Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
tree: b9b228c0a9
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 913 lines (872 sloc) 20.75 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912

R Under development (unstable) (2012-09-30 r60839) -- "Unsuffered Consequences"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-unknown-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> #### "All the examples" from ./R-intro.texi
> #### -- in a way that this should be(come) an executable script.
>
> options(digits=5, width=65)##--- for outputs !
> options(stringsAsFactors=TRUE) ## factory-fresh defaults
> options(useFancyQuotes=FALSE) ## avoid problems on Windows
>
> ## 2. Simple Manipulations
>
> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)
> assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7))
> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x
> .Last.value
[1] 10.4 5.6 3.1 6.4 21.7
> 1/x
[1] 0.096154 0.178571 0.322581 0.156250 0.046083
>
> y <- c(x, 0, x)
> v <- 2*x + y + 1
Warning message:
In 2 * x + y :
  longer object length is not a multiple of shorter object length
> ##- Warning message:
> ##- longer object length
> ##- is not a multiple of shorter object length in: 2 * x + y
>
> sqrt(-17)
[1] NaN
Warning message:
In sqrt(-17) : NaNs produced
> ##- [1] NaN
> ##- Warning message:
> ##- NaNs produced in: sqrt(-17)
>
> sqrt(-17+0i)
[1] 0+4.1231i
>
> ###-- 2.3 .. regular sequences
>
> 1:30
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[21] 21 22 23 24 25 26 27 28 29 30
>
> n <- 10
>
> 1:n-1
 [1] 0 1 2 3 4 5 6 7 8 9
> 1:(n-1)
[1] 1 2 3 4 5 6 7 8 9
> 30:1
 [1] 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11
[21] 10 9 8 7 6 5 4 3 2 1
>
> seq(2,10)
[1] 2 3 4 5 6 7 8 9 10
> all(seq(1,30) == seq(to=30, from=1))
[1] TRUE
>
> seq(-5, 5, by=.2) -> s3
> s4 <- seq(length=51, from=-5, by=.2)
> all.equal(s3,s4)
[1] TRUE
>
> s5 <- rep(x, times=5)
> s6 <- rep(x, each=5)
>
> temp <- x > 13
>
> z <- c(1:3,NA); ind <- is.na(z)
>
> 0/0
[1] NaN
> Inf - Inf
[1] NaN
>
> labs <- paste(c("X","Y"), 1:10, sep="")
> labs
 [1] "X1" "Y2" "X3" "Y4" "X5" "Y6" "X7" "Y8" "X9" "Y10"
>
> x <- c(z,z-2)#-- NOT in texi ; more interesting
> y <- x[!is.na(x)]
>
> (x+1)[(!is.na(x)) & x>0] -> z
> z
[1] 2 3 4 2
>
> x <- c(x, 9:12)# long enough:
> x[1:10]
 [1] 1 2 3 NA -1 0 1 NA 9 10
>
> c("x","y")[rep(c(1,2,2,1), times=4)]
 [1] "x" "y" "y" "x" "x" "y" "y" "x" "x" "y" "y" "x" "x" "y" "y"
[16] "x"
>
> y <- x[-(1:5)]
> y
[1] 0 1 NA 9 10 11 12
>
> fruit <- c(5, 10, 1, 20)
> names(fruit) <- c("orange", "banana", "apple", "peach")
> fruit
orange banana apple peach
     5 10 1 20
>
> lunch <- fruit[c("apple","orange")]
> lunch
 apple orange
     1 5
>
> x
 [1] 1 2 3 NA -1 0 1 NA 9 10 11 12
> x[is.na(x)] <- 0
> x
 [1] 1 2 3 0 -1 0 1 0 9 10 11 12
>
> y <- -4:9
> y[y < 0] <- -y[y < 0]
> all(y == abs(y))
[1] TRUE
> y
 [1] 4 3 2 1 0 1 2 3 4 5 6 7 8 9
>
> ###---------------
>
> z <- 0:9
> digits <- as.character(z)
> digits
 [1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"
> d <- as.integer(digits)
> all.equal(z, d)
[1] TRUE
>
> e <- numeric()
> e[3] <- 17
> e
[1] NA NA 17
>
> alpha <- 10*(1:10)
> alpha <- alpha[2 * 1:5]
> alpha
[1] 20 40 60 80 100
>
> winter <- data.frame(temp = c(-1,3,2,-2), cat = rep(c("A","B"), 2))
> winter
  temp cat
1 -1 A
2 3 B
3 2 A
4 -2 B
> unclass(winter)
$temp
[1] -1 3 2 -2

$cat
[1] A B A B
Levels: A B

attr(,"row.names")
[1] 1 2 3 4
>
> ###------------ Ordered and unordered factors --------
> state <- c("tas", "sa", "qld", "nsw", "nsw", "nt", "wa", "wa",
+ "qld", "vic", "nsw", "vic", "qld", "qld", "sa", "tas",
+ "sa", "nt", "wa", "vic", "qld", "nsw", "nsw", "wa",
+ "sa", "act", "nsw", "vic", "vic", "act")
> statef <- factor(state)
> statef
 [1] tas sa qld nsw nsw nt wa wa qld vic nsw vic qld qld sa
[16] tas sa nt wa vic qld nsw nsw wa sa act nsw vic vic act
Levels: act nsw nt qld sa tas vic wa
>
> levels(statef)
[1] "act" "nsw" "nt" "qld" "sa" "tas" "vic" "wa"
>
> incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56,
+ 61, 61, 61, 58, 51, 48, 65, 49, 49, 41, 48, 52, 46,
+ 59, 46, 58, 43)
>
> incmeans <- tapply(incomes, statef, mean)
> incmeans
   act nsw nt qld sa tas vic wa
44.500 57.333 55.500 53.600 55.000 60.500 56.000 52.250
>
> stderr <- function(x) sqrt(var(x)/length(x))
>
> incster <- tapply(incomes, statef, stderr)
> incster
   act nsw nt qld sa tas vic wa
1.5000 4.3102 4.5000 4.1061 2.7386 0.5000 5.2440 2.6575
>
> ##
> z <- 1:1500
> dim(z) <- c(3,5,100)
>
>
> x <- array(1:20,dim=c(4,5)) # Generate a 4 by 5 array.
> x
     [,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20
>
> i <- array(c(1:3,3:1),dim=c(3,2))
> i # @code{i} is a 3 by 2 index array.
     [,1] [,2]
[1,] 1 3
[2,] 2 2
[3,] 3 1
>
> x[i] # Extract those elements
[1] 9 6 3
>
> x[i] <- 0 # Replace those elements by zeros.
> x
     [,1] [,2] [,3] [,4] [,5]
[1,] 1 5 0 13 17
[2,] 2 0 10 14 18
[3,] 0 7 11 15 19
[4,] 4 8 12 16 20
>
> n <- 60
> b <- 5 ; blocks <- rep(1:b, length= n)
> v <- 6 ; varieties <- gl(v,10)
>
> Xb <- matrix(0, n, b)
> Xv <- matrix(0, n, v)
> ib <- cbind(1:n, blocks)
> iv <- cbind(1:n, varieties)
> Xb[ib] <- 1
> Xv[iv] <- 1
> X <- cbind(Xb, Xv)
>
> N <- crossprod(Xb, Xv)
> table(blocks,varieties)
      varieties
blocks 1 2 3 4 5 6
     1 2 2 2 2 2 2
     2 2 2 2 2 2 2
     3 2 2 2 2 2 2
     4 2 2 2 2 2 2
     5 2 2 2 2 2 2
> all(N == table(blocks,varieties))
[1] TRUE
>
> h <- 1:17
> Z <- array(h, dim=c(3,4,2))
> ## If the size of 'h' is exactly 24
> h <- rep(h, length = 24)
> Z. <- Z ## the result is the same as
> Z <- h; dim(Z) <- c(3,4,2)
> stopifnot(identical(Z., Z))
>
> Z <- array(0, c(3,4,2))
>
> ## So if @code{A}, @code{B} and @code{C} are all similar arrays
> ## <init>
> A <- matrix(1:6, 3,2)
> B <- cbind(1, 1:3)
> C <- rbind(1, rbind(2, 3:4))
> stopifnot(dim(A) == dim(B),
+ dim(B) == dim(C))
> ## <init/>
> D <- 2*A*B + C + 1
>
> a <- 1:9
> b <- 10*(1:3)
>
> ab <- a %o% b
> stopifnot(ab == outer(a,b,"*"),
+ ab == outer(a,b))
>
> x <- 1:10
> y <- -2:2
> f <- function(x, y) cos(y)/(1 + x^2)
> z <- outer(x, y, f)
>
>
> d <- outer(0:9, 0:9)
> fr <- table(outer(d, d, "-"))
> plot(as.numeric(names(fr)), fr, type="h",
+ xlab="Determinant", ylab="Frequency")
>
> ##
>
> B <- aperm(A, c(2,1))
> stopifnot(identical(B, t(A)))
>
> ## for example, @code{A} and @code{B} are square matrices of the same size
> ## <init>
> A <- matrix(1:4, 2,2)
> B <- A - 1
> ## <init/>
>
> A * B
     [,1] [,2]
[1,] 0 6
[2,] 2 12
>
> A %*% B
     [,1] [,2]
[1,] 3 11
[2,] 4 16
>
>
> ## <init>
> x <- c(-1, 2)
> ## <init/>
> x %*% A %*% x
     [,1]
[1,] 7
>
> x %*% x
     [,1]
[1,] 5
> stopifnot(x %*% x == sum(x^2))
>
> xxT <- cbind(x) %*% x
> xxT
     [,1] [,2]
[1,] 1 -2
[2,] -2 4
> stopifnot(identical(xxT, x %*% rbind(x)))
>
> ## crossprod ... (ADD)
>
> ## diag ... (ADD)
>
> ## linear equations ... (ADD)
>
> ## solve ... (ADD)
>
> ## eigen:
> ## a symmetric matrix @code{Sm}
> ## <init>
> Sm <- matrix(-2:6, 3); Sm <- (Sm + t(Sm))/4; Sm
     [,1] [,2] [,3]
[1,] -1 0 1
[2,] 0 1 2
[3,] 1 2 3
> ## </init>
> ev <- eigen(Sm)
>
> evals <- eigen(Sm)$values
>
> ## SVD .....
>
> ## "if M is in fact square, then, ..."
> ## <init>
> M <- cbind(1,1:3,c(5,2,3))
> X <- cbind(1:9, .25*(-4:4)^2)
> X1 <- cbind(1:7, -1)
> X2 <- cbind(0,2:8)
> y <- c(1:4, 2:6)
> ## </init>
>
> absdetM <- prod(svd(M)$d)
> stopifnot(all.equal(absdetM, abs(det(M))))# since det() nowadays exists
>
> ans <- lsfit(X, y)
>
> Xplus <- qr(X)
> b <- qr.coef(Xplus, y)
> fit <- qr.fitted(Xplus, y)
> res <- qr.resid(Xplus, y)
> ##
>
> X <- cbind(1, X1, X2)
>
> vec <- as.vector(X)
> vec <- c(X)
>
> statefr <- table(statef)
> statefr
statef
act nsw nt qld sa tas vic wa
  2 6 2 5 4 2 5 4
> statefr <- tapply(statef, statef, length)
> statefr
act nsw nt qld sa tas vic wa
  2 6 2 5 4 2 5 4
>
> factor(cut(incomes, breaks = 35+10*(0:7))) -> incomef
> table(incomef,statef)
         statef
incomef act nsw nt qld sa tas vic wa
  (35,45] 1 1 0 1 0 0 1 0
  (45,55] 1 1 1 1 2 0 1 3
  (55,65] 0 3 1 3 2 2 2 1
  (65,75] 0 1 0 0 0 0 1 0
>
> ###--- @chapter 6. Lists and data frames
>
> Lst <- list(name="Fred", wife="Mary", no.children=3,
+ child.ages=c(4,7,9))
> Lst$name
[1] "Fred"
> Lst$wife
[1] "Mary"
> Lst$child.ages[1]
[1] 4
> stopifnot(Lst$name == Lst[[1]], Lst[[1]] == "Fred",
+ Lst$child.ages[1] == Lst[[4]][1], Lst[[4]][1] == 4
+ )
>
> x <- "name" ; Lst[[x]]
[1] "Fred"
>
> ## @section 6.2 Constructing and modifying lists
>
> ##<init>
> Mat <- cbind(1, 2:4)
> ##</init>
> Lst[5] <- list(matrix=Mat)
>
> ## @section 6.3 Data frames
>
> accountants <- data.frame(home=statef, loot=incomes, shot=incomef)
> ## MM: add the next lines to R-intro.texi !
> accountants
   home loot shot
1 tas 60 (55,65]
2 sa 49 (45,55]
3 qld 40 (35,45]
4 nsw 61 (55,65]
5 nsw 64 (55,65]
6 nt 60 (55,65]
7 wa 59 (55,65]
8 wa 54 (45,55]
9 qld 62 (55,65]
10 vic 69 (65,75]
11 nsw 70 (65,75]
12 vic 42 (35,45]
13 qld 56 (55,65]
14 qld 61 (55,65]
15 sa 61 (55,65]
16 tas 61 (55,65]
17 sa 58 (55,65]
18 nt 51 (45,55]
19 wa 48 (45,55]
20 vic 65 (55,65]
21 qld 49 (45,55]
22 nsw 49 (45,55]
23 nsw 41 (35,45]
24 wa 48 (45,55]
25 sa 52 (45,55]
26 act 46 (45,55]
27 nsw 59 (55,65]
28 vic 46 (45,55]
29 vic 58 (55,65]
30 act 43 (35,45]
> str(accountants)
'data.frame': 30 obs. of 3 variables:
 $ home: Factor w/ 8 levels "act","nsw","nt",..: 6 5 4 2 2 3 8 8 4 7 ...
 $ loot: num 60 49 40 61 64 60 59 54 62 69 ...
 $ shot: Factor w/ 4 levels "(35,45]","(45,55]",..: 3 2 1 3 3 3 3 2 3 4 ...
>
> ## ..........
>
> ###--- @chapter 8. Probability distributions
>
> ## 2-tailed p-value for t distribution
> 2*pt(-2.43, df = 13)
[1] 0.030331
> ## upper 1% point for an F(2, 7) distribution
> qf(0.01, 2, 7, lower.tail = FALSE)
[1] 9.5466
>
> attach(faithful)
> summary(eruptions)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
   1.60 2.16 4.00 3.49 4.45 5.10
>
> fivenum(eruptions)
[1] 1.6000 2.1585 4.0000 4.4585 5.1000
>
> stem(eruptions)

  The decimal point is 1 digit(s) to the left of the |

  16 | 070355555588
  18 | 000022233333335577777777888822335777888
  20 | 00002223378800035778
  22 | 0002335578023578
  24 | 00228
  26 | 23
  28 | 080
  30 | 7
  32 | 2337
  34 | 250077
  36 | 0000823577
  38 | 2333335582225577
  40 | 0000003357788888002233555577778
  42 | 03335555778800233333555577778
  44 | 02222335557780000000023333357778888
  46 | 0000233357700000023578
  48 | 00000022335800333
  50 | 0370

>
> hist(eruptions)
>
> ## <IMG> postscript("images/hist.eps", ...)
> # make the bins smaller, make a plot of density
> hist(eruptions, seq(1.6, 5.2, 0.2), prob=TRUE)
> lines(density(eruptions, bw=0.1))
> rug(eruptions) # show the actual data points
> ## dev.off() <IMG/>
>
> plot(ecdf(eruptions), do.points=FALSE, verticals=TRUE)
>
> ## <IMG> postscript("images/ecdf.eps", ...)
> long <- eruptions[eruptions > 3]
> plot(ecdf(long), do.points=FALSE, verticals=TRUE)
> x <- seq(3, 5.4, 0.01)
> lines(x, pnorm(x, mean=mean(long), sd=sqrt(var(long))), lty=3)
> ## dev.off() <IMG/>
>
> par(pty="s") # arrange for a square figure region
> qqnorm(long); qqline(long)
>
> x <- rt(250, df = 5)
> qqnorm(x); qqline(x)
>
> qqplot(qt(ppoints(250), df = 5), x, xlab = "Q-Q plot for t dsn")
> qqline(x)
>
> shapiro.test(long)

Shapiro-Wilk normality test

data: long
W = 0.9793, p-value = 0.01052

>
> ks.test(long, "pnorm", mean = mean(long), sd = sqrt(var(long)))

One-sample Kolmogorov-Smirnov test

data: long
D = 0.0661, p-value = 0.4284
alternative hypothesis: two-sided

Warning message:
In ks.test(long, "pnorm", mean = mean(long), sd = sqrt(var(long))) :
  ties should not be present for the Kolmogorov-Smirnov test
>
> ##@section One- and two-sample tests
>
> ## scan() from stdin :
> ## can be cut & pasted, but not parsed and hence not source()d
> ##scn A <- scan()
> ##scn 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97
> ##scn 80.05 80.03 80.02 80.00 80.02
> A <- c(79.98, 80.04, 80.02, 80.04, 80.03, 80.03, 80.04, 79.97,
+ 80.05, 80.03, 80.02, 80, 80.02)
> ##scn B <- scan()
> ##scn 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97
> B <- c(80.02, 79.94, 79.98, 79.97, 79.97, 80.03, 79.95, 79.97)
>
> ## <IMG> postscript("images/ice.eps", ...)
> boxplot(A, B)
> ## dev.off() <IMG/>
>
> t.test(A, B)

Welch Two Sample t-test

data: A and B
t = 3.2499, df = 12.027, p-value = 0.006939
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.013855 0.070183
sample estimates:
mean of x mean of y
   80.021 79.979

>
> var.test(A, B)

F test to compare two variances

data: A and B
F = 0.5837, num df = 12, denom df = 7, p-value = 0.3938
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.12511 2.10527
sample estimates:
ratio of variances
           0.58374

>
> t.test(A, B, var.equal=TRUE)

Two Sample t-test

data: A and B
t = 3.4722, df = 19, p-value = 0.002551
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.016691 0.067348
sample estimates:
mean of x mean of y
   80.021 79.979

>
> wilcox.test(A, B)

Wilcoxon rank sum test with continuity correction

data: A and B
W = 89, p-value = 0.007497
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(A, B) : cannot compute exact p-value with ties
>
> plot(ecdf(A), do.points=FALSE, verticals=TRUE, xlim=range(A, B))
> plot(ecdf(B), do.points=FALSE, verticals=TRUE, add=TRUE)
>
> ###--- @chapter Grouping, loops and conditional execution
>
>
> ###--- @chapter Writing your own functions
>
>
> ###--- @chapter Statistical models in R
>
>
> ###--- @chapter Graphical procedures
>
> ###--- @appendix A sample session
>
> ## "Simulate starting a new R session, by
> rm(list=ls(all=TRUE))
> set.seed(123) # for repeatability
>
> if(interactive())
+ help.start()
>
> x <- rnorm(50)
> y <- rnorm(x)
> plot(x, y)
> ls()
[1] "x" "y"
> rm(x, y)
> x <- 1:20
> w <- 1 + sqrt(x)/2
> dummy <- data.frame(x = x, y = x + rnorm(x)*w)
> dummy
    x y
1 1 -0.06561
2 2 2.43853
3 3 2.53967
4 4 3.30491
5 5 2.98444
6 6 5.89982
7 7 5.17676
8 8 3.97323
9 9 8.04943
10 10 12.37206
11 11 9.47055
12 12 13.66099
13 13 8.46544
14 14 13.84049
15 15 16.52523
16 16 16.90346
17 17 17.32353
18 18 16.00015
19 19 16.29841
20 20 16.68585
> fm <- lm(y ~ x, data=dummy)
> summary(fm)

Call:
lm(formula = y ~ x, data = dummy)

Residuals:
   Min 1Q Median 3Q Max
-3.540 -1.103 -0.054 1.152 3.262

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5431 0.8902 -0.61 0.55
x 0.9653 0.0743 12.99 1.4e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.92 on 18 degrees of freedom
Multiple R-squared: 0.904, Adjusted R-squared: 0.898
F-statistic: 169 on 1 and 18 DF, p-value: 1.39e-10

> fm1 <- lm(y ~ x, data=dummy, weight=1/w^2)
> summary(fm1)

Call:
lm(formula = y ~ x, data = dummy, weights = 1/w^2)

Weighted Residuals:
    Min 1Q Median 3Q Max
-1.3205 -0.4492 -0.0088 0.5088 1.2656

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.6155 0.6513 -0.94 0.36
x 0.9721 0.0664 14.64 1.9e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.72 on 18 degrees of freedom
Multiple R-squared: 0.922, Adjusted R-squared: 0.918
F-statistic: 214 on 1 and 18 DF, p-value: 1.94e-11

> attach(dummy)
The following object is masked _by_ .GlobalEnv:

    x
> lrf <- lowess(x, y)
> plot(x, y)
> lines(x, lrf$y)
> abline(0, 1, lty=3)
> abline(coef(fm))
> abline(coef(fm1), col = "red")
> detach()# dummy
>
> plot(fitted(fm), resid(fm),
+ xlab="Fitted values",
+ ylab="Residuals",
+ main="Residuals vs Fitted")
> qqnorm(resid(fm), main="Residuals Rankit Plot")
> rm(fm, fm1, lrf, x, dummy)
>
>
> filepath <- system.file("data", "morley.tab" , package="datasets")
> if(interactive()) file.show(filepath)
> mm <- read.table(filepath)
> mm
    Expt Run Speed
001 1 1 850
002 1 2 740
003 1 3 900
004 1 4 1070
005 1 5 930
006 1 6 850
007 1 7 950
008 1 8 980
009 1 9 980
010 1 10 880
011 1 11 1000
012 1 12 980
013 1 13 930
014 1 14 650
015 1 15 760
016 1 16 810
017 1 17 1000
018 1 18 1000
019 1 19 960
020 1 20 960
021 2 1 960
022 2 2 940
023 2 3 960
024 2 4 940
025 2 5 880
026 2 6 800
027 2 7 850
028 2 8 880
029 2 9 900
030 2 10 840
031 2 11 830
032 2 12 790
033 2 13 810
034 2 14 880
035 2 15 880
036 2 16 830
037 2 17 800
038 2 18 790
039 2 19 760
040 2 20 800
041 3 1 880
042 3 2 880
043 3 3 880
044 3 4 860
045 3 5 720
046 3 6 720
047 3 7 620
048 3 8 860
049 3 9 970
050 3 10 950
051 3 11 880
052 3 12 910
053 3 13 850
054 3 14 870
055 3 15 840
056 3 16 840
057 3 17 850
058 3 18 840
059 3 19 840
060 3 20 840
061 4 1 890
062 4 2 810
063 4 3 810
064 4 4 820
065 4 5 800
066 4 6 770
067 4 7 760
068 4 8 740
069 4 9 750
070 4 10 760
071 4 11 910
072 4 12 920
073 4 13 890
074 4 14 860
075 4 15 880
076 4 16 720
077 4 17 840
078 4 18 850
079 4 19 850
080 4 20 780
081 5 1 890
082 5 2 840
083 5 3 780
084 5 4 810
085 5 5 760
086 5 6 810
087 5 7 790
088 5 8 810
089 5 9 820
090 5 10 850
091 5 11 870
092 5 12 870
093 5 13 810
094 5 14 740
095 5 15 810
096 5 16 940
097 5 17 950
098 5 18 800
099 5 19 810
100 5 20 870
> mm$Expt <- factor(mm$Expt)
> mm$Run <- factor(mm$Run)
> attach(mm)
> plot(Expt, Speed, main="Speed of Light Data", xlab="Experiment No.")
> fm <- aov(Speed ~ Run + Expt, data=mm)
> summary(fm)
            Df Sum Sq Mean Sq F value Pr(>F)
Run 19 113344 5965 1.11 0.3632
Expt 4 94514 23629 4.38 0.0031 **
Residuals 76 410166 5397
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> fm0 <- update(fm, . ~ . - Run)
> anova(fm0, fm)
Analysis of Variance Table

Model 1: Speed ~ Expt
Model 2: Speed ~ Run + Expt
  Res.Df RSS Df Sum of Sq F Pr(>F)
1 95 523510
2 76 410166 19 113344 1.11 0.36
> detach()
> rm(fm, fm0)
>
> x <- seq(-pi, pi, len=50)
> y <- x
> f <- outer(x, y, function(x, y) cos(y)/(1 + x^2))
> oldpar <- par(no.readonly = TRUE)
> par(pty="s")
> contour(x, y, f)
> contour(x, y, f, nlevels=15, add=TRUE)
> fa <- (f-t(f))/2
> contour(x, y, fa, nlevels=15)
> par(oldpar)
> image(x, y, f)
> image(x, y, fa)
> objects(); rm(x, y, f, fa)
[1] "f" "fa" "filepath" "mm" "oldpar"
[6] "w" "x" "y"
> th <- seq(-pi, pi, len=100)
> z <- exp(1i*th)
> par(pty="s")
> plot(z, type="l")
> w <- rnorm(100) + rnorm(100)*1i
> w <- ifelse(Mod(w) > 1, 1/w, w)
> plot(w, xlim=c(-1,1), ylim=c(-1,1), pch="+",xlab="x", ylab="y")
> lines(z)
>
> w <- sqrt(runif(100))*exp(2*pi*runif(100)*1i)
> plot(w, xlim=c(-1,1), ylim=c(-1,1), pch="+", xlab="x", ylab="y")
> lines(z)
>
> rm(th, w, z)
> ## q()
>
>
Something went wrong with that request. Please try again.