MacroF

curated Gov_Rand 0.36 0.21 0.22 0.20
Wiki_Rand 0.62 0.33 0.29 0.30

BoWs Gov_Rand 0.25 0.16 0.17 0.15
Wiki_Rand 0.55 0.29 0.20 0.23

5.4 Evaluation on different data types
In this section, we evaluate schema label prediction methods on
columns with different data types. We use pandas14 to automati-
cally infer the data type of a column and only keep those columns
whose data types can successfully be identified by the IO tool. 1000
columns are randomly selected for integer type, float type and
string type respectively. For each type of column, we train a model
on 70% of data and evaluate on the rest of data. The experiment
results for our method and baseline are reported in Table 8. As
expected, our method outperforms the baseline on all the three
types of columns. It is also interesting to notice that both methods
perform the best on float columns while perform the worst on string
columns. There could be two reasons. First,string columns have
more unique labels than float columns and integer columns, which
means predicting schema labels of string columns is inherently a
more difficult task.Second, some of the features are based on the
numeric values in the column content, while for string columns,
such features are treated as missing values and calculated from av-
erage values from other columns. Such features could be useless for
string columns and damage the performance of the model. This fact
indicates that designing different features for different data types
could further improve the performance of schema label prediction.

Table 8: Micro average and Macro-average scores on differ-
ent data types

Features Data type MicroF MacroP MacroR MacroF

curated
integer 0.31 0.11 0.12 0.11
float 0.37 0.10 0.11 0.10
string 0.23 0.11 0.12 0.10

BoWs
integer 0.25 0.10 0.11 0.10
float 0.32 0.07 0.09 0.07
string 0.20 0.08 0.09 0.08

6 CONCLUSION AND FUTUREWORK
We have considered the problem of schema label prediction based
on the content of a column. We treat it as a multi-class classifica-
tion task, in which each class represents a schema label. A variety
of features are developed to solve the problem. Our method has
been evaluated on two real-world datasets: tabular data collected
from data.gov and WikiTables extracted from Wikipedia. We first
evaluate the approach on exact schema label prediction, which
requires the predicted label to exactly match the original schema
label. In this task, our method clearly outperforms the baseline on

14https://pandas.pydata.org/
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all datasets. We find that heterogeneity of the datasets likely makes
the task more difficult.

Since the distribution of schema labels is quite imbalanced, many
labels used in testing do not appear in the training set, which
makes it inherently difficult to perform well. Therefore, we also
experiment on top-ranked normalized schema labels. We select
the most frequent 2000 schema labels across both datasets and
merge labels that are synonyms. As expected, the scores under
different metrics significantly increase compared with the results
of exact schema label prediction. Additionally, we demonstrate
that our method outperforms the baseline on columns of different
data types. We notice that both methods perform the best on float
columns while the worst on string columns, since some proposed
features could be useless for string columns. It reminds us that using
different features for different data types are necessary for schema
label prediction. We will leave data type inference and schema label
prediction for columns of different data types as future work.

One limitation of our current method is that we only consider the
features from a single column, without considering its relationship
with other columns co-occurring in the data table. Intuitively, if
two columns are similar, then our method may give them the same
schema label. However, it is unlikely for two identical columns to
appear in the same data table. By considering the occurrence of
other schema labels, such cases could be disambiguated.

One application of our method is to facilitate dataset retrieval.
An existing challenge of dataset retrieval is that user queries seldom
contain terms that are broadly used in schema labels, which results
in low recall of related datasets. In our experiment, we find that
our method often gives a prediction that are synonyms of original
schema label or share the hypernym with the original schema label.
Usually, the composition of NDWs schema labels is irregular and
complicated but their synonyms or hyponyms could be searched
by users. For example, for a column whose schema label is “Pos”,
our method could predict the schema label as “Position”. However,
“Position” is a term more preferred by users and more valuable to
be indexed. We expect that using the predicted labels as possible
term expansions (either for queries or at indexing time), the dataset
retrieval system can have improved recall.
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