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1 Content

This notes is about the LDA (Latent Dirichlet Allocation ,Blei,2003). Here
is mainly about the mathematics technology applied in the LDA and LDA
practise in R language.
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• Jensen’s Inequality

• Variational Inference

• Parameter Estimation

• LDA In R

2 Introduction

We are facing a world full of informations. And we need algorithmic tools
to organize,analysis and understand these informations automatically. LDA,
based on the topic model, is a simple but smart algorithm to provide us the
topics of documents in the corpus. In the same words:it allows us to find the
themes quickly in the documents.
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3 LDA Model

LDA is a popular generative model based on topic model in information pro-
cessing fields. In the LDA context,we have a corpus, a datasets of documents
as D. When we consider a document,we regard it as a bag of words(words se-
quence in the document is ignored). So the LDA is applied to describe how a
document contains words. The basic idea is that documents are represented
as random mixtures over latent topics,where each topic is characterized by
a distribution over words1 . To obtain our LDA model, we need define the
following terms at the beginning:

• The basic element in the LDA model is a word,discrete and defined be
an item from a vocabulary indexed by {1,....V }. So we can regard a
word indexed by v in the vocabulary as a unit-basis vector which has the
length of V and the vth component equals one and other components
in the vector are zeros.

• As we mentioned before, a document is a bag of words, so we can define
a document with N words by w = {w1, w2, ..., wN}, where wn presents
the n th word in the document.

• A corpus or a dataset ofM documents is defined byD = {w1,w2, ...,wM}.

With the terms denoted before, LDA can be assumed as the following process
for each document w in a corpus D :

1. Choose N ∼ Poisson(ξ)

2. Choose θ ∼ Dir(α)

3. For each of the N words wn:

(a) Choose a topic zn ∼Multinomial(θ).

(b) Choose a word wn from p(wn|zn, β), a multinomial probability
conditioned on the topic zn

1Blei 2003
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Some assumptions must be listed here:

• The dimension of the Dirichlet distribution(topic variable) is known
and fixed.

• The word probabilities are parameterized by a k×V matrix β for each
topic (row) and each term (column) where βij = p(wj = 1|zi = 1).

A k-dimensional Dirichlet distribution has the following probability density:

p(θ|α) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

θα1−1
1 ...θαk−1

k (1)

The Dirichlet distribution is in the exponential family, has finite dimensional
sufficient statistics, and is conjugate to the multinomial distribution. All the
properties provide us a convenient development of the inference and param-
eter estimation algorithms for LDA.

Described in the LDA Processing, given the parameter α and β, the joint
distribution of a topic mixture θ, a set of topics z, and a set of N words w,
we have :

p(θ, z,w|α, β) = p(θ|α)
N∏
n=1

p(zn|θ)p(wn|zn, β) (2)

With the Eq.(2), by integrating over θ and summing over z, we can get the
marginal distribution of a document:

p(w|α, β) =

∫
p(θ|α)(

N∏
n=1

∑
zn

p(zn|θ)p(wn|zn, θ))dθ (3)

Followed by producting the marginal distribution of a single document,
we can obtain the probability of a corpus:

p(D|α, β) =
M∏
d=1

∫
p(θd, α)(

N∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β))dθd (4)
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The central inferential problem for LDA is determining the posterior dis-
tribution of the latent variables given the document2:

p(θ, z|w, α, β) =
p(θ, z,w|α, β)

p(w|α, β)
(5)

This distribution is the crux of LDA, we can decompose it into a hierarchy
with the graphical model technology:

p(θ, z,w|α, β) = p(w|z, β)p(z|θ)p(θ|α) (6)

Here the p(w|z, β) represents the prbability of observing a document with
N words given a topic vector of length N that assigns a topic each word
from the k×V probability β.So we can multiply them together to obtain the
observing document:

p(θ, z,w|α, β) =
N∏
n=1

βzn,wn (7)

The p(z|θ) is simple θi for the unique i such that zin = 1,With all these
and Eq.(1),we can break the Eq(6) into :

p(θ, z,w|α, β) = (
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

θα1−1
1 ...θαk−1

k )
N∏
n=1

βzn,wnθzn (8)

Where θzn represents the component of θ chosen for zn.If we use the entire
vocabulary of size V to replaced the nntation mentioned above:

p(θ, z,w|α, β) = (
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

θα1−1
1 ...θαk−1

k )
N∏
n=1

k∏
i=1

V∏
j=1

(θiβi,j)
wjnz

i
n (9)

As we marginalize over θ and z, we get the denominator in Eq.(5):

p(w|α, β) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

∫
(
k∏
i=1

θαi−1
i )(

N∏
n=1

k∑
i=1

V∏
j=1

(θiβi,j)
wjn)dθ (10)

2Latent Dirichlet Allocation:Towards a Deeper Understanding,Colorado Reed

4



As we marginalize over θ and z From Eq.(10), we can not compute the dis-
tribution directly with the problem that θi, βi,j twist together. As described
in Blei et al.(2003), By dropping some of the edges and nodes in the original
graphical model, we can obtain a simplified graphical model in thre form:

q(θ, z|γ, φ) = q(θ|γ)
N∏
n=1

q(zn|φn) (11)

Where the Dirichlet parameter γ and the multinomial parameters(φ1, ...φN)

are the freee variational parameters.

4 Variational Distribution

Having specified a simplified family of probability distribution, the next step
is to set up an optimization problem that determines the value of varia-
tional parameters γ, φ. Here we use the KL(Kullback Lerbler) divergence
technology, which is a measure in statistics (Cover and Thomas, 1991) that
quantifies in bits how close a probability distribution p = {pi} is to a model
(or candidate) distribution q = {qi}, as defined like:

DKL(P ||Q) =

∫ +∞

−∞
P (x) log

P (x)

Q(x)
dx

Or

DKL(P ||Q) =
N∑
i=1

pi log
pi
qi

DKL is non-negative(≥0), not symmetric in p and q, zero if the distributions
match exactly and can potentially equal infinity. Here P is the real distribu-
tion and Q is a distribution we obtain by our model or experiments,If we use
the real distribution P to obtain the bytes E(X) =

∑
i(pi(x) × log( 1

pi(x)
)),

or we can also use the model distribution Q to obtain the bytes E(X) =∑
i(qi(x) × log( 1

pi(x)
)). It is known that the the no model distributions can

be more exactly than the real distribution. So the definition of DKL can be
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writen like this:

DKL(Q||P )

=
∑
x∈X

Q(x) log(1/P (x))−
∑
x∈X

Q(x) log(1/Q(x))

=
∑
x∈X

Q(x) log(
Q(x)

P (x)
)

= EQ[(log
Q(x)

P (x)
)]

= EQ[logQ(x)]− EQ[logP (x)]

The problem of LDA can now be transformed to the form:

(γ∗, φ∗) = argmin
(γ,φ)

DKL(q(θ, z|γ, φ)||p(θ, z|w, α, β)) (12)

Let q represent q(θ, z|γ, φ), So we can break The DKL part down step by
step :

DKL(q||p(θ, z|w, α, β))

= Eq[log q]− Eq[log p(θ, z|w, α, β)]

= Eq[log q]− Eq[log
p(θ, z,w|α, β)

p(w|α, β)
]

= Eq[log q]− Eq[log p(θ, z,w|α, β)] + log p(w|α, β)

(13)

In the Eq.(13),we use the Eq.(5) to obtain the right hand expression.

5 Jensen’s Inequality

5.1 Convex Functions

Definition 1 Lef f be a real valued function defined on an interval I = [a, b].
f is said to be convex onI if ∀x1, x2 ∈ I, λ ∈ [0, 1] ,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)
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Throrem 1 (Jensen’s inequality) Lef f be a convex function defined on
an interval I. If x1, x2, ..., xn ∈ Iandλ1, λ2, ..., λn ≥ 0with

∑n
i=1 λi = 1,

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi)

5.2 Jensen’s inequality in LDA

Using the Jensen’s inequality ,we bound p(w|α, β) by:

log p(w|α, β)

= log

∫ ∑
z

p(θ, z,w|α, β)dθ

= log

∫ ∑
z

p(θ, z,w|α, β)q(θ, z)

q(θ, z)
dθ

≥
∫ ∑

z

q(θ, z) log
p(θ, z,w|α, β)

q(θ, z)
dθ

= −
∫ ∑

z

q(θ, z) log
q(θ, z)

p(θ, z,w|α, β)
dθ

= −Eq[log
q(θ, z)

p(θ, z,w|α, β)
]

= Eq[log p(θ, z,w|α, β)]− Eq[log q(θ, z)]

(14)

Here we regard λz =
∫
q(θ, z)dθ;xz = p(θ,z,w|α,β)

q(θ,z)
so we have

∑
z λz = 1 and

can apply the Jensen’s inequality on the Eq.(14), and we obtain the form
of KL divergence to make our process forward. If we denote the right side
of Eq.(14) by L(γ, φ, α, β),with the q(θ, z) = q(θ, z|γ, φ)we can reach to the
Eq.(15):

log p(w|α, β) = L(γ, φ, α, β) +DKL(q(θ, z|γ, φ)||p(θ, z|w, α, β)) (15)

So when we minimize the DKL(q(θ, z|γ, φ)||p(θ, z|w, α, β)),we are expecting
the L(γ, φ, α, β) to get as close as log p(w|α, β).
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6 Variational Inference

Using the factorizations of p and q,To expand the L(γ, φ, α, β),we obtain:

L(γ, φ, α, β)

= Eq[log p(θ, z,w|α, β)]− Eq[log q(θ, z)]

= Eq[log p(θ|α)] + Eq[log p(z|θ)] + Eq[log p(w|z, β)]

− Eq[log q(θ)]− Eq[log q(z)]

(16)

Here when we mention q(θ, z),we mean q(θ, z|γ, φ),so do with the q(θ), q(z)

short for q(θ|γ), q(z|φ) respectively.
The next step is to break the right side of Eq.(16) to five terms which are

respectively expended by the entropy technology:

Eα[log θi] = E[log θi|α] = Ψ(αi)−Ψ(
k∑
j=1

αj) (17)

In the next three sections we will prove the Eq.(17) with the properties of
the exponential family of distribution.

6.1 The Exponential Family of Distributions

p(x|θ) = h(x)eθ
TT (x)−A(θ) (18)

To get a normalized distribution ,for any θ∫
p(x)dx = e−A(θ)

∫
h(x)eθ

TT (x)dx = 1

So we obtain
A(x) = log

∫
h(x)eθ

TT (x)dx
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If we denote the
∫
h(x)eθ

TT (x)dx as Q(θ),then

dA(θ)

dθ

=
1

Q(θ)
× dQ(θ)

dθ

=

∫
h(x)eθ

TT (x)T (x)dx∫
h(x)eθTT (x)dx

= Epθ [T (x)]

(19)

6.2 Gamma Function

In mathematics, the gamma function (represented by the capital Greek letter
Γ) is an extension of the factorial function, with its argument shifted down
by 1, to real and complex numbers. That is, if n is a positive integer: Γ(n) =

(n− 1)! The gamma function is defined for all complex numbers except the
negative integers and zero. For complex numbers with a positive real part,
it is defined via a convergent improper integral:

Γ(x) =

∫ ∞
0

tx−1e−t dt

The digamma function is defined as the logarithmic derivative of the gamma
function:

Ψ(x) =
d

dx
logΓ(x) =

Γ′(x)

Γ(x)
(20)

6.3 Variational Inference

So let’s back to the Eq.(17),and Eq(1). The Eq.(1) can be rewritten in the
form of exponential family of distribution:

p(θ|α) = e(
∑k
i=1(αi−1) log θi)+log Γ(

∑k
j=1 αj)−

∑k
i=1 log Γ(αi)

To break it to k components,with the form of Eq.(18), we can obtain T (xi) =

log θi, θi = αi − 1, A(θi) = log Γ(αi)− log Γ(
∑k

j=1 αj)

With the Eq.(20), If we put the T (xi), θi and A(θi) into the Eq.(19), we

9



can easily obtain the Eq.(17).

6.3.1 Eq[log p(θ|α)]

Let’s first compute the Eq[log p(θ|α)] in which the q is the probability of θ
under the condition of γi:

Eq[log p(θ|α)]

= Eq[log
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

θα1−1
1 ...θαk−1

k ]

= Eq[
k∑
i=1

(αi − 1) log θi + log Γ(
k∑
i=1

αi)−
k∑
i=1

log Γ(αi)]

=
k∑
i=1

Eq[log θi]

+ log Γ(
k∑
i=1

αi)−
k∑
i=1

log Γ(αi)

=
k∑
i=1

(αi − 1)

(
Ψ(γi)−Ψ(

k∑
j=1

γj)

)

+ log Γ(
k∑
i=j

αj)−
k∑
i=1

log Γ(αi)

6.3.2 Eq[log p(z|θ)]

θ is a k-dimensional vector,zn is a topic generated by the Multinomial(θ).
Let’s image there is a k-face die. Every component in the θ vector is the
probability of the face with the same index. So p(z|θ) is simply θi for the
unique i such that zin = 1. The q here is probability of z under the condition
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of φ, so we can obtain:

Eq[log p(z|θ)]

= Eq[
N∑
n=1

k∑
i=1

zin log θi]

=
N∑
n=1

k∑
i=1

Eq[z
i
n]Eq[log θi]

=
N∑
n=1

k∑
i=1

φni

(
Ψ(γi)−Ψ(

k∑
j=1

γj)

)

6.3.3 Eq[log p(w|z, β)]

With the zn, and the vocabulary of V words, we say βij means we have
the ith topic(zin = 1) and we jth word(wjn = 1) in the vocabulary.But how
can we get the wjn?,It is the same approach that we obtain the ith topic.
we sample from a Dirichlet with V dimensions. And with the multinomial
distribution we get the jth word in the vocabulary. The process above just
generate only one word,To generate a document with N word,we have to do
this N times.The Eq[log p(w|z, β)] shows the process:

Eq[log p(w|z, β)]

= Eq[
N∑
n=1

k∑
i=1

V∑
j=1

zinw
j
n log βij]

=
N∑
n=1

k∑
i=1

V∑
j=1

Eq[z
i
n]Eq[w

j
n]Eq[log βij]

=
N∑
n=1

k∑
i=1

V∑
j=1

φniw
j
n log βij

6.3.4 Eq[log q(θ|γ)]

This is about how θ generated by Dirichlet distribution with the γ parameter
mentioned in Eq.(11). so we can expand it like we do with the Eq[log p(θ|α)]
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before:

Eq[log q(θ|γ)]

=
k∑
i=1

(γi − 1)Eq[log log θi] + log Γ(
k∑
i=1

γi)−
k∑
i=1

log Γ(γi)

=
k∑
i=1

(γi − 1)[Ψ(γi)−Ψ(
k∑
j=1

γj)]

+ log Γ(
k∑
j=1

γj)−
k∑
i=1

log Γ(γi)

6.3.5 Eq[log q(z|φ)]

In Eq.(11),we have said that the (phi1, ...φN) are parameters of multinomial
distribution that generate the z. That is alike the generating process of
Eq[log p(z|θ)],so it also can be expanded in the same form:

Eq[log q(z|φ)]

= Eq[
N∑
n=1

k∑
i=1

zin log φni]

=
N∑
n=1

k∑
i=1

Eq[z
i
n]Eq[log φni]

=
N∑
n=1

k∑
i=1

φni log φni

6.4 Computing L(γ, φ, α, β)

L(γ, φ, α, β) in Eq.(16) has been broken in five terms,and each term has been
expanded.Finally we can compute the L(γ, φ, α, β) by composing these terms

12



together:

L(γ, φ, α, β)

=
k∑
i=1

(αi − 1)(Ψ(γi)−Ψ(
k∑
j=1

γj)) + log Γ(
k∑
i=1

αi)−
k∑
i=1

log Γ(αi)

+
N∑
n=1

k∑
i=1

φni(Ψ(γi)−Ψ(
k∑
j=1

γj))

+
N∑
n=1

k∑
i=1

V∑
j=1

φniw
j
n log βij

−
k∑
i=1

(γi − 1)[Ψ(γi)−Ψ(
k∑
j=1

γj)]− log Γ(
k∑
j=1

γj) +
k∑
i=1

log Γ(γi)

−
N∑
n=1

k∑
i=1

φni log φni

(21)

Where each of the five lines expands one of the five terms in the 6.3 sec-
tion.The next step we will use the Lagrangian with respect to the variational
parameters φ and γ.

6.4.1 Variational Multinomial

We first maximize Eq.(21) with respect to φni , the probability that the
nth word is generated by latent topic i. Observe that this is a constrained
maximization since

∑k
i=1 φni = 1.

We form the Lagrangian by isolating the terms which contain φni and
adding the appropriate Lagrange multipliers. Let βiv be p(wvn = 1|zi = 1)

for the appropriate v. (Recall that each wn is a vector of size V with exactly
one component equal to one; we can select the unique v such that wvn = 1,
so we can get rid of the

∑V
j=1)):

L[φni] = φni(Ψ(γi))−Ψ(
k∑
j=1

γj) + φni log βiv − φni log φni + λn(
k∑
i=1

φni − 1)

Where the Lφni denotes that we only care the terms in L(γ, φ, α, β) that are
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a function of φni.Taking derivatives with respect to φni,we obtain:

∂Lφni
∂φni

= Ψ(γi)−Ψ(
k∑
j=1

γj) + log βiv − log φni − 1− λn

Setting the derivative to zero yield the maximizing value of the variational
parameter φni:

φni ∝ βivexp(Ψ(γi)−Ψ(
k∑
j=1

γj)) (22)

6.4.2 Variational Dirichlet

Next,we maximize Eq.(21) with respect to γi, the ith component of the pos-
terior Dirichlet parameter. The terms containing γi are:

L[γi]

= (αi − 1)(Ψ(γi)−Ψ(
k∑
j=1

γj))

+
N∑
n=1

φni(Ψ(γi)−Ψ(
k∑
j=1

γj))

− (γi − 1)[Ψ(γi)−Ψ(
k∑
j=1

γj)]− log Γ(
k∑
j=1

γj) +
k∑
i=1

log Γ(γi)

= (Ψ(γi)−Ψ(
k∑
j=1

γj))(αi +
N∑
n=1

φni − γi)− log Γ(
k∑
j=1

γj) + log Γ(γi)

We take the derivative with respect to γi:

∂Lγi
∂γi

= Ψ′(γi)(αi +
N∑
n=1

φni − γi)−Ψ′(
k∑
j=1

γj)(αj +
N∑
n=1

φnj − γj)
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Setting the equation to zero yields a maximum at:

γi = αi +
N∑
n=1

φni (23)

Since Eq.(22) depends on the variational multinomial φ, full variational
inference requires alternating between Eqs.(22) and (23) until the bound
converges.

7 Parameter Estimation

We have thus far considered the log likelihood for a single document. Given
our assumption of exchangeability for the documents,the overall log likeli-
hood of a corpus D = {w1,w2, ...wM} is the sum of the individual doc-
uments;moreover the variational lower bound is the sum of the individual
variational bounds. To maximize with respect to β, we isolate terms and
add Lagrange multipliers:

Lβ =
M∑
d=1

Nd∑
n=1

k∑
i=1

V∑
j=1

φdniw
j
dn log βij +

k∑
i=1

λi(
V∑
j=1

βij − 1)

Let’s rewrite the equation with respect to βij:

Lβij =
M∑
d=1

Nd∑
n=1

φdniw
j
dn log βij + λiβij −

k∑
i=1

λi

Taking the derivative with βij, we obtain:

βij ∝
M∑
d=1

Nd∑
n=1

φdniw
j
dn
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