
Leak the Secret Key of Elgamal Encryption in Cryptopp
via Rowhammer

1 Analysing the Elgamal encryption scheme

Figure 1 shows the overview of an adversary and a victim in Elgamal’s encryption scheme. The ad-

versary (A) injects faults into the victim’s decryption oracle which uses sk as input. A sends a ciphertext

(c) to the victim to get the result of their decryption query. Upon receiving the result, A uses Equation

(7) to recover bits of the secret key. Different from the signature scheme where A can always get a faulty

signature, the decryption query may not succeed because the victim may regard c as an invalid ciphertext.

Figure 1: The overview of an adversary and a victim in Elgamal’s encryption scheme. The adversary

processes a ciphertext c via a function F and sends the result to the decryption oracle. The victim will

return a plaintext m′ to the adversary. F is a function that modifies the ciphertext based on ∆x. If F

computes the ciphetext like equation (7), the adversary can find bits of secret key via m′.

In the following, we first describe the Elgamal encryption scheme in Cryptopp, based on which, we

show how to leak the secret key via Rowhammer.

GenerateRandomWithKeySize(rng) is a function defined in Line 840 of cryptopp/cryptlib.cpp.

This function reads a random generator rng and generate the public key pk and secret key sk. Particularly,

pk can be viewed as: (q is the order of the group G, g is the group generator and h is the exponentiate of

g using secret key x)

pk = {G, q, g, h} (1)

For sk, it is defined as: (x is a number related to g, h.)

sk = {x} (2)

1

pk and sk satisfy the following equations:

h = gx (3)

SymmetricEncrypt(pk,m, rng) is implemented in Line 64 of cryptpp/elgamal.h. This is a func-

tion that takes pk, m and rng as inputs, where m is an encoded message. The function chooses a uniform

y using rng and generates a ciphertext c as follows:

c = (c1, c2) = (gy, hy ·m) (4)

SymmetricDecrypt(c, pk, sk) is implemented in Line 83 of cryptopp/elgamal.h that takes a ci-

phertext c and pk, sk as inputs, and decrypts the ciphertext to plaintext:

m = decode(c2/c
x
1) (5)

When a single bit flip occurs to x right before SymmetricDecrypt is invoked, the generated plain-

text will become as follows:

m
′
= decode(c2/c

x
′

1) (6)

where m′ is a faulty plaintext, caused by a faulty secret key component x′ .

Here, we denote x
′ as x +∆x where ∆x represents the injected fault. To utilize Equation (5), we

can guess a ∆x, compute F (c) = (c1, c2 × c∆x
1) and check whether the following equation holds:

m = decode(c2 × c∆x
1 /cx

′

1) (7)

When Equation (7) holds, we are able to find out the index of the bit flipped in x and thus recover its

original bit. To implement the bit recovery, a function called find_bit is proposed in Listing 2.1 in

Section 2.1.

2 Recovering Secret Key via Rowhammer Fault

With the analysis above, we successfully simulated Rowhammer faults to get a total of 150 responses

from Elgamal faulted decryption and each response was used to recover 1 unique bit out of the 512 secret

bits.

2.1 Recovering Secret Bits

By inducing a single bit flip to a 512-bit secret key, we can get a response from a faulty victim

decryption process. For the faulty response, we wrote a function called find_bit below to process it and

recover the bit that has been flipped. Considering that only one bit is flipped for the secret key, we can

enumerate all possible values for ∆x, use i to indicate the index of a flipped bit and thus compute ∆xi

as 2i or −2i. In Line 27 of our pseudo-code below, we start a loop to enumerate i. In Lines 36 to 45,

∆xi and the decryption query are used to check if index i is the correct index. We use a flag bit called

isValidCoding to check if Equation (7) holds. If the check succeeds, we stop the loop and get index i

and its corresponding ∆xi. As Rowhammer flips a bit either from 0 to 1 or from 1 to 0, i indicates which

bit has been flipped and ∆xi indicates what its original bit value is. After we induce a bit flip for almost

2

every secret bit, we can recover the whole key.

1 #include <iostream >
2 #include <cryptopp/osrng.h>
3 #include <cryptopp/secblock.h>
4 #include <cryptopp/elgamal.h>
5 #include <cryptopp/cryptlib.h>
6 #include <cassert >
7 #include <cryptopp/pubkey.h>
8 using namespace CryptoPP;
9 using namespace std;

10 #define Bits_of_x 512
11 Integer sk;
12 int find_bit(
13 ElGamal::Encryptor encryptor , //an object contains the publickey
14 secByteBlock m, //m is the encoded message
15 AutoSeededRandomPool rng;//random generator
16){
17 //encrypt first to get ciphertext
18 size_t ecl = encryptor.CiphertextLength(m.size());
19 secByteBlock ciphertext(ecl),recovered;
20 encryptor.Encrypt(rng, m, m.size(), ciphertext);
21 //prepare the original c1,c2 in element format
22 DL_GroupParameters <T> ¶ms = encryptor ->GetAbstractGroupParameters();
23 size_t elementSize = params.GetEncodedElementSize(true);
24 Element c1=params.DecodeElement(ciphertext , true);
25 Element c2=params.DecodeElement(ciphertext+ecl/2, true);
26 Element p=params.GetGroupOrder();
27 for(int i=0;i<Bits_of_d;i++){ //enumerate all possible index of a bit-

flip fault
28 //operate the bit difference to c2 according to Equation (7)
29 Integer d;
30 d.setbit(i,1);
31 Element d2=a_exp_b_mod_c(c1,d,p+1);
32 Element c2p=a_times_b_mod_c(c2,d2,p+1);
33 params.DecodeElement(true,c2p,ciphertext+ecl/2);
34 //If the modified cipher c1,c2 can be decrypted to m by the

decryption query , the index of a flipped bit is targeted
35 DecodingResult result = decryptor.Decrypt(rng, ciphertext ,

ciphertext.size(), recovered);
36 if(result.isValidCoding){
37 sk.set_bit(i,1);
38 return 1;
39 }
40 else{
41 Element c2p=a_times_b_mod_c(c2,d2.InverseMod(p+1),p+1);
42 params.DecodeElement(true,c2p,ciphertext+ecl/2);

3

43 DecodingResult result = decryptor.Decrypt(rng, ciphertext ,
ciphertext.size(), recovered);

44 if(result.isValidCoding){
45 sk.set_bit(i,0);
46 return 0;
47 }
48

49 }
50 }
51 return -1;
52 }

In our simulation, we have collected 150 faulty response from the decryption query, based on which,

the same number of unique bits from the 512 secret bits have been recovered and can be further used to

infer remaining bits of the secret key sk.

3 Mitigation

An effective mitigation is check after decryption, which requires the secret owner to check if the

result is a valid plaintext before releasing it. This mitigation has been adopted by WolfSSL and OpenSSL

to fix similar vulnerabilities [2–4]. Specifically, we check if the secret key is faulted by checking whether

h = gx. If not, it means a secret key has been faulted and the process should abort.

References
[1] CVE-2019-19962. Available from MITRE. 2019.

[2] EdDsa: check private value after sign. 2024. URL: https : / / github . com / wolfSSL / wolfssl / commit /
c8d0bb0bd8fcd3dd177ec04e9a659a006df51b73.

[3] Openssl commit: Add a protection against fault attack on message v2. 2018. URL: https://github.com/openssl/
openssl/pull/7225/commits/02534c1ee3e84a1d6c59a887a67bd5ee81bcf6cf.

[4] RSA Decryption: check private value after decryption. 2024. URL: https://github.com/wolfSSL/wolfssl/commit/
de4a6f9e00f6fbcaa7e20ed7bd89b5d50179e634.

4

https://github.com/wolfSSL/wolfssl/commit/c8d0bb0bd8fcd3dd177ec04e9a659a006df51b73
https://github.com/wolfSSL/wolfssl/commit/c8d0bb0bd8fcd3dd177ec04e9a659a006df51b73
https://github.com/openssl/openssl/pull/7225/commits/02534c1ee3e84a1d6c59a887a67bd5ee81bcf6cf
https://github.com/openssl/openssl/pull/7225/commits/02534c1ee3e84a1d6c59a887a67bd5ee81bcf6cf
https://github.com/wolfSSL/wolfssl/commit/de4a6f9e00f6fbcaa7e20ed7bd89b5d50179e634
https://github.com/wolfSSL/wolfssl/commit/de4a6f9e00f6fbcaa7e20ed7bd89b5d50179e634

	Analysing the Elgamal encryption scheme
	Recovering Secret Key via Rowhammer Fault
	Recovering Secret Bits

	Mitigation

