IPython notebook for PyData SF 2014 tutorial: "Gradient Boosted Regression Trees in scikit-learn"
Switch branches/tags
Nothing to show
Clone or download
Pull request Compare This branch is 2 commits behind pprett:master.
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
slides
.gitignore
CharisSIL-B.woff
CharisSIL-BI.woff
CharisSIL-I.woff
CharisSIL-R.woff
README.md
benchmarks.png
cal-housing.png
func_approx_minus_2.png
func_approx_minus_3.png
gbrt-tutorial.ipynb
pdp_3d.png
pdp_lat_lon_cal.png
pdp_lat_lon_sf.png
sklearn-logo.png

README.md

PyData 2014: Gradient Boosted Regression Trees in scikit-learn

Instructor: Peter Prettenhofer

This repository contains the tutorial material for the Gradient Boosted Regression Trees in scikit-learn tutorial at PyData 2014.

Requirements

This tutorial requires scikit-learn 0.14+. I strongly recommend that you update to the current master version (to be 0.15) since it includes a significant speedup for our tree ensembles including Gradient Boosted Regression Trees. You might get slightly different results (Cal-housing scores & variable importances) depending on your version of scikit-learn.

Notebook Static View