
Re:

Ember.js Octane

A fresh look
at
the framework
for ambitious
web applications

Florian Pichler
Consultant for Design & Technology
simplabs GmbH

Developer, Designer, Baker, Maker
Bad at naming things

Disclaimer N°1
I work with Ember.js on a daily basis. I work
for a company sponsoring the development
and community of Ember.js and I worked on
the current website design for Ember.js.
There might be some bias.
There is most definitely some bias.

In this talk

1. What is Ember.js and why should I care?
2. What is Octane and how can I use it?
3. Demo time and a host struggling with live code

Also included are two additional disclaimers and eight hamsters

Disclaimer N°2
This talk will not try to provide a comparison to
view layers such as React or Vue.
Glimmer – the view layer of Ember.js – only
exists as a standalone project in theory or if you
are LinkedIn.
Okay, this needs more explanation.

What is ?

JavaScript
framework for
single page
applications

Created, organized
and maintained
by people, not companies.

(opinionated)
batteries included

→ View Layer
→ Routing
→ State management
→ Addons
→ Tooling
→ Testing harness

Reactive UI components

Handlebars (HTMLBars) templates

→ making it easy to start with plain HTML

→ classNames="" is simply class=""

→ separation of concerns

It's blazing fast, too. Op-codes and data diffing.

View layer: Glimmer

URL first routing
→ /your-app/will/have/good/urls
→ ?query-params
→ /dynamic/:id/segments

Automatic handling for loading & error states

Provides hooks to load necessary data

Routing: Ember Router

Services: Long lived state objects which can abstract
behavior (data store, session handling, notifications, …)

Dependency Injection: Alternative to nesting and
requiring to pass global state or abstractions into
components manually.

Ember Data: Manage records instead of endpoints.
JSON:API compliant & included by default.

State Management: Services & Injections

ember-concurrency: Powerful abstractions
to handle asynchronous and recurring tasks

ember-css-modules: CSS that is scoped to your component

ember-simple-auth: Handle user sessions

ember-intl: Translate your app using browser APIs

ember-truth-helpers: Boolean logic for templates

Addons

ember-cli

→ development server & production bundler

→ blueprints to generate files for your application

→ scaffolding for new apps & addons

ember-inspector

→ browser addon to debug Ember.js apps and their data

Tooling

Ships with QUnit, other options available.

Integrated support and autogenerated stubs for:

→ Unit tests (functions and classes)

→ Integration tests (single components)

→ Acceptance tests (workflows)

Integrated test runner which tests in actual browsers.

Testing harness

Opinionated project structure and architecture make it easy to
jump into most unknown Ember.js projects.

Long Term Support: Ember.js supports long lived projects
through LTS releases, strict Semantic Versioning and gentle or
even automatic upgrade paths.

Great community: Discord, Forum. Helpful and nice people

Bonus round

So what is
Ember Octane?

Cool new stuff

Cool new stuff

The first edition
release of Ember.js

A way to talk about features as part of Ember’s
release cycle without breaking things.

Features that will be enabled by default for new
apps and migration paths for existing ones.

A foundational improvement to the way you
use Ember.

Editions

• Everything was added in non-breaking releases

• Existing apps continue to work

• Features can be enabled gradually

• Default for new apps

• Already shipped and tested

Ember Octane

• jQuery (at last)

• Non-native classes

• Computed properties and observers

• Curly component invocation

• Wrapping <div> containers for components

Things retiring

• Native JavaScript classes (+ Decorators)

• Tracked properties

• Glimmer components

• <AngleBracket /> syntax

• Element Modifiers

• Documentation & tooling

Core Features

Native JavaScript
Classes

• Replacing the old Ember.Object syntax

• Native Getters & Setters

• No more .extend(), .create()

• @decorators for injections and actions

Native JavaScript classes (+ Decorators)

// Before: Custom Objects

export default Component.extend({
 bar: 'baz',

 init() {
 this._super(...arguments);
 },

 bat: computed(function() {
 return this.get('bar');
 }),

 method() {}
});

// After: Native classes

export default class Foo extends Component {
 bar = 'baz';

 constructor() {
 super(...arguments);
 }

 get bat() {
 return this.bar;
 }

 method() {}
}

Tracked
Properties

• Backwards compatible to the old
computed properties

• Basis for template reactivity

• Marks properties that trigger template updates

• @tracked decorator

• Autotracking for component arguments

Tracked Properties

Glimmer
Components

• Start as template only

• Native backing classes

• Less involved life cycle

• Autotracked this.args to reach for component
arguments in your class

Glimmer Components

// Before: .set()

export default Component.extend({
 show: false,

 actions: {
 toggle() {
 this.set('show', !this.show);
 }
 }
});

// After: @tracked

export default class Foo extends Component {
 @tracked show = false;

 @action
 toggle() {
 this.show = !this.show;
 }
}

Improved
Templating

• <AngleBracket /> syntax

• @attr to discern component and HTML attributes

• Element <div {{modifiers}}>

→Better distinction between basic HTML,
component invocations and template expressions

Improved Templating

{{#layout-container class="foo"}}
 <button {{action "showCanvas"}}>
 {{user-profile
 image="http://…"
 name="Jane"
 classNames="special"
 }}
 </button>

 {{#if this.showCanvas}}
 <canvas class="find-me">
 </canvas>
 {{/if}}
{{/layout-container}}

<LayoutContainer class="foo">
 <button {{on "click" this.showCanvas}}>
 <UserProfile
 @image="http://…"
 @name="Jane"
 class="special"
 />
 </button>

 {{#if this.showCanvas}}
 <canvas {{did-insert this.render}}>
 </canvas>
 {{/if}}
</LayoutContainer>

Available now

Available since
December 2019

Demo time?

Disclaimer N°3
The following demo shows interesting aspects of
a single page application built with Ember.js. I'll
highlight new features of Octane along the way. I
have some ground to cover, so I'll go fast.
Please tell me to slow down if necessary. Hold
fundamental questions and remarks until after
the talk. There is no more content after the demo.

Demo time!

Thanks ❤
florianpichler.de
@pichfl
fp@ylk.gd
florian.pichler@simplabs.com

mailto:fp@ylk.gd
mailto:florian.pichler@simplabs.com

• https://emberjs.com

• https://emberjs.com/editions/octane/

• https://simplabs.com/blog/2020/10/05/
simpler-and-more-powerful-components-in-
ember-octane-with-glimmer-components/

• https://www.pzuraq.com/what-is-reactivity/

Further reading #1

https://simplabs.com/blog/2020/10/05/simpler-and-more-powerful-components-in-ember-octane-with-glimmer-components/
https://simplabs.com/blog/2020/10/05/simpler-and-more-powerful-components-in-ember-octane-with-glimmer-components/
https://simplabs.com/blog/2020/10/05/simpler-and-more-powerful-components-in-ember-octane-with-glimmer-components/
https://www.pzuraq.com/what-is-reactivity/

• https://nullvoxpopuli.com/2020-08-08-how-
does-di-work

• https://www.pzuraq.com/comparing-ember-
octane-and-react/

• https://www.effective-ember.com/blog/react-
hooks-and-ember/

Further reading #2

https://www.pzuraq.com/comparing-ember-octane-and-react/
https://www.pzuraq.com/comparing-ember-octane-and-react/

