
@@export_scripts@@

Mu-An Chiou (@muan)
Previously GitHub (accessibility, JS, WC)

Now Head of Design Systems,

Ministry of Digital Affairs, Taiwan

@@export_scripts@@

Let developers set

Sequential Focus
Navigation Starting
Point (SFNSP)
HTML Spec: 6.6.5 Sequential focus navigation

https://html.spec.whatwg.org/multipage/interaction.html#sequential-focus-navigation

@@export_scripts@@

If the element which was the focus start
point is removed from the DOM, its parent
becomes the focus start point. No more
focus whack-a-mole!

Removing Headaches from Focus
Management

Rob Dodson circa 2016–

https://developer.chrome.com/blog/focus-start-point/

@@export_scripts@@

whatwg/html#5326
Issue created by @Alice

@domenic–
@bkardell–
@othermaciej–
@AutoSponge–
@robdodson–
@hidde–
@BoCupp-Microsoft–
@Emilio–
@Rich-Harris–
@nimahkh–

@@export_scripts@@

Issue supporters

@BoCupp-Microsoft:
I like the direction this issue is heading.

@robdodson:
Internally, browsers have the ability to move the focus start point and it would be useful to expose this to
developers.

@hidde:
I see great benefit in having a specific, non-hacky feature built into HTML for this situation.

@Rich-Harris:
+1, In SPAs, fragment navigation would not set SFNSP and we resort to hacks.

@muan (when at GitHub):
I think this convenience is much needed considering that it is very rare for businesses to put development
resource into designing a keyboard/screen reader specific experience.

@@export_scripts@@

Why

Focus management is an important piece
of web accessibility. Currently hacks exists
(moving focus) as an alternative to setting
SFNSP, but they are far from ideal.

@@export_scripts@@

Current solution
Quoting myself:

Using the current pattern, developers have to
consider the following steps:

Marking an element to be the start point

Making this pattern re-usable is very difficult
for a large scale website. In these steps, I'd say
step 1 alone is already a big task and quite a
burden to maintain.

Setting tabindex="-1" on the element1.

Call focus()2.

Ensuring focus outline does not apply to
this element

3.

Install a one time blur handler to remove
the tabindex

4.

Code, supplied by @Rich-Harris, not
dissimilar to what GitHub has.

function getFocusStartPoint() {
 return
window.getSelection()?.focusNode.parentElement;
}

function setFocusStartPoint(element) {
 const tabindex =
element.getAttribute('tabindex');

 element.setAttribute('tabindex', '-1');
 element.focus();
 element.blur();

 if (tabindex) {
 element.setAttribute('tabindex', tabindex);
 } else {
 element.removeAttribute('tabindex');
 }
}

@@export_scripts@@

Real life example

@@export_scripts@@

IDL method
document.setSequentialFocusStartingPoint(element);

Global attribute
Suggested by Keith Cirkel.

<div sfnsp></div>

Bikeshedding welcomed/needed.

@@export_scripts@@

Known issues

SFNSP is poorly supported in AT.1.
SFNSP implementation method
seems to differ wildly across engines.

2.

@@export_scripts@@

SFNSP is poorly supported in AT

However, if browsers save focus-navigation-starts-here-point where the removed element used to be, keyboard
navigation seems to work fine even if focus is not handled.

...

Overall, this is a win for accessibility. For someone relying on keyboard navigation (or any other assistive tech
that navigates via focus, like switch devices), getting sent back to the top of the page every single time a developer
forgot to handle focus is an enormous pain.

...

screen readers do not pay attention to the internal browser concept of focus-starts-here-point. While testing
with a keyboard alone may make everything seem fine, trying the same interaction while running a screen reader
exposes some rough edges.
 - Sarah Higley (Accessibility @ Microsoft)

https://sarahmhigley.com/writing/focus-navigation-start-point/

https://sarahmhigley.com/writing/focus-navigation-start-point/

@@export_scripts@@

Closing
Assistive Technology not supporting things in spec is not new.1.
Exposing this method to developers would up the visibility of
SFNSP, and make focus management not a hacky script you paste
from StackOverflow, which should encourage adoption, and thus
help make SFNSP a priority for ATs.

2.

The fact that this feature is highly polyfillable (backed by current
hack) would actually help with web accessibility in general, given
that the hack is not commonly implemented due to the complexity
and the lack of understanding in web accessibility.

3.

@@export_scripts@@

Good idea? Bad idea?
(browsers friends wdyt?) →

Name suggestions?
(async to not take up valuable time?) →

Next step

