Skip to content
This repository has been archived by the owner on Sep 5, 2023. It is now read-only.
/ lazuli Public archive

Liquid Haskell library for verifying neural networks.

License

Notifications You must be signed in to change notification settings

wenkokke/lazuli

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lazuli

Lazuli is a library for leveraging the interactive theorem proving and SMT checking abilities of Liquid Haskell to verify properties of neural networks. It currently supports feedforward neural networks using ReLU, sigmoid, and softmax activation functions. Networks are written as follows:

{-@ reflect layer1 @-}
{-@ layer1 :: LayerN 2 1 @-}
layer1 = Layer { weights    = (2 >< 1)
                              [ 1 |> [17561.5]
                              , 1 |> [17561.5]
                              ]
               , bias       = 1 :> [-25993.1]
               , activation = Sigmoid
               }

{-@ reflect model @-}
{-@ model :: NetworkN 2 1 @-}
model :: Network
model = NLast layer1

Properties of the model can then be checked using refinement types. The type TRUE is the type Bool refined as {v:Bool | v == True}. Let’s use it to check if the model correctly implements the AND gate:

{-@ test1 :: TRUE @-}
test1 = runNetwork model (2 :> [1,1]) == (1 :> [1])
{-@ test2 :: TRUE @-}
test2 = runNetwork model (2 :> [0,1]) == (1 :> [0])
{-@ test3 :: TRUE @-}
test3 = runNetwork model (2 :> [1,0]) == (1 :> [0])
{-@ test4 :: TRUE @-}
test4 = runNetwork model (2 :> [0,0]) == (1 :> [0])

Yes! It correctly implements the AND gate! However, is it robust? What do we mean by robust? That’s generally not an easy question. For this AND gate, let’s take robustness to mean that if the input is within some epsilon of a 0.0 or 1.0, the gate still works:

{-@ type Truthy = {v:R |  0.9 <= x && x <= 1.1} @-}
{-@ type Falsy  = {v:R | -0.1 <= x && x <= 0.1} @-}

{-@ test5 :: Truthy -> Truthy -> TRUE @-}
test5 x1 x2 = runNetwork model (2 :> [x1,x2]) == (1 :> [1])
{-@ test6 :: Falsy  -> Truthy -> TRUE @-}
test6 x1 x2 = runNetwork model (2 :> [x1,x2]) == (1 :> [0])
{-@ test7 :: Truthy -> Falsy  -> TRUE @-}
test7 x1 x2 = runNetwork model (2 :> [x1,x2]) == (1 :> [0])
{-@ test8 :: Falsy  -> Falsy  -> TRUE @-}
test8 x1 x2 = runNetwork model (2 :> [x1,x2]) == (1 :> [0])

The network we defined is robust around truthy and falsy inputs!


You may also be interested in Lazuli’s friend, StarChild!

About

Liquid Haskell library for verifying neural networks.

Topics

Resources

License

Stars

Watchers

Forks

Languages