Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
tree: c2b87bb8e2
Fetching contributors…

Cannot retrieve contributors at this time

file 146 lines (114 sloc) 3.172 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
## tests of R functions based on the lapack module

options(digits=4)

## ------- examples from ?svd ---------

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
Eps <- 100 * .Machine$double.eps

X <- hilbert(9)[,1:6]
(s <- svd(X)); D <- diag(s$d)
stopifnot(abs(X - s$u %*% D %*% t(s$v)) < Eps)# X = U D V'
stopifnot(abs(D - t(s$u) %*% X %*% s$v) < Eps)# D = U' X V

# The signs of the vectors are not determined here.
X <- cbind(1, 1:7)
s <- svd(X); D <- diag(s$d)
stopifnot(abs(X - s$u %*% D %*% t(s$v)) < Eps)# X = U D V'
stopifnot(abs(D - t(s$u) %*% X %*% s$v) < Eps)# D = U' X V

# test nu and nv
s <- svd(X, nu = 0)
s <- svd(X, nu = 7) # the last 5 columns are not determined here
stopifnot(dim(s$u) == c(7,7))
s <- svd(X, nv = 0)

# test of complex case

X <- cbind(1, 1:7+(-3:3)*1i)
s <- svd(X); D <- diag(s$d)
stopifnot(abs(X - s$u %*% D %*% Conj(t(s$v))) < Eps)
stopifnot(abs(D - Conj(t(s$u)) %*% X %*% s$v) < Eps)



## ------- tests of random real and complex matrices ------
fixsign <- function(A) {
    A[] <- apply(A, 2, function(x) x*sign(Re(x[1])))
    A
}
## 100 may cause failures here.
eigenok <- function(A, E, Eps=1000*.Machine$double.eps)
{
    print(fixsign(E$vectors))
    print(zapsmall(E$values))
    V <- E$vectors; lam <- E$values
    stopifnot(abs(A %*% V - V %*% diag(lam)) < Eps,
              abs(lam[length(lam)]/lam[1]) < Eps || # this one not for singular A :
              abs(A - V %*% diag(lam) %*% t(V)) < Eps)
}

Ceigenok <- function(A, E, Eps=1000*.Machine$double.eps)
{
    print(fixsign(E$vectors))
    print(signif(E$values, 5))
    V <- E$vectors; lam <- E$values
    stopifnot(Mod(A %*% V - V %*% diag(lam)) < Eps,
              Mod(A - V %*% diag(lam) %*% Conj(t(V))) < Eps)
}

## failed for some 64bit-Lapack-gcc combinations:
sm <- cbind(1, 3:1, 1:3)
eigenok(sm, eigen(sm))
eigenok(sm, eigen(sm, sym=FALSE))

set.seed(123)
sm <- matrix(rnorm(25), 5, 5)
sm <- 0.5 * (sm + t(sm))
eigenok(sm, eigen(sm))
eigenok(sm, eigen(sm, sym=FALSE))

sm[] <- as.complex(sm)
Ceigenok(sm, eigen(sm))
Ceigenok(sm, eigen(sm, sym=FALSE))

sm[] <- sm + rnorm(25) * 1i
sm <- 0.5 * (sm + Conj(t(sm)))
Ceigenok(sm, eigen(sm))
Ceigenok(sm, eigen(sm, sym=FALSE))


## ------- tests of integer matrices -----------------

set.seed(123)
A <- matrix(rpois(25, 5), 5, 5)

A %*% A
crossprod(A)
tcrossprod(A)

solve(A)
qr(A)
determinant(A, log = FALSE)

rcond(A)
rcond(A, "I")
rcond(A, "1")

eigen(A)
svd(A)
La.svd(A)

As <- crossprod(A)
E <- eigen(As)
E$values
abs(E$vectors) # signs vary
chol(As)
backsolve(As, 1:5)

## ------- tests of logical matrices -----------------

set.seed(123)
A <- matrix(runif(25) > 0.5, 5, 5)

A %*% A
crossprod(A)
tcrossprod(A)

Q <- qr(A)
zapsmall(Q$qr)
zapsmall(Q$qraux)
determinant(A, log = FALSE) # 0

rcond(A)
rcond(A, "I")
rcond(A, "1")

E <- eigen(A)
zapsmall(E$values)
zapsmall(Mod(E$vectors))
S <- svd(A)
zapsmall(S$d)
S <- La.svd(A)
zapsmall(S$d)

As <- A
As[upper.tri(A)] <- t(A)[upper.tri(A)]
det(As)
E <- eigen(As)
E$values
zapsmall(E$vectors)
solve(As)

## quite hard to come up with an example where this might make sense.
Ac <- A; Ac[] <- as.logical(diag(5))
chol(Ac)
Something went wrong with that request. Please try again.