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ABSTRACT

Atomic polarizability plays an essential role in topics ranging from van der Waals in-

teractions, state lifetimes, and indices of refraction, to next generation atomic clocks

and atomic parity non-conservation experiments. Polarizability measurements, such

as the ones described in this thesis, provide valuable input to these subjects and

serve as benchmark tests for sophisticated atomic structure calculations. We mea-

sured the static polarizability of potassium and rubidium with record precision and

0.5% uncertainty using a Mach-Zehnder atom interferometer with an electric-field

gradient. To support future precision measurements of polarizability, we developed

a new atom beam velocity measurement technique called phase choppers. Using

phase choppers, we demonstrated measurements of mean atom beam velocity with

an uncertainty of 0.1%. We also developed a new way to probe atomic structure: a

measurement of a zero-crossing of the dynamic polarizability of potassium, known

as a magic-zero wavelength. We measured the first magic-zero wavelength of potas-

sium with 1.5 pm uncertainty and established a new benchmark measurement for

the ratio of the D1 and D2 line strengths. Finally, we propose the use of a resonant

photoionization detector for measurements of strontium polarizability, and the use

of contrast interferometry for measurements of alkali dimer tensor polarizabilities.
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CHAPTER 1

INTRODUCTION

What happens to an atom in an electric field? An atom is a neutral particle so it

will not accelerate in a uniform electric field, however, it is composed of positively

charged protons and negatively charged electrons that do feel electric forces. If we

place our test atom in a charged parallel-plate capacitor, the negatively charged elec-

trons tend to move toward the positively charged surface, while the much heavier

and positively charged nucleus moves only slightly toward the negatively charged

surface. As a result of these movements, the atom becomes stretched out by an

amount determined by its polarizability. Figure 1.1 shows a cartoon of this idea.

The polarizability of a spherical particle is proportional to its volume and this re-

mains approximately true for atoms as well. As such, polarizability is conveniently

expressed in terms of a volume, typically a30 or 10−24 cm3. The SI unit of polariz-

ability, C m2/V, can be reduced to a volume by simply dividing by 4πε0.

More precisely, the polarizability α of an atom relates the induced dipole moment

~p to the applied electric field ~E by

~p = α~E + ... (1.1)

The dipole moment is ~p = e~r, where ~r is the displacement of the electron cloud.

Higher order terms, such as the hyperpolarizability, will be neglected in this work

since we operate our experiments at more than 105 times below the scale of the

atomic field ( ~Ea ≈ e/a20 = 5× 1011 V/m).

The energy shift of a polarizable particle in an electric field is given by

U = −1

2
α~E2, (1.2)
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Figure 1.1: An electric field applied to three different atoms, helium, sodium, and
rubidium, induces a dipole moment in proportion to the atomic polarizability. The
polarizability roughly scales in proportion to the volume of the atom.

and this is commonly referred to as the Stark shift. Polarizability can also be defined

through 2nd-order perturbation theory. The Hamiltonian of a polarizable particle

is

H = Hatom − p̂ · ~E (1.3)

where p̂ is the dipole operator. Application of 2nd order perturbation theory leads

to a ground-state static polarizability of

α = 2e2
∑
i 6=0

|〈i|~r. ~E|0〉|2

Ei
(1.4)

where e is the electron charge and Ei is the energy of the ith atomic state, assuming

E0 ≡ 0. So far we have assumed that the applied field is constant in time, but we

will examine the frequency dependence of the dynamic polarizability in sections 2.3
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and 5.1.

Equation 1.4 gives us insight into why polarizability is an interesting property

to study: it can be expressed as a sum of dipole matrix elements. These matrix

elements also describe properties such as transition strengths, state lifetimes, van

der Waals interactions, indices of refraction, and scattering cross-sections, just to

name a few. In fact, in a 1966 review of atomic polarizabilities, Bederson and

Robinson referred to polarizability as a “seemingly ubiquitous parameter” [1] and

T.M. Miller compiled a list of properties directly related to polarizability with more

than 15 entries [2]. Since dipole matrix elements are notoriously difficult to calculate,

experiments such as the ones described in this thesis can serve as input to a long

list of calculations.

New applications of atomic physics continue to demand better knowledge of

atomic polarizabilities. Next generation optical lattice clocks based on strontium

and ytterbium atoms suffer from significant frequency shifts due to blackbody radi-

ation and accurate calibration of these frequency shifts requires precise knowledge

of polarizabilities [3, 4]. Parity non-conservation studies [5, 6] using atomic systems

impose limits on physics beyond the standard model, but require accurate atomic

structure calculations to interpret the measurements [7]. Polarizability measure-

ments are some of the best ways to test these calculations.

This thesis describes three experiments all concerned with precisely answering

the seemingly simple question of what happens to an atom in an electric field. The

most important findings are as follows:

• I used an atom interferometer and a novel electric field gradient geometry to

measure the polarizabilities of K and Rb with unprecedented precision (0.5%

uncertainty) [8]. These measurements are now listed in the CRC Handbook of

Chemistry and Physics, and they establish a roadmap for future polarizability

measurements in our lab.

• I developed a new technique to measure atom beam velocities with 0.1% un-

certainty using phase choppers [9]. This technique will enable more precise
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polarizability measurements.

• I measured a wavelength, referred to as a magic-zero wavelength, for which

the dynamic polarizability of potassium equals zero. We measured the first,

i.e. the longest, magic-zero wavelength of potassium with 1.5 pm uncertainty

[10]. I explain how this is a novel method to test atomic structure calcula-

tions and also establishes a foundation for future measurements of magic-zero

wavelengths in our lab.

The remainder of this introduction provides a brief history of polarizability mea-

surements and a review of the basic matterwave optics needed for understanding

the experiments in this thesis. Chapter 2 summarizes the experiments, papers, and

proposals that comprise this thesis work. Chapters 3-5 provide supporting mate-

rial for our peer-reviewed publications on static polarizability measurements of Na,

K, and Rb (Appendix A) [8], a new atom velocity measurement technique using

phase choppers that will improve polarizability measurements (Appendix B) [9],

and a measurement of the first magic-zero wavelength of the dynamic polarizability

of potassium (Appendix C) [10]. Chapters 6 and 7 propose two new experiments:

measurements of Sr polarizability using a resonant photoionization detector and

measurements of the tensor polarizabilities of alkali dimers.

1.1 A brief history of polarizability measurements

In this section we provide a brief review of the history of polarizability measurements.

For comprehensive reviews of polarizability measurements, see Mitroy, Safronova

and Clark (2010) [11], Gould and Miller (2005) [12], Hohm (2000) [13], Miller

and Bederson (1989) [14], Miller and Bederson (1978) [15], Bederson and Robin-

son (1966) [1], and the CRC Handbook of Chemistry and Physics [2].

Scheffers and Stark started the business of polarizability measurements in 1934

[16] by deflecting atomic beams of Li, K, and Cs in an inhomogenous electric field.

More than 25 years later, Benjamin Bederson developed the E-H gradient spec-

trometer at NYU [17] and in 1961 made the first measurements of polarizabilities
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since Stark [18]. These measurements were made with about 15% uncertainty and

formed the foundation for a career’s worth of impressive polarizability measurements

discussed below.

In 1974, Physical Review A published two landmark polarizability measurement

papers. Hall and Zorn [19] measured the polarizabilities of the alkalis Na through Cs

with 7% uncertainty using beam deflection, and Molof, Schwartz, Miller, and Beder-

son [20] measured the polarizabilities of Li through Cs and the 3P2 metastable nobel

gas atoms with 2% uncertainty using the E-H gradient balance technique. Molof et

al. provided measurements of polarizability unmatched for over 2 decades and has

been cited over 200 times. Molof et al. achieved their relatively low uncertainties by

measuring polarizabilities with respect to the polarizability of metastable He, which

can be calculated with high precision. In this thesis, we continue the technique of

using ratio measurements of polarizabilities for improved precision.

The Bederson group also measured the average dipole polarizabilities of homonu-

clear alkali dimers with 10% uncertainty in 1974 by using ratios with respect to the

polarizabilities of the alkali atoms [21]. The polarizabilities of Ba, Sr [22] and Ca [23]

were also measured with respect to Li over the next two years. In 1993, Tarnovsky

et al. measured the polarizabilities of both the homonuclear and heteronuclear alkali

dimers with Bederson [24]. These measurements were made with 6-10% uncertainty.

The 1990s saw the advent of atom interferometry and its promise of high precision

measurements of atomic properties [25, 26, 27], fundamental constants of nature

[28], and inertial displacements [29, 30]. The Pritchard group at MIT made the first

interferometry-based precision polarizability measurement of an atom, Na, with

0.35% uncertainty using a three nanograting Mach-Zehnder atom interferometer

[25]. In Toulouse, the Vigué group measured the polarizability of Li with 0.66%

uncertainty using an atom beam interferometer with light gratings [26]. The Arndt

group in Vienna measured the polarizability of C60 and C70 with 6% uncertainty

and their ratio with 2.5% uncertainty using a near field interferometer [31].

The development of laser trapping and cooling enabled several new polarizabil-

ity measurements, as well. The Sackett group in Virginia measured the dynamic
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polarizability of Rb near the D1 and D2 lines with 7% uncertainty using a guided

ultracold atom interferometer [32]. Amini and Gould used an atomic fountain to

measure the polarizability of Cs with 0.14% uncertainty [33]. This measurement

provides a valuable benchmark for calculations [7, 34] needed to interpret atomic

parity non-conservation experiments [5]. Cold atom experiments offer much longer

interaction times than atom beam experiments and ultracold atom interferometers

may offer better than shot-noise limited precision. However, these experiments of-

ten suffer from additional systematic errors, such as density-dependent phase shifts,

and therefore independent measurements provide valuable cross-checks.

Other notable measurements of polarizabilities of non-alkali or alkaline-earth

atoms include the following. Schäfer et al. measured the polarizability of lead clus-

ters using beam deflection [35]. The Bederson group also made measurements of

the polarizability of mercury [36], indium [37], and the alkali halide dimers [38].

Knight et al. measured the polarizability of sodium clusters [39]. The Kresin group

at UCLA measured the polarizability of sodium clusters [40] using electrodes from

the Bederson group. These measurements all have uncertainties on the order of a

few percent.

Mitroy, Safronova, and Clark recently wrote a comprehensive review of the theory

of atomic polarizabilities with extensive references [11]. In addition, I recommend

references [41, 42, 43, 44, 45, 46, 47] to trace the progress of polarizability calculation

techniques through the past half-century.

I provide a recommendation for the best measurements and calculations of polar-

izability of the alkali atoms in Table 1.1. The theoretical uncertainty of polarizability

for most alkalis is about 0.1%, while the measurement uncertainty is 0.2-0.5%. Note

that our measurements of potassium and rubidium polarizability presented in this

thesis are the best available.

Techniques developed in this thesis, specifically the use of ratio measurements of

polarizability and the ability to measure the polarizability of heavy atoms using an

atom beam interferometer, will enable measurements of alkali atom polarizabilities

with better than 0.1% uncertainty. As I explain in Chapter 3 and Appendix B, we
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Table 1.1: Recommended measured and calculated values of alkali static polariz-
abilities in units of 10−24 cm3. Some calculations rely on measurements of atomic
properties. See Mitroy et al. [11] for more details.

Atom αmeas αcalc

Li 24.33(16) [26] 24.318(4) [48]
Na 24.11(8) [25] 24.09(4) [44]
K 43.06(21) [8] 42.91(9) [49]
Rb 47.24(21) [8] 47.17(9) [50]
Cs 59.42(8) [33] 59.26(3) [44]

have demonstrated measurements of cesium polarizability with a precision of 0.1%,

but not yet this accuracy.

1.2 Matterwave optics

Matterwave optics and atom interferometry is now a mature tool that has been

extensively described in numerous reviews [51, 52, 53, 54, 55], primary references

[56, 57, 58, 59, 60, 61, 62, 63], and Ph.D. theses [64, 65, 66, 67, 68]. Here, I sum-

marize only the essential principles of our particular atom interferometer to provide

background for the measurements described later in this thesis.

Our atom beam is created by supersonic expansion [69, 70] of an inert carrier

gas seeded with alkali atoms and collimated with two small slits. A translatable

hot-wire detector [71] and channel electron multiplier measures the atom beam flux.

See V.P.A. Lonij’s thesis, section 2.2, for more details of our updated atom beam

source and detector [68].

A silicon-nitride nanograting diffracts the collimated atom beam, just as a tra-

ditional grating will diffract light waves. The path separation after the first grating

is

s =
λdB
dg

z =
h

mvdg
z (1.5)
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atom beam

atom
detector

nanograting

z

x

Figure 1.2: A three grating Mach-Zehnder atom interferometer. Atoms waves
diffracted by the first and second nanogratings form an interference pattern at the
third nanograting. A hot-wire detector measures the transmitted atom beam flux.

where λdB = h/mv is the de Broglie wavelength of an atom with mass m and velocity

v, dg = 100 nm is the grating period, and z is the propagation distance from the

first grating. For typical beam conditions in our experiments λdB ≈ 5 pm, and this

results in a diffraction angle of 50 µrad. Lonij et al. [72, 73] and Perreault et al. [74]

used atom beam diffraction to study atom surface interactions.

We use a three-grating Mach-Zehnder atom interferometer (Figure 1.2) to make

precision measurements of atomic properties. This interferometer is an evolution of

the machine developed in Dave Pritchard’s group at MIT in the 1980s and 1990s

[56, 52, 64]. A superposition of two traveling waves, created by diffraction from the

first and second nanogratings, forms a sinusoidal interference pattern in space at

the plane of the third nanograting. These two traveling waves may be written as

ψ0 = Aei(kzz+φ0) (1.6)

ψ1 = Bei(kzz+kxx+φ1). (1.7)

The transverse wavenumber is determined by the period of the nanogratings: kx =

2π/dg.

The superposition of traveling waves overlaps at the location of the 3rd nanograt-
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ing and make a probability of detecting each atom at location x given by

|ψ|2 = |ψ0 + ψ1|2

= A2 +B2 + AB
(
ei(kxx+δφ) + e−i(kxx+δφ)

)
= A2 +B2 + 2AB cos(kxx+ δφ) (1.8)

where δφ = φ1 − φ0. The probability density is described by a constant value plus

a term that oscillates with a spatial frequency equal to the nanograting period,

regardless of the atomic velocity v = ~kz/m. As such, we can use a 3rd nanograting

as a mask of the interference pattern. The transmitted flux, I(x), can be written in

terms of an average beam flux I0, contrast C, and phase δφ:

I(x) = I0 + C cos(kxx+ δφ). (1.9)

Moving any of the nanogratings in the x direction scans the atomic interfer-

ence pattern across the third nanograting to yield intensity vs. position data.

A co-propogating laser interferometer measures the relative position of the three

nanogratings. Figure 1.3 shows an example of the atom interference fringe data.

The observed fringe pattern is the incoherent sum of the sinusoidal probability

distributions from single-atom interference, repeated about 105 times per second.

Different atoms have different velocities and also enter and exit the interferometer at

different times. Atoms do not interfere with other atoms in our interferometer, only

with themselves, because they are separated from other atoms by tens of micrometers

on average. These characteristics are crucial for understanding contrast loss in our

interferometer, and in particular the new velocity measurement technique described

in section 2.2 and Appendix B.

Application of, say, an electric field gradient across the interferometer changes δφ

and results in a measurable phase shift. We analyze these phase shifts to determine

properties such as atomic polarizability, described in section 2.1 and Appendix A,

and magic-zero wavelengths, described in section 2.3 and Appendix C.
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Figure 1.3: A typical atom interference fringe from our Mach-Zehnder atom inter-
ferometer determined from 5 sec of data. We fit this data to find the fringe contrast
C and phase φ.

The phase of the atom waves along each path evolve according to

φ =
1

~

∫
E(t)dt (1.10)

where E(t) is the total energy of the atom as a function of time. All of the phase

shifts described in this thesis are created by energy shifts (∼1 µeV) much smaller

than the kinetic energy of the atoms (∼0.1 eV), and much more slowly varying (∼100

µm) than the de Broglie wavelength (∼10 pm). These are, loosely, the conditions

for the application of the WKB approximation. In the WKB approximation the

phase is described by

φ =
1

~

∫
p(z)dz (1.11)

where

p(z) =
√

2m(E − U(z)) (1.12)
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is the momentum of the atom. Since U(z)� E we can simplify the phase:

φ =

√
2mE

~

∫ √
1− U(z)

E
dz (1.13)

≈
√

2mE

~

∫ (
1− U(z)

2E

)
dz. (1.14)

The first term will be common to both paths and not measurable, so we drop it

from consideration. The second term corresponds to the change in phase of the

wavefunction due to the application of a potential. Finally, plugging in the kinetic

energy mv2/2 for the total energy yields a phase shift of

φ = − 1

~v

∫
U(z)dz. (1.15)

Typical interaction distances in our experiments are 100 µm to 10 mm and at a

typical atom beam velocity of v0 = 2000 m/s, this corresponds to interaction times

of 50 ns to 5 µs. As stated previously, the energy shift of a polarizable atom is given

by

U(ω) = −1

2
α(ω) ~E2(ω, z, t) (1.16)

where we now allow for a frequency dependence for the polarizability and the electric

field. Our static polarizability measurements investigate this energy shift in the limit

ω → 0 and our magic-zero wavelength measurement investigates the frequency at

which α(ω), and thus U(ω), vanishes.

Depending on the geometry of the interaction region, both paths of the atom

interferometer may receive a phase shift. However, we only measure the difference in

the phase shifts along two interferometer paths. We refer to this as the differential

phase shift. The experiments described in this thesis all apply phase shifts to both

paths of the interferometer. Section 2.1 discusses some of the advantages of this

configuration, such as the fact that it enables us to use heavier atoms that produce

unresolved diffraction orders.
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As discussed above, the measured interference pattern is the ensemble average of

single-atom interference patterns. In general, interferometer phase shifts may be a

function of many parameters, such as the atom velocity v, transverse position x, or

the atomic state. For example, equation 1.15 shows that the phase shift is a function

of the atom beam velocity. Our supersonic atom beam contains atoms with a narrow,

but still significant velocity distribution P (v). Figure 1.4 shows examples of typical

velocity distributions in our interferometer. We use polar notation in the complex

plane to more easily and compactly express and calculate the ensemble average of

interference fringes. For the case of averaging over only a velocity distribution the

expression is

Cme
iφm = C0e

iφ0

∫ ∞
v=0

P (v)eiφ(v)dv (1.17)

where φ(v) is the velocity-dependent differential phase shift, Cm are φm are the

measured interferometer contrast and phase, respectively, and C0 are φ0 are the

interferometer phase and contrast in the absence of the phase shift. We typically

evaluate equations such as 1.17 by numerical integration of the real and imaginary

parts of the right side of the equation. Then, Cm is given by the magnitude of the

complex number on the right side of the equation, and φm is given by the polar

angle. In the limit that P (v)→ δ(v− v0) we obtain φm = φ0 + φ(v0) and Cm = C0,

as expected. Additional parameters, such as the transverse beam position, may be

averaged over in a similar fashion. The distribution of phase shifts associated with

these parameters typically leads to contrast loss in the interferometer.
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Figure 1.4: Probability distribution of velocities for supersonic beams of Rb (blue
dotted), K (red dashed), and Na (black solid), as measured in Figure 2.4. Each
distribution is normalized such that

∫∞
0
P (v)dv = 1. For comparison, we also show

the velocity distribution of a Maxwell-Boltzmann gas of He atoms at 800 K (green
dot-dashed) that is used as the carrier gas for the Na supersonic beam, normalized
to 10 for visibility.
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CHAPTER 2

THIS THESIS IN BRIEF

This chapter explains the essential components of the three experiments that make

up the majority of this thesis work: First, a measurement of the static polarizabil-

ities of sodium, potassium, and rubidium (section 2.1). Next, a novel and more

precise method to measure the velocity of atom beams (section 2.2) that will im-

prove future polarizability measurements. Then, a measurement of a wavelength

of light at which the dynamic polarizability of potassium is zero, known as magic-

zero wavelength (section 2.3). This chapter also contains summaries of a proposal

to measure the polarizability of strontium using a photoionization detector, and a

proposal to measure the tensor polarizabilities of alkali dimers.
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2.1 Static polarizability measurements of Na, K, and Rb

In 2008, we set out to establish a new atomic polarizability measurement program

in Arizona. In 2010 we published the first improved measurements of potassium and

rubidium polarizability in over 35 years [8]. The paper, published in Physical Review

A, is included in Appendix A. Chapter 3 explains additional details of this exper-

iment. Section 1.1 reviewed the history of polarizability measurements and Figure

2.3 summarizes previous calculations and measurements of alkali polarizabilities.

We measured the polarizabilities of sodium, potassium, and rubidium using a

Mach-Zehnder atom interferometer with an interaction region containing an electric-

field gradient. The interferometer and electrodes are shown in Figures 2.1 and 2.2.

We measured each polarizability (for Na, K, and Rb) independently, and we refer to

these as absolute measurements. We also reported ratios of polarizabilities, since we

can do this with even higher precision. Table 2.1 shows the absolute measurements

(less than 1.0% uncertainty), and Table 2.2 shows the ratio measurements (0.3%

precision).

Our measurements of polarizability ratios are new in atom interferometry, and

are possible because nanogratings diffract all types of atoms and molecules. Al-

though this unique feature of our interferometer has long been recognized, the work

described in this thesis is the first time that the utility of nanogratings for multiple

species has actually been used for a precision measurement of polarizability. The

benefit of presenting ratios is that systematic errors are nearly the same for different

atomic species and cancel when determining polarizability ratios. We combined our

ratio measurements with the higher-precision measurement of sodium polarizabil-

ity by Ekstrom et al. [25] to present the most precise measurements of potassium

and rubidium polarizability currently available. Our measurements were recently

included in an updated table of polarizabilities in the CRC Handbook of Chemistry

and Physics [2].

Another unique feature of this work compared to other atom interferometry mea-

surements of polarizability [25, 26] is that we use an electric-field gradient region to



25

atom beam

atom
detector

nanograting

z

x

Figure 2.1: Atom interferometer with electric field gradient region (blue electrodes,
red field lines) to measure static polarizabilities. An atom passing through the inter-
action region acquires a phase shift along each path and we measure the differential
phase shift.

Figure 2.2: Photograph of the polarizability measurement electrodes. The atom
interferometer paths pass through electric-field gradient between the rectangular
ground plane and the cylindrical electrode.
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Table 2.1: Measured absolute and recommended atomic polarizabilities in units of
10−24 cm3. Our recommended polarizability values are based on our ratio measure-
ments (see Table 2.2) combined with the sodium polarizability measurement from
Ekstrom et al. [25].

αabs(stat.)(sys.) αrec(tot.)
Na 24.11(2)(18) 24.11(8)
K 43.06(14)(33) 43.06(21)
Rb 47.24(12)(42) 47.24(21)

Table 2.2: Measured atomic polarizability ratios with statistical uncertainties. Also
included are several polarizability ratios from ab initio and semi-empirical calcula-
tions. See Fig. 2.3 for more calculations and measurements of polarizability ratios.

αratio(stat. unc.) Theory
Atoms This work Ref [44] Ref [45] Ref [75]
Rb/Na 1.959(5) 1.959(5) 1.946 1.939
K/Na 1.786(6) 1.785(6) 1.779 1.781
Rb/K 1.097(5) 1.098(5) 1.094 1.089
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apply phase shifts to both paths rather than a septum electrode, which would apply

a phase shift to only one path. Electric-field gradient regions have the advantage

of not requiring an electrode to be placed between the two atom beam paths. This

allows us to study heavier atoms with shorter de Broglie wavelengths and therefore

smaller path separations. Since the electric-field gradient interaction region does

not require resolved diffraction orders, another advantage is that we can use a less

collimated beam to increase the flux and reduce the systematic error caused by

velocity-selective detection of atoms in the interferometer. However, electric-field

gradient regions have the disadvantage that the measured differential phase shift

is proportional to 1/v2, rather than 1/v, so the uncertainty in beam velocity mea-

surements contributes twice as much to uncertainty in polarizability measurements.

The phase shift in an electric-field gradient region also depends sensitively on the

location of the atom beam paths with respect to the electrodes, unlike in a septum

geometry with a uniform electric field.

The primary limitation of the absolute polarizability measurements in this ex-

periment was determining the velocity and velocity distribution of the atom beam.

We determined the atom beam velocity by studying atomic diffraction patterns in

the far-field of the first nanograting, such as those shown in Figure 2.4. The atom

beam velocity is given by rewriting equation 1.5 as

v(xn) =
zdethn

mdgxn
(2.1)

where zdet is the distance from the first nanograting to the detector, and xn is

the position of the nth diffraction order. In reality, a distribution of velocities

exists in the supersonic atom beam, and this leads to a distribution of diffraction

patterns. The velocity distribution can be well described by a Gaussian with an

average velocity v0 and width σv. Figure 1.4 shows examples of typical supersonic

atom beam velocity distributions. To better compare velocity distributions with

different average velocities, it is useful to define a sharpness ratio r = v0/σv.

Each observed diffraction pattern is a convolution of the atom beam profile, the
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v0, and the velocity distribution width, σv, of the atom beams. Figure 1.4 shows
the velocity distributions determined by these measurements.
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detector width, and the atom beam velocity distribution. Figure 2.5 illustrates the

individual features that lead to the observed diffraction patterns. Uncertainties in

zdet, the detector translation angle, and the details of this convolution limited the ac-

curacy of the velocity measurement to 0.3%, and thus contributed 0.6% uncertainty

to the absolute polarizability measurements.

If we ignore smaller effects such as the velocity distribution and the atom beam

thickness (treated in detail in Appendix A), we can obtain a simple expression for

the measured polarizability:

α ≈ v2

kV 2xint
φα. (2.2)

Here, k is a constant that depends on the geometry of the interaction region, V is

the voltage applied to the interaction region, and xint is the transverse position of

the interaction region. Figure 2.6 shows a plot of the phase shift as a function of

the interaction region position.

To measure the atom beam position xint, we blocked the atom beam with the

high voltage electrode and then moved the electrodes until the atom beam was

visible again. Analysis of the transmitted flux vs. electrode position allowed us to

determine the atom beam position with a precision of 1 µm. We refer to this as the

eclipse method. Unfortunately, we later determined that the motor position report

was not as reliable as desired, and contributed a random error to the polarizability

measurements. For the electrodes used in this experiment, a 10 µm error in beam

position caused a 1% error in the polarizability measurement. We now believe that

5-10 µm position errors were likely for each of the phase measurements, and this led

to additional random error in the polarizability measurements. See section 3.4 for

more details.

All systematic sources of error, such as uncertainty in zdet, the interaction region

geometry, or the electrode voltages, are nearly identical for each atomic species. At

the level of precision of our experiment, these systematic uncertainties cancel when

presenting ratio measurements of polarizabilities. We measured the polarizability of
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Figure 2.5: From top to bottom the plots show: the diffraction comb for different
velocity classes, the trapezoidal atom beam profile obtained using two collimating
slits, the convolution of the beam profile with the velocity distribution, and the
hot-wire detector size. Figure from Will Holmgren lab notebook number 1 (June
2008).
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each atomic species between 13 and 23 times (see Figure 3.3) and the reproducibility

of the measurements determines the statistical uncertainty. The reported statistical

uncertainty is the standard error of the mean. The irreproducibility of the data was

larger than we expected given the interferometer contrast and count rate, primarily

due to the faulty electrode position measurements.

To improve upon our 2010 polarizability measurements, we developed a next-

generation static polarizability experiment to reduce most uncertainties associated

with this experiment. We developed a new velocity measurement technique (de-

scribed in the next section), changed the geometry of the electric-field gradient

region, improved the electrode position measurement, improved a number of dis-

tance measurements, and developed a new data acquisition system. Sections 3.3

and 3.4 and Chapter 4 discuss the improved system in more detail.
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2.2 Phase choppers: a new atom beam velocity measurement technique

Atom beam velocity was the largest source of uncertainty in our 2010 polarizability

measurements. To reduce this uncertainty we developed a new technique to mea-

sure atom beam velocity called phase choppers [9]. Phase choppers provide a more

precise and more accurate measurement of beam velocity than can be obtained with

diffraction. Chapter 4, Appendix B, and C.E. Klauss’ B.S. thesis [76] describe this

technique in detail. Phase choppers are similar to the phase shifters described in

[77] and their utility for measuring beam velocity was first proposed in [65]. Here,

we summarize the most important features.

Phase choppers have numerous advantages over atom beam diffraction and other

velocity measurement techniques:

1. Higher precision measurements in less time

2. Frequency-based instead of length-based measurement

3. No need for well-separated diffraction orders, so choppers can be used with

faster beams (higher flux) and more massive atomic species

4. in situ measurement of velocity distribution of atoms contributing to the in-

terference fringes

5. No moving parts

To understand how phase choppers can measure atom beam velocity, it helps

to first consider mechanical choppers. Two spinning mechanical choppers (slotted

disks) separated by a distance L and blocking the beam at frequency f can transmit

atoms with velocity v = nLf , where n is an integer. An atom with velocity v will

travel a distance L from the first chopper to the second chopper in a time τ = L/v,

corresponding to a fundamental chopping frequency f0 = v/L.

Mechanical choppers simply block or transmit atoms, leading to a maximum

in the transmitted flux when the chopping frequency is any integer multiple of

f0. In the method we present here, phase choppers are switched on and off by a
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Figure 2.7: Two phase choppers are placed in the interferometer at a distance
L = 1270.68(25) mm apart. A square-wave voltage V (t) applied across the chop-
pers creates an electric field (dashed lines). Atoms with velocity v passing through
chopper 1 and chopper 2 acquire net differential phase shifts φ1(t) + φ2(t+ L/v).

function generator to periodically apply phase shifts to atomic de Broglie waves in

an interferometer. This leads to a maximum in the interferometer contrast, instead

of the flux, when the chopping frequency satisfies f = nf0. The ability to control

wavefunction phase, rather than amplitude, provides a more featured and higher

flux data set and allows for a more precise determination of velocity.

Figure 2.7 shows two phase choppers added to the atom interferometer. Be-

fore continuing, it is worth restating an important principle regarding how our

atom interferometer works: the observed fringe pattern is the incoherent sum

of the sinusoidal probability distributions from single-atom interference, repeated

about 105 times per second. Different atoms have different velocities and en-

ter and exit the interferometer at different times. We observe an “average” of

all of these fringe patterns. Therefore, if half of the atoms receive phase shifts

that are π different from the other half of the atoms, then the measured in-

terference contrast C will be 0. Mathematically, we would observe an intensity

I = I0 + C0(0.5 sin(kxx) + 0.5 sin(kxx+ π)) = I0 + C sin(kxx) with C = 0.

Depending on its start time, velocity, and the chopping frequency, an atom will

pass through the two choppers in one of four possible pairs of conditions (off-off,

on-off, off-on, or on-on). We now describe what happens to the interference pattern

created by atoms with a single velocity v when the choppers are switched at four
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particular frequencies (see Figure 2.8):

• f � f0. Atoms experience the off-off (0 net differential phase shift) or on-on

(0 net differential phase shift) pairs of conditions with equal likelihood, and all

atoms emerge with 0 net phase shift. The contrast and phase of the detected

ensemble remain unchanged.

• f = f0/4. Atoms experience each of the four possible pairs of conditions, off-

off (0), on-off (π), off-on (-π), or on-on (0), with equal likelihood. Therefore,

half of the ensemble will acquire 0 net differential phase shift, and half will

acquire a π net differential phase shift. The ensemble contrast is 0 and phase

is indeterminate. Contrast minima repeat at frequencies f = (2n + 1)f0/4,

where n is an integer.

• f = f0/2. Atoms experience on-off (π) or off-on (−π) pairs of conditions

with equal likelihood. The ensemble contrast remains unchanged, but the

phase shifts by π (modulo 2π). Contrast revivals with π phase shifts repeat

at frequencies f = (2n+ 1)f0/2.

• f = f0. Once again, all atoms experience the off-off (0) or on-on (0) states.

The ensemble contrast and phase remain unchanged. Contrast revivals with

no phase shift repeat at frequencies f = nf0.

These simple cases show how by finding the value of f0 one can find the velocity

of an atom beam through the relation v = Lf0. The contrast revivals and minima

that occur at large n provide a way of leveraging small changes in velocity into

large changes in revival and minima frequency. In practice, we find the velocity

of our atom beam by measuring the contrast at many frequencies and fitting the

contrast data to a model discussed in Appendix B. Figure 2.9 shows fitted data

from a typical chopper frequency scan using this model. The major corrections

to the simple model include methods to account for velocity distribution, velocity

dependent phase shifts from the choppers, application of non-π average phase shifts,

and velocity-dependent phase shifts due to the Sagnac effect.
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Figure 2.9: Phase chopper data (circles) and corresponding best-fit functions (red
curves) for a cesium atom beam with a 70% helium, 30% argon carrier gas. We fit
the contrast (black) to find the flow velocity v0 and velocity ratio r = v0/σv. The
measured phase (blue) is also shown, but is not fit. Each point is derived from 5
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We also tested the phase choppers by measuring the polarizability of cesium us-

ing beams with three very different flow velocities on three different days. Each day

we alternated between measurements of beam velocity and polarizability every hour

to account for small changes in velocity (< 0.5%) over the course of a day due to in-

stability in the beam source temperature. The statistical error of each measurement

of velocity was less than 0.1%. We found the cesium polarizability (stat. unc.) to

be 59.84(4), 59.71(7) and 59.85(8) Å
3

at flow velocities of 925, 1345 and 1680 m/s.

This data is shown in Figure 3.10. These polarizability measurements are subject

to a systematic correction due to a revised measurement of the interaction region

geometry, but the consistency of the polarizability measurements provides strong

evidence that our velocity measurements using phase choppers are reproducible at

the 0.1% level, similar to the measurement of Amini and Gould [33].



40

2.3 Measurement of a magic-zero wavelength

Most measurements of static and dynamic polarizabilities are limited by uncertainty

in the electric field strength and uncertainty in the time an atom interacts with

the field. To avoid these limitations, we designed an experiment to measure the

wavelength at which the dynamic polarizability of an atom goes to zero. This is

known as the magic-zero wavelength, or tune-out wavelength. We published our

measurement in Physical Review Letters [10] (Appendix C) and Chapter 5 includes

supporting material for this experiment.

A magic-zero wavelength (λzero) occurs between atomic resonances, where the

light is red-detuned from one resonance and blue-detuned from another. Opposing

contributions from these resonances produce a root in the dynamic polarizability

at λzero and so the energy shift of an atom vanishes at λzero. Figure 2.10 shows

the dynamic polarizability in the vicinity of the four lowest energy transitions of

potassium. Three magic-zero wavelengths occur between these four transitions.

Magic-zero wavelengths are understandable in terms of the Lorentz oscillator

model of an atom. The equation of motion for an electron in the Lorentz oscillator

model yields

x(t) = − e

m

1

ω2
0 − ω2 − iωγ

E(t) (2.3)

where e is the electron charge, m is the electron mass, ω0 is the resonance frequency

of the atom, ω is the frequency of oscillation of the electric field E(t), and γ is the

damping parameter. We can define a complex polarizability α(ω) in terms of the

dipole moment p(t):

p(t) = −ex(t) = α(ω)E(t) (2.4)

α(ω) =
e2

m

ω2
0 − ω2 + iωγ

(ω2
0 − ω2)2 + (ωγ)2

. (2.5)

The real part of the complex polarizability gives the dispersion and the imaginary

part corresponds to absorption of light. Magic-zero wavelengths occur far from
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Figure 2.10: A plot of the dynamic polarizability of potassium in the vicinity of
the 4s − 4p (red) and 4s − 5p (blue) transitions. Three zero-crossings, magic-zero
wavelengths, are visible near 405 nm, 406 nm, and 769 nm. The blue and red
transitions are shown using the same wavelength range to highlight the smaller fine
structure splitting of the 4s− 5p transitions.

resonance, where the absorption probability is low and |ω0−ω| � γ, so we drop the

imaginary component:

α(ω) =
e2

m

1

ω2
0 − ω2

. (2.6)

Like any harmonic oscillator, the motion of the electron becomes π radians out of

phase with the driving field as the frequency of the driving field passes through

resonance, and thus the polarizability changes sign as well. Equation 2.6 clearly

shows that the polarizability changes sign as the frequency ω of the driving field

passes through resonance.

Chapter 5 and Appendix C describe in detail our measurement of the first magic-

zero wavelength of potassium near 769.971 nm [10]. This novel method to probe

atom structure yielded the most precise determination of the ratio of the D1 to D2
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line strengths. We found

R =
S2

S1

=
|〈4s||D||4p3/2〉|2

|〈4s||D||4p1/2〉|2
= 2.0005(40). (2.7)

Various λzero have been used in experiments to study entropy exchange [78],

quantum information processing [79], and diffraction of matter waves from an ul-

tracold atom crystal [80]. We have also discussed future applications for magic-zero

wavelengths such as measurements of hyperpolarizability, rotation sensing, addi-

tional line-strength measurements, and measurements of the contribution of core

electrons to polarizabilities.

The longest magic-zero wavelengths for alkali atoms are determined mostly by

the transition energies ~ω1 and ~ω2 and the ratio R of the line strengths. We use

the sum-over-states approach to describe the dynamic polarizability α(ω) near these

two transitions by

α(ω) = 1
3~S1

(
ω1

ω2
1−ω2 +R ω2

ω2
2−ω2

)
+ A (2.8)

where A accounts for contributions from core excitations, higher energy valence

transitions, and core-valence coupling [47, 11]. At the longest magic-zero wavelength

of potassium, A is 0.02% of the nearly equal and opposite contributions from the

principal transitions to the polarizability and A changes λzero by 0.15(1) pm [81].

Therefore, the theoretical uncertainty in this magic-zero wavelength calculation, 3

pm, is nearly entirely determined by uncertainty in the ratio of the line strengths,

R. The total uncertainty of our λzero measurement was 1.5 pm.

To measure the magic-zero wavelength, we focused 500 mW of laser light asym-

metrically on the paths of our interferometer. As stated previously, the energy shift

of a polarizable atom is given by

U(ω) = −1

2
α(ω) ~E2(ω, z, t) (2.9)

where we now allow for a frequency dependence for the polarizability and the electric
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field. For optical frequencies, we can only measure the energy shift due to the

time average of the electric field, i.e. the intensity. The phase acquired along one

interferometer path is given by α(ω) and the intensity of the light I(x, z) at that

location:

φ0(ω) =
α(ω)

2ε0c~v

∫ ∞
−∞

I(x, z)dz. (2.10)

Similar to the static polarizability experiment, where we used a static electric field

gradient, here, we use an intensity gradient to apply different phase shifts to each

interferometer path. We measure the differential phase shift of the two interferom-

eter paths. Measurements of these differential phase shifts as a function of optical

frequency, or wavelength, allow us determine λzero.

The uncertainty of our λzero measurement, 1.5 pm, was dominated by the repro-

ducibility of the measurement. The statistical precision (2σ) of our experiment was

1.4 pm. Section 5.2 explains the relationship between the reproducibility and the

data collection procedure in more detail. The broadband component of the light,

shown in Figure 2.12, was the largest source of systematic error (0.5 pm) in our

measurement.

Interferometer contrast loss is primarily due to averaging over large distributions

in phase shifts due to the atom beam velocity distribution and the nonuniform dif-

ferential phase shifts across the atom beam. However, at the magic-zero wavelength

we would naively expect zero phase shift for all atoms, and therefore no contrast loss.

Unintended elliptical polarization of the laser beam combined with the unpolarized

atom beam explains the contrast loss near λzero. Circular polarization causes differ-

ent Zeeman substates (mF ) to acquire different phase shifts even at λzero. Section

5.4 explains the interferometer contrast loss in more detail.

This experiment can in principle be significantly improved before the photon

scattering rate places a fundamental limit on the precision of a λzero measurement.

Let us imagine that we had unlimited laser power available and that we could

focus all of the light on only one path of the atom interferometer to maximize the
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Figure 2.11: Laser system for λzero measurement. A grating-stabilized laser (ECDL)
seeds a tapered amplifier (TPA). Light from the tapered amplifier is coupled into an
optical fiber and then focused onto the atom interferometer. A wavelength meter
measures the wavelength of the seed laser. Not shown is a shutter after the fiber
to switch the light on and off, and an optical isolator on each side of the tapered
amplifier.

Figure 2.12: Photograph of the laser system spectrum. Light from the tapered
amplifier was made to reflect off a diffraction grating and projected onto a screen.
The spectrum shown spans approximately 50 nm. It is important to note that the
photograph is a convolution of the frequency-dependent transfer function of the
imaging system, including an infrared filter, with the spatially separated spectrum.
Figure 5.7 shows the laser spectrum measured by a commercial grating spectrometer.
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differential phase shift. Both the phase shift and the photon scattering rate grow

in proportion to the laser power. However, the interferometer contrast, and thus

the phase precision, decreases exponentially with the scattering rate. We therefore

calculated a maximum achievable signal of

dφ

dω
≈ 1

2Γ
Ps (2.11)

where Ps is the probability that an atom scatters one or more photons and Γ is the

excited state decay rate. With contrast loss due to scattering optimized to allow for

maximum interferometric precision (Ps = 1− e−1) the slope may become as large as

dφ/dλ = 40 rad/pm. In this way, future measurements of magic-zero wavelengths

can be made with very high precision, possibly with accuracy limited by a shot noise

sensitivity better than picometers per
√

Hz. Section 5.3 contains a more detailed

derivation of this limit.

Section 5.6 discusses ideas to improve the precision of λzero measurements in

our lab. Improvements to the measurement precision would allow for benchmark

tests of dipole matrix elements between the ns and (n + 1)p levels in potassium

and other alkali atoms. These matrix elements are more difficult to calculate due

to larger relativistic corrections in the (n + 1)p levels. Interestingly, core electron

contributions to polarizabilities may also be determined with λzero measurements

when combined with measurements of static polarizability and/or line strengths,

depending on the particular atom and λzero.
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2.4 Strontium polarizability measurement proposal

Polarizability measurements of strontium and ytterbium are currently highly desir-

able to support next-generation atomic clocks. The blackbody radiation environ-

ment surrounding atomic clocks changes the clock frequency by an amount propor-

tional to the differential polarizability of the clock states and accurate polarizability

measurements are required to calibrate this frequency shift. As an alkaline-earth

atom with two valence electrons, strontium polarizability calculations are also more

difficult due to electron correlations and call for experimental benchmarks.

Unfortunately, our atom interferometer is currently unable to measure Sr polar-

izability due to low detection efficiency. Hot-wire detectors, like the one we use in

our atom interferometer, do not ionize strontium atoms as efficiently as the alkali

atoms. This is due to the ionization energy of strontium (5.7 eV) being larger than

the work function of a platinum wire (5.5 eV). As a result, we presently can only

detect collimated beams of strontium atoms in the absence of the nanogratings.

We propose that resonant photoionization can be used to provide high-efficiency

and low-noise detection of strontium atoms. The photoionization pathway, shown

in Figure 2.13, involves absorption of a 461 nm photon to reach the 1P1 state, and

then absorption of a 405 nm photon to place the Sr atom in an autoionizing state.

The existence of the autoionizing state increases the photoionization probability of

Sr by a factor of about 103.

We propose a laser system consisting of a frequency doubled 922 nm laser diode

and a free running 405 nm laser diode. A periodically poled KTP crystal can

provide sufficient single pass frequency doubling efficiency (1-5%), so we can avoid

the complexity of a placing the crystal in a cavity. Generation of 1 mW of 461

nm light with less than 30 MHz linewidth and locked to the 1P1 transition is the

most difficult part of this proposed experiment. The 405 nm ionization laser can be

relatively simple. The linewidth of the autoionizing transition is nearly 1 nm, so a

high power 500 mW, multimode free running diode can be used.

Chapter 6 describes this proposal in more detail and is the topic of current
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Figure 2.13: Resonance enhanced photoionization pathway of strontium.

research in our lab.
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E

Na

Na

Na Na

Figure 2.14: Two unique orientations of an alkali dimer with respect to the incident
field. These two orientations have different polarizabilities, and thus different phase
shifts in our atom interferometer.

2.5 Tensor polarizability measurement proposal

Ground-state alkali atoms are spherically symmetric, and as a result the polariz-

ability may be described by a scalar that does not depend on the direction of the

applied field. In contrast, molecules are generally not spherically symmetric and

their polarizabilities must be described by a tensor
↔
α. For a simple molecule such

as an alkali dimer, the tensor is diagonal if one chooses to use the obvious axes of

symmetry: one along the bonding axis of the molecule and two additional axes that

are mutually orthogonal to the bonding axis. Figure 2.14 shows the two unique ori-

entations of an alkali dimer in an electric field. To our knowledge, only the average

polarizability of this tensor has been measured [24, 20] for alkali dimers. Chapter

7 describes a proposal to measure the anisotropy of alkali dimer polarizability by

studying contrast loss and revivals as a function of electric field strength.
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CHAPTER 3

POLARIZABILITY MEASUREMENTS OF NA, K, AND RB

As introduced in Chapter 2, we measured the absolute and relative polarizabilities

of sodium, potassium, and rubidium using a Mach-Zehnder atom interferometer

with an electric-field gradient. Table 2.1 shows the absolute measurements (which

have less than 1.0% uncertainty), and Table 2.2 shows the ratios of polarizability

measurements (which we measured with 0.3% precision).

Our paper published in Physical Review A, and shown in Appendix A, explains

the most important details of the experiment. In this chapter I provide supporting

material. I explain how I improved the accuracy of the velocity measurements, I

provide a reanalysis of the data set after discarding outliers, and I discuss subsequent

improvements that I made to the polarizability measurement interaction region and

data acquisition system.

3.1 Improved velocity measurement using a length gauge to study diffraction

Section 2.1 described how the atom beam velocity was measured by studying diffrac-

tion data (see Figure 2.4). This technique determines the de Broglie wavelength of

atoms in the beam, but it relies on accurate knowledge of the displacement of the

hot-wire detector. The DC motors used to move components in our atom beam

machine, including the detector translation stage, report their position using ro-

tary encoders and knowledge of the screw pitch as a proxy for linear displacement.

However, because of variations in the screw pitch and stick/slip behavior in the

translation stage, these position reports are subject to as much as 15 µm errors in

linear displacement of the translation stage. Since the diffraction orders are typically

spaced by about 130 µm, this corresponds to a ∼10% error in velocity. Figure 3.1

shows the displacement reported by a typical motor vs the displacement reported
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Figure 3.1: Displacement of the interaction region translation stage as measured by
the motor encoder (blue) and a length gauge (red), and the difference in displacement
measurements (green). Positive (negative) displacements correspond to retraction
(extension) of the motor screw. Translating in the negative direction, corresponding
to motor extension, is better for our experiments because the position error is lesser.

by a length gauge.

To overcome this problem, I installed a Heidenhain MT-2571 length gauge to

measure the detector displacement using a linear encoder. Figure 3.2 shows atom

beam velocities and velocity distribution widths determined by fitting diffraction

data when using either the length gauge or the motor encoder to measure the detec-

tor position. The velocity measurement is clearly more reproducible when using the

length gauge to measure detector displacement. I also note that it is possible that

detector position measurement errors were significant and neglected in the Ekstrom

et al. measurement of sodium polarizability [25]. The addition of this length gauge

was also crucial for studies of van der Waals potentials using atom beam diffraction

in our lab [72, 73].
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Figure 3.2: Sodium atom beam velocity (open circles) and velocity distribution
width (filled circles) using the detector motor (blue, files 1-8) or length gauge (red,
files 9-32) to measure detector displacement. The up-down pattern in velocity re-
flects the fact that the motor direction was alternated and the translation stage
exhibits stick/slip behavior. We only use the measurements corresponding to the
extension of the motor screw (even numbered file indices), since this minimizes er-
rors due to stick/slip of the translation stage. This subset of measurements yield
v = 2717.8(6.5) m/s and σv = 190(11) m/s, where the uncertainties are the standard
deviation and are statistical only.
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Table 3.1: Measured absolute atomic polarizabilities using all data points and the
central 80%. Also shown are the polarizabilities of K and Rb obtained using our
ratios of polarizabilities using the central 80% of the data (see Table 3.2) combined
with the sodium polarizability measurement from Ekstrom et al. [25].

αabs All(stat.)(sys.) αabs Trim(stat.)(sys.) αTrim ratio & Eks(tot.)
Na 24.11(2)(18) 24.12(1)(18)
K 43.06(14)(33) 43.08(11)(33) 43.06(19)
Rb 47.24(12)(42) 47.21(10)(42) 47.20(20)

Table 3.2: Measured atomic polarizability ratios with statistical uncertainties for
the entire data set and the trimmed data set.

αratio(stat. unc.)
Atoms All data Trimmed
Rb/Na 1.959(5) 1.958(4)
K/Na 1.786(6) 1.786(5)
Rb/K 1.097(5) 1.096(4)

3.2 Reanalysis using a trimmed mean

I reanalyzed the 2010 polarizability data using a trimmed mean, so that the lowest

and the highest 10% of the data were discarded before calculating the mean and

the standard error of the mean. This procedure is useful when outliers occur more

frequently than a normal distribution of measurements would predict. Figure 3.3,

Table 3.1 and Table 3.2 show the results of this analysis. The statistical uncertainty

of each polarizability measurement improves by about 20%. As a result, the uncer-

tainty of our measurements of αK and αRb (determined by our ratio measurements

of polarizabilities combined with the Ekstrom et al. measurement of αNa) improve

slightly as well. These changes are well within the statistical uncertainty of the

original measurements.
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Figure 3.3: Multiple measurements of the polarizability of sodium (circles), potas-
sium (triangles), and rubidium (diamonds). The mean polarizabilities are denoted
by filled markers and lines. The trimmed means are denoted by crosses. The error
bars represent the standard error of the mean. Units are 10−24 cm3. Final results
are shown in Table 3.1.
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3.3 Data acquisition system upgrades

The 2010 polarizability measurements were accomplished by manually moving the

interaction region and switching the high-voltage electrode on and off about once

per minute. This quickly became mind-numbing, tedious work. Higher precision

measurements of polarizability clearly demanded a more automated data acquisition

system.

We developed a new data acquisition system in LabView 2010 with the abil-

ity to move and accurately record the distance traveled by any motor (via on-board

quadrature decoding) in the atom beam machine and automatically control multiple

high-voltage power supplies and a function generator. Figure 3.4 shows a screen shot

of the data acquisition system. The new data-acquisition system uses a producer-

consumer architecture to simultaneously record and analyze atom fringe data. This

in situ processing of atom fringe data has proven to be immensely valuable. Hard-

ware controlled timing signals ensure that measurements of the atom beam count

rate and the grating position are commensurate. A second screen enables viewing

of the interferometer data from the optical table in our lab.

3.4 Next-generation polarizability measurements

After publishing our 2010 polarizability measurements we designed a new experi-

ment to improve both the precision and accuracy of polarizability measurements in

our lab. We chose to replace the ground plane from the previous interaction region

with a 2nd pillar. Figure 3.5 shows a schematic of the atom interferometer and a

two-pillar interaction region. Figures 3.6 and 3.7 show a photo and a schematic

of the new interaction region, respectively. The pillars are made of two 0.5 inch

diameter rods separated by 3.81 mm. Figure 3.8 shows a measurement of cesium

polarizability using the new interaction region.

As discussed in section 2.1, the electric fields of the two regions are nominally

identical, however, there are several advantages to the two-pillar geometry. First,

two pillars allows us to measure phase shifts on both sides of the plane of symmetry
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Figure 3.5: Atom interferometer with two-pillar interaction region. Measuring dif-
ferential phase shifts as function of interaction region position, such as those shown
in Figure 3.8, allows us to determine the polarizability of an atom.

in the electric field calculation. This in turn enables us to use phase shift data

to independently determine both the polarizability and the position of the pillars

relative to the atom beam. Measuring phase shifts on both sides of the symmetry

plane also allows us to better control for the Sagnac phase shift. This is because

the Sagnac phase shift makes the total phase shift closer to zero on one side of the

pillars and farther from zero on the other, leading to an unambiguous signature.

See Appendix A for a description of how the Sagnac phase shift effects the atom

interferometer contrast and phase.

We also added a Heidenhain MT-2571 length gauge to measure the interaction

region position. Irreproducibility in the interaction region position may have been

a large source of the statistical error of the polarizability measurements in the first

generation experiment. Section 3.1 discussed the advantages of using a length gauge

to measure displacement instead of relying on built-in rotary motor encoders.

Figure 3.9 shows a single day of cesium polarizability measurements using the

new electrodes, phase choppers for measuring atom beam velocity, and the new data

acquisition system. Note the approximately 6 times improvement in statistical pre-

cision compared to our 2010 work, shown in Figure 3.3. Figure 3.10 shows consistent

cesium polarizability measurements at three different atom beam velocities.
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Figure 3.6: Measurement of the distance between the two-pillar interaction region
and the 2nd nanograting (left side, nearly edge-on).
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Figure 3.7: Perspective rendering of the new interaction region. The electrodes
(green) are held by PVC mounting bracket (light grey) and attached from below to
a translation stage (dark grey). A microscope slide (semi-transparent) contacts a
length gauge (not shown) for precise displacement measurements.

α

Figure 3.8: Measurement of cesium polarizability using a two-pillar interaction re-
gion. A least-squares fit to the phase shift data determines both the atomic polar-
izability and the atom beam position simultaneously. The reported uncertainty is
statistical only.
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Figure 3.9: One day of polarizability measurements of cesium. The statistical preci-
sion (standard error of the mean) is 0.12% (standard deviation of 0.5%). However,
the accuracy of this measurement is 1% due to several uncalibrated parameters,
such as the distance between the electrodes. The statistical uncertainty of each
measurement is not used in determining the polarizability or the uncertainty, but is
shown as a measure of consistency.

Figure 3.10: Consistent cesium polarizability measurements at three different veloc-
ities: 1680 m/s (blue), 1345 m/s (black), and 925 m/s (green). The total average
and standard error of the mean is shown in red.
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CHAPTER 4

MEASUREMENTS OF ATOM VELOCITY USING PHASE CHOPPERS

Section 2.2, Appendix B and C.E. Klauss’ B.S. thesis [76] discuss our use of phase

choppers to measure atom beam velocity. Section 3.4 shows polarizability measure-

ments obtained after measuring atom beam velocity using phase choppers. Here, we

provide samples of the pictures used to determine the distance between the phase

choppers. I also discuss the ability of phase choppers to act as lenses for atomic de

Broglie waves.

4.1 Distance measurements using high resolution pictures

The accuracy of the velocity measurement using phase choppers can only be as

good as the measurement of the distance between the two choppers. To measure

this distance (and others in the machine) we carefully inserted a series of rulers

and tape measures into the vacuum chamber and took high resolution pictures of

the choppers next to the measuring devices, such as the ones shown in Figure 4.1

and Figure 4.2. We mounted the camera (a Canon PowerShot S90) on a translation

stage to accurately center the high-voltage wire in the middle of the frame and avoid

angular misalignments. This minimized errors due to distortion and parallax. We

then used optical and digital zoom to determine the positions of the choppers with

respect to the tape measures with 100 µm precision. We used additional rulers and

calipers to calibrate the accuracy of the tape measure.

We also took additional pictures with a vertically oriented ruler to determine

the height at which the atom beam crosses the phase choppers, as well the angle of

the choppers with respect to vertical by placing a plumb line next to the choppers.

An example of the plumb line is shown in Figure 4.1. These two measurements are

combined to measure the distance between the two choppers where it counts: at the
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Figure 4.1: Measurement of the distance between chopper 1 and chopper 2 using
a tape measure strung through the vacuum chamber above the atom beam path.
Chopper 1 east side (left), and chopper 2 west side (right) are pictured. A trans-
parent ruler serves as a translator between the two sides of the tape measure. The
total uncertainty of this distance measurement is 250 µm. A plumb line (red) next
to chopper 2 is also shown. Figure 4.2 shows the approximate midpoint of the ruler
above the 2nd nanograting.

height of the atom beam.

4.2 An electrostatic lens for matter waves inside an atom interferometer

In trying to reconcile small but persistent differences between the expected and

observed interferometer contrast when using phase choppers, we discovered that

our phase choppers can act as a lens for matter waves in our atom interferometer.

Phase choppers, like all of the interaction regions described in this thesis, apply

phase shifts that are a function of atom beam velocity. We would therefore naively

assume that this dispersive phase shift would lead to a decrease in the measured

contrast due to the velocity distribution of the atom beam. Instead, we observed that

chopper 2 could increase the interferometer contrast. Figure 4.3 shows an example

of the interferometer contrast increasing when chopper 2 applies a differential phase

shift.

The key to understanding this effect is to realize that we detect the fringes

formed by two complementary interferometers (formed by the +1, 0, and -1 diffrac-
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Figure 4.2: Measurement of the distance between chopper 1 and chopper 2. Two
different nanogratings (both suitable for use as the second nanograting in the inter-
ferometer) are viewed edge-on and highlighted with a blue arrow. This allows us to
determine the position of the 2nd grating with respect to the two phase choppers.



63

tion orders from the first nanograting) and that the fringes formed by the two

interferometers will not have the same phase unless the distance between the first

and second nanogratings is exactly equal to the distance between the second and

third nanograting. That is, if d1G2G 6= d2G3G there will be a phase mismatch be-

tween the two interferometers, and thus a loss of contrast. Figure 4.4 shows a two

interferometer model with chopper 1, the polarizability pillars, and chopper 2. Any

of these electrodes can in principle correct for a phase mismatch between the two

interferometers, provided that the sign of the phase shift is correct and the contrast

loss due to the velocity distribution is negligible. However, chopper 2 can more

easily correct the phase mismatch because of the larger spatial separation between

the two interferometers at its location. This process is analogous to a diverging lens

for matter waves in the atom interferometer acting to magnify the atom interference

fringes. The consequences of this mechanism will be detailed in a future publication

from our group.

Our New Journal of Physics paper [9], included in Appendix B, acknowledges

that we could not explain the small difference between the measured reference con-

trast and the best-fit contrast determined using χ2 minimization. This problem was

largely irrelevant to the determination of the atom beam velocity because it does

not directly effect the frequencies at which the contrast revivals and minima occur.

The contrast discrepancies do, however, effect the determination of the width of the

velocity distribution. This in turn slightly changes the best estimate of the average

velocity. In Holmgren et al. [9], we estimated a 0.04% systematic error in velocity

may be present due to this discrepancy. We now understand that the magnitude

of the error depends on the distance mismatch between the three nanogratings and

may be several times larger unless we take more care to align the interferometer.

Clearly, the highest accuracy measurements of atom beam velocity demand a full

understanding of the data, and we are developing a more sophisticated model to

incorporate these lensing effects.
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Figure 4.4: Nanogratings form multiple interferometers whose centerlines (marked
with dots) diverge as a function of distance from the first nanograting. These two
interferometers acquire different phase shifts because the electric field gradient is
not uniform. The mismatch between interferometer phase shifts normally leads to a
loss of observed contrast, but it can also lead to an increase in observed contrast if
the distance between the first and second nanogratings is not equal to the distance
between the second and third nanogratings. The phase choppers c1 and c2 are
represented by small circles and thin lines (see Figure 2.7) and the polarizability
interaction region is represented by slashed circles (see Figure 3.5). Figure from
page 31 of Tucson Book 13, October 5, 2011.
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CHAPTER 5

MEASUREMENT OF A MAGIC-ZERO WAVELENGTH

Section 2.3 and Appendix C describe our measurement of the first λzero of potassium,

published in Physical Review Letters (2012) [10]. In this chapter I will discuss the

relationship between dynamic polarizability, oscillator strengths, and line strengths.

I will then discuss our data analysis procedures, derive the fundamental limit to the

precision of any λzero measurement, discuss contrast loss mechanisms, and discuss the

effect of an impure optical spectrum on λzero measurements. Finally, I will discuss

several possible new experiments to improve the precision of λzero measurements.

5.1 Polarizability, oscillator strengths, matrix elements, and all that

The dynamic polarizability α(ω) can be written most compactly in atomic units as

α(ω) =
∑
k

fk
ω2
k − ω2

(5.1)

where fk is the oscillator strength. Note that the conversion between frequency in

atomic and S.I. units is

ωa.u. =
~
Eh

ωSI

≈ ωSI

4.1341× 1016 Hz
. (5.2)

The sum of fk is approximately equal to the number of valence electrons, i.e. 1

for alkali atoms and 2 for alkaline-earth atoms. fk is related to the reduced dipole

matrix elements through

fk =
2|〈ψ||D||ψk〉|2ωk

3(2j + 1)
(5.3)
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where j is the degeneracy of the state of interest, |ψ〉, and D is the dipole operator.

For ground state alkali atoms, J = 1/2, so j = 2. We can combine equations 5.1

and 5.3 to write the dynamic polarizability as

α(ω) =
2

3(2j + 1)

∑
k

|〈ψ||D||ψk〉|2ωk
ω2
k − ω2

. (5.4)

It is also common to refer to a line strength Sk = |〈ψ||D||ψk〉|2. Using this definition,

the polarizability becomes

α(ω) =
2

3(2j + 1)

∑
k

Skωk
ω2
k − ω2

. (5.5)

I have found the conversion of quantities between atomic and S.I. units to be easy

to miscalculate and I recommend checking every calculation against a benchmark

such as static polarizabilities, transition energies, and literature values of matrix

elements. In addition, I recommend keeping a copy of Hilborn’s article “Einstein

coefficients, cross sections, f values, dipole moments, and all that” [82] nearby.

So far we have only considered the valence electrons in our polarizability model.

Equation 5.1 is typically modified to include a core polarizability term, αcore, and a

valence-core coupling term, αvc:

α(ω) =
∑
k

fk
ω2
k − ω2

+ αcore + αvc. (5.6)

The core and valence-core coupling terms do not have a significant frequency depen-

dence in the optical range. In addition, the valence term is typically broken up into

the strongest terms that are explicitly written out with a frequency dependence,

plus a “tail” contribution that is frequency independent and small. When consider-

ing the polarizability in the vicinity of the D1 or D2 lines in alkali atoms it is often

sufficient to write

α(ω) =
fD1

ω2
D1 − ω2

+
fD2

ω2
D2 − ω2

+ αtail + αcore + αvc. (5.7)
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Table 5.1: Theoretical contributions to the polarizability at λzero = 769.971 nm
(ωzero = 2π × 389.356 THz), the first magic-zero wavelength of potassium [81].
Atomic units are used for the matrix elements and the polarizability. The slope
of the dynamic polarizability near this λzero is ∂α/∂λ = −42500 a30/nm and the
uncertainty in the polarizability near this λzero is 100 a30. This results in a theoretical
uncertainty in λzero of δλzero = (∂α/∂λ)|−1λzeroδα(λzero) = 2.5 pm.

Contribution |〈4s1/2||D||np1/2〉| α(ωzero)
4p1/2 4.106(6) -32085(62)
4p3/2 5.807(7) 32079(77)
5p1/2 0.271(5) 0.30(1)
5p3/2 0.398(8) 0.65(2)
αtail 0.16(12)
αcore 5.46(27)
αvc -0.18(1)
αtotal 0(100)

The rotating wave approximation, ω2
0 −ω2 ≈ 2ω0(ω0−ω) = 2ω0∆, can also be used

to simplify the polarizability near resonance. A factor of ω0 conveniently cancels in

the numerator and the denominator when expressing polarizability near resonance

using the line strengths Sk:

α(ω) =
2

3(2j + 1)

∑
k

Sk
∆k

. (5.8)

Static terms corresponding to tail, core, and valence-core contributions can be added

if desired.

Table 5.1 summarizes the contributions of each of these parameters near the first

magic-zero wavelength of potassium. Uncertainties in the 4s to 4p1/2 (D1) and 4p3/2

(D2) line strengths dominate the uncertainty of λzero. Our λzero measurement deter-

mines the ratio of these line strengths. Future measurements of additional λzero in

potassium and other atoms will determine different ratios of matrix elements or the

core polarizability, depending on the the relative uncertainties of these parameters.
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As stated previously, the energy shift of a polarizable atom is given by

U(ω) = −1

2
α(ω) ~E2(ω, z, t) (5.9)

where we now allow for a frequency dependence for the polarizability and the electric

field. For optical frequencies, we can only measure the energy shift due to the time

average of the electric field, i.e. the intensity. The intensity is related to the electric

field amplitude by I = cε0|E|2/2. From this, we can find that the phase acquired

along one interferometer path is given by α(ω) and the intensity of the light I(x, z)

at that location:

φ0(ω) =
α(ω)

2ε0c~v

∫ ∞
−∞

I(x, z)dz. (5.10)

Similar to the static polarizability experiment, where we used a static electric field

gradient, here, we use an intensity gradient to apply different phase shifts to each

interferometer path. We measure the differential phase shift of the two interferom-

eter paths. Measurements of these differential phase shifts as a function of optical

frequency, or wavelength, let us determine λzero.

5.2 Data analysis procedures

In this section we will describe in detail how we processed approximately 12,000 atom

interferometer fringes (the result of about 6 billion atoms) to ultimately report our

precision measurement of λzero.

We measured atom interferometer fringes in 5 s chunks of data and fit these

fringes to determine the interferometer phase and contrast [52, 54]. During each 5 s

of data, the measured atom beam flux was typically 105 counts/s and the measured

fringe contrast was typically 25%. We used a mechanical shutter to alternately

measure the interferometer fringes with and without laser light. The interferometer

phase drifted at a rate of about 5 rad/hr, due primarily to thermal fluctuations

of the apparatus. We fit the light-off reference phase to a smoothing spline and
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then subtracted the spline from the light-on phase to determine the interferometer

phase shift. Figure 5.1 shows the measured laser power, laser wavelength, phase

shift, reference phase residuals, and contrast for each 5 s data file during a 30 min

measurement of λzero. The statistical uncertainties of the contrast and phase were

determined by the χ2 minimization algorithm (reduced χ2 values were typically 1.2-

1.4). Unfortunately, the interferometer phase was less stable than the precision that

each data file suggested that it should be, and this is ultimately the dominate source

of statistical uncertainty in our experiment. Improving the interferometer stability

is a long-standing goal of our lab. Changing the parameters of the smoothing spline

can result in a random change of up to several picometers to the best-fit λzero of

most of the individual data series but does not significantly alter the overall average

λzero.

After the initial data processing, we normalized the phase shift data by laser

power to control for drifts of the tapered amplifier power and fiber coupling effi-

ciency. In addition, polarization changes due to propagation through the fiber were

converted to power instability by a polarizing beam splitter. The power-normalized

phase shift data were then binned by wavelength, and the average, standard devia-

tion, and standard error of the mean of the central 80% of each bin was calculated.

Figure 5.2 shows the resulting average power-normalized phase shift data vs. wave-

length. We performed a non-linear least-squares fit of this data to equation 4 from

Appendix C to determine the λzero for each data series. For this fit, we weighted the

normalized phase shift data by the standard error of the mean for each wavelength

bin. The statistical error of each λzero measurement was determined by the fit rou-

tine. The standard deviation is only shown for reference. The quality of fit shown

in Figure 5.2 is typical of the entire data set.

Our reported λzero measurement is the result of 35 individual measurements

of λzero, such as the one shown in Figure 5.2. Each λzero measurement and an

estimate of its statistical uncertainty is shown in Figure 5.3. A histogram of the 35

measurements is shown in Figure 5.4. Note that these measurements have not been

corrected for a constant Doppler shift of 0.56(5) pm.
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Figure 5.3: 35 separate λzero measurements (blue) and the average calculated in 4
different ways (red). The overall average is λzero = 768.9722(14), the average of
the central 80% of the data is λzero = 768.9718(7) nm, the weighted overall average
is λzero = 768.9702(3) nm, and the weighted average of the central 80% of the
data is λzero = 768.9706(3) nm. The error bars for each individual measurement
show the uncertainty that was determined by χ2 minimization. However, as shown
here, we found the experiment was not as reproducible as the reported individual
measurement errors would suggest. Furthermore, the deviation from the mean was
also uncorrelated with the size of the statistical error. Therefore, we assumed the
statistical errors of all measurements were the same, and we report the standard
error of the trimmed mean as the final statistical uncertainty. This data has not
been corrected for a 0.56(5) pm Doppler shift. Figure 5.4 shows a histogram of these
data.

The reproducibility of the 35 λzero measurements shown in Figure 5.3 is clearly

much worse than the individual statistical errors. Furthermore, even the relative

sizes of the individual statistical errors appear highly suspect since the reproducibil-

ity of the measurements i.e. the deviation from the mean, is uncorrelated with the

size of the statistical errors. We therefore chose to assume that the statistical error

of each data set was the same. We do not feel justified taking the weighted mean of

these measurements because we do not believe the statistical errors associated with

the each of the 35 individual measurements are accurate.

If we take the average of all 35 measurements and calculate the standard error
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of the mean, we find λzero = 768.9722(14) nm. Eliminating the highest and lowest

10% of the data yields the reported measurement of λzero = 768.9718(7) nm (again,

without the Doppler shift correction). The weighted average of all 35 points is

λzero = 768.9702(3) nm, and the weighted average of the central 80% of the data is

λzero = 768.9706(3) nm. The statistical errors associated with the weighted averages

are unrealistically small, yet, the central values are within 1.2 pm (2σ) of unweighted

averages.

5.3 Derivation of a fundamental limit for the sensitivity of a λzero measurement

Decoherence due to spontaneous emission [83, 84] limits the precision with which

λzero can be measured. The probability of an atom scattering zero photons, P (0),

affects the interferometer contrast through C = C0P (0), where C0 is the reference

contrast. Given a Poisson distribution for P (0),

C = C0e
−N(ω) (5.11)
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where N(ω) is the average number of photons an atom scatters while exposed to the

laser beam with frequency ω for a time T . N(ω) is proportional to the time-averaged

probability for atoms to be in an excited state, Pex, and the decay rate Γ:

N(ω) = PexTΓ. (5.12)

When the excitation probability is much less than 1, and using the rotating wave ap-

proximation, we can write Pex in terms of the Rabi frequencies Ωe = |〈e|d.ε̂|g〉|E0/~

and the detunings ∆e from each resonance:

Pex =
1

2

∑
e

Ω2
e

∆2
e + Ω2

e

(5.13)

The probability of an atom scattering 1 or more photons is Ps = 1 − P (0). To

obtain a simple expression for Ps we make the approximation

P (0) ≈ 1−N(ω) (5.14)

Using this approximation, we can write

Ps = N(ω) = PexTΓ = TΓ
1

2

∑
e

Ω2
e

∆2
e + Ω2

e

. (5.15)

To compare Ps to the phase shift, we further assume ∆2
e � Ω2

e and rewrite Ps as

Ps = PexTΓ =
ITΓ

ε0c~2
∑
e

|〈e|d.ε̂|g〉|2

∆2
e

. (5.16)

In the rotating-wave approximation, the slope of the phase shift is

dφ

dω
=

IT

2ε0c~2
∑
e

|〈e|d.ε̂|g〉|2

∆2
e

. (5.17)
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Comparison of Eqs. (5.17) and (5.16) yields a maximum achievable slope of

dφ

dω
≈ 1

2Γ
Ps. (5.18)

In terms of the wavelength, the slope is

dφ

dλ
=
dφ

dω

dω

dλ
≈ πcPs

λ2Γ
. (5.19)

As discussed in Appendix C, the highest sensitivity could be achieved if P0 = e−1,

implying an optimum Ps = 1− e−1. Given this requirement, we determine that the

error made by the approximation in Eq. (5.14) is ≈ 30%. Still, the simple formula-

tion of the maximum achievable slope presented in Eq. (5.18) remains a useful guide

to possibility of large improvements in the precision of λzero measurements.

5.4 Contrast loss due to inhomogeneous mechanisms

Although the phase shift is the primary signal in our measurement of λzero, it is

still important to have a full understanding of the interferometer contrast loss. This

provides a valuable check on our understanding of the potential errors associated

with the measurement. Here we will examine three mechanisms of contrast loss, all

analogous to inhomogenous broadening.

As stated in equation 5.10, the phase acquired along one path in the atom

interferometer is

φ0,q,|FmF 〉(ω, x, v) =
αq,|FmF 〉(ω)

2ε0c~v

∫ ∞
−∞

I(x, z)dz. (5.20)

Here we have written the phase as an explicit function of the atom wave position x,

velocity v, light polarization q, and state |FmF 〉 to more easily explain the contrast

loss mechanisms. Next, we assume that the focused laser beam intensity distribution

in the plane of the interferometer is represented by a Gaussian function

I(xl, zl) = I0e
−2(x2l+z

2
l )/w

2
0 (5.21)
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where w0 is the beam waist, I0 = 2PL/(πw
2
0) and PL is the laser power. Integrating

the acquired phase (Eq. (5.20)) along the beam path (z) gives

φ0,q,|FmF 〉(ω, x, v) =
αq,|FmF 〉(ω)

√
π/2w0I0

2ε0c~v
e−2(x−xl)

2/w2
0 , (5.22)

or in terms of the laser power and beam waist

φ0,q,|FmF 〉(ω, x, v) =
αq,|FmF 〉(ω)PL√

2πε0c~vw0

e−2(x−xl)
2/w2

0 . (5.23)

The differential phase shift between the two paths of the two interferometers

formed by the +1 and 0, and the 0 and -1 diffraction orders is

φ1,q,|FmF 〉(ω, x, v) = φ0,q,|FmF 〉(ω, x+ s(v), v)− φ0,q,|FmF 〉(ω, x, v) (5.24a)

φ−1,q,|FmF 〉(ω, x, v) = φ0,q,|FmF 〉(ω, x, v)− φ0,q,|FmF 〉(ω, x− s(v), v) (5.24b)

where s(v) is the velocity-dependent path separation [8].

The velocity distribution in our supersonic atom beam is well-described by a

Gaussian distribution

P (v) =
1√

2πσ2
v

exp

(
−(v − v0)2

2σ2
v

)
(5.25)

where v0 is the mean velocity and σv is the velocity distribution width. In our

experiment v0 ≈ 1600 m/s and v0/σv ≈ 15.

Finally, we can predict the measured interferometer phase φ(ω) and contrast

C(ω) from the expression

C(ω)eiφ(ω) = C0e
iφ0

∑
q=−1,0,1

fq
∑

k=−1,1

1

2

∑
|FmF 〉

1

8

∫ ∞
v=0

P (v)

∫ d/2

x=−d/2

P (x) exp(iφk,q,|FmF 〉(ω, x, v))dvdx. (5.26)

Here, fq is the fraction of the power with q polarization, typically f0 = 80% and
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Figure 5.5: Polarizabilities and magic-zero wavelengths for different |FmF 〉 ground
states of potassium for σ+ light.

f1 = 20%. The factor of 1/2 accounts for equal detected intensity from the +1 and

-1 interferometers. The factor of 1/8 accounts for the fact that all 8 |FmF 〉 states

are equally likely in our thermal atom beam. We also assume that the atom beam

intensity P (x) = 1/d is uniform over the width d of the detected fringes. Figure

5.6 shows contrast loss spectra based on Eq. 5.26 with several conditions (e.g. zero

beam width). Figure 1b in Appendix C shows the same data and the calculated

contrast loss spectra for the conditions d = 100 µm, σv = 110 m/s, w0 = 110 µm.

5.5 The effect of broadband light on λzero measurements

We have assumed, until now, that the optical spectrum contains only one frequency

of significance. Unfortunately, due to the nature of our laser system, this assumption

is not valid. Our laser system consists of tunable a 50 mW external cavity diode

laser seeding a 2 W tapered amplifier [85, 86, 87]. Tapered amplifiers are notorious

for producing a significant amount of broadband spontaneous emission (∼ 10% of

the total power output) in addition to the amplified stimulated emission. Figure

2.12 shows a picture of the spectrum of the tapered amplifier power output after
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diffraction from a grating. Figure 5.7 shows data acquired with a grating spectrom-

eter under different TPA conditions. Under normal operating conditions (40 mW of

seed light and a TPA current of 2.6 A) the broadband light spectrum is consistent

with a gaussian with a center wavelength of λspon = 763 nm and a width of σspon = 3

nm. Spontaneous emission from the tapered amplifier diverges at a different rate

than the stimulated emission. We use this fact to reduce the fraction of spontaneous

emission by an order of magnitude by spatially filtering the tapered amplifier output

with a single mode fiber [88].

To account for the broadband light, the phase shift (equation 5.10) becomes

φ(ω) =
1

ε0c~v

∫ ∞
z=−∞

∫ ∞
ω=0

α(ω)I(ω;x, z)dzdω. (5.27)

Figure 5.8 shows a model of the broadband light spectrum with the dynamic polar-

izability near the potassium D1 and D2 lines.
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Figure 5.8: Model of the laser system spectrum and the dynamic polarizability of
K. The broadband light component is set to be 1% of the total laser power. The
majority of the broadband light is blue-detuned of the D2 line, and thus there is a
net phase shift due to the integrated spectral density of the broadband light.

5.6 Next-generation λzero measurements

The existence of a λzero near 770 nm in potassium was fortunate for our lab. We

chose to study this particular λzero for several reasons. First, potassium is cheap and

easy to handle, and it is easy to generate and detect beams of potassium atoms in

our lab. Second, the primary transitions are strong and the fine structure splitting

of the 4p levels in potassium is only 3 nm, and this leads to a larger slope and thus

easier to determine λzero. Third, inexpensive and easy-to-operate diode lasers and

amplifiers are available near 770 nm.

Future measurements of magic-zero wavelengths in our lab will not have all of

these advantages. Therefore, we are exploring ways to increase the light-induced

phase shift in our atom interferometer and improve the reproducibility of the mea-

surements. Three ideas to improve the signal size are a “hall of mirrors” (Figure

5.9), a power build-up cavity (Figure 5.10), and a coaxial atom-light interaction re-

gion (Figure 5.11). All of these ideas would rely on light delivered into the vacuum
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Figure 5.9: A “hall-of-mirrors” for improved measurements of λzero. A hall-of-
mirrors allows the laser beam to intersect the atom beam multiple times to create a
larger phase shift. Nearly parallel mirrors and an appropriate choice of the focusing
power of the lens may result in 30-50 times larger phase shifts.

chamber by a single-mode optical fiber, and all optics would be rigidly attached to

improve the stability and reproducibility of the experiment.

We have already built a hall of mirrors and used it to measure the same λzero.

The slope dφ/dλ is as much as 10 times larger as in our published experiment.

Furthermore, the reproducibility during a single day is also improved and now con-

sistent with the statistical error of a single λzero measurement. We attribute this

improvement in reproducibility to the increased mechanical robustness of the hall

of mirrors system.
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Figure 5.10: A power build-up cavity for improved measurements of λzero. A power
build-up cavity could provide 50-100 times larger phase shift for reasonable mirror
reflectivities.

Figure 5.11: A coaxial atom-light interaction region for improved measurements
of λzero. Light focused along the path of the atom beam could interact with the
atoms for a significantly longer amount of time, leading to 50-100 times larger phase
shifts. A small hole drilled in the mirror and lens would allow the atom beam to
pass through while only reducing the total optical power by a few percent. The
atoms would see significantly Doppler-shifted light, so an accurate measurement of
the atom beam velocity is required in this system.
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CHAPTER 6

STRONTIUM POLARIZABILITY MEASUREMENT PROPOSAL

We propose to measure the strontium ground 5s2 1S0 and metastable 5s5p 3P0 po-

larizabilities to provide crucial tests of atomic structure calculations needed for

next generation atomic clocks [11] and [3]. Due to uncertain polarizabilities of the

clock states, the Sr and Yb clocks until recently had an uncertainty that is 70-250

times larger than their ultimate lifetime-limited precision [3, 89]. The polarizability

influences the clock frequency because blackbody radiation from the thermal envi-

ronment causes relatively large, uncertain Stark shifts of the clock states. Recent

in situ measurements of the differential polarizability of the clock states of Sr [90]

and Yb [91] have significantly reduced the uncertainties due to the BBR shift. How-

ever, measurements of the polarizabilities of the individual states are still in high

demand due to the importance of accurate calibration of the BBR shift and due to

the difficulty of calculating these polarizabilities.

In this chapter we will discuss in detail the three technical challenges of measuring

αSr and αSr*:

• Detection of ground state Sr with resonant photoionization.

• Detection of metastable state Sr using resonant and non-resonant photoion-

ization.

• Metastable Sr generation using electron impact ionization.

6.1 Detection of ground state Sr

6.1.1 Photoionization via 461 and 405 nm transitions

The ionization energy of the ground 5s2 1S0 state of strontium is 5.7 eV. This

high ionization energy makes strontium difficult to ionize using our current hot-wire
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Figure 6.1: Atom interferometer set-up for strontium and ytterbium polarizability
measurements. Nanogratings 1G, 2G, and 3G form a Mach-Zehnder atom interfer-
ometer. To measure beam velocity, we apply a periodic voltage V (t) to two phase
choppers (c1 and c2) separated by a distance L and study the contrast of the in-
terferometer as a function of switching frequency. To measure polarizability, we
apply ±10 kV across the interferometer to induce a polarizability-dependent phase
shift. We will use an electron bombardment region to promote Sr and Yb atoms to
a metastable state, followed by resonant lasers to purify the beam in the 3P0 state.
Beam detection will be accomplished with resonant laser ionization. Diagram not
to scale.
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detector. We will discuss an efficient resonant photoionization pathway via a 461

nm photon to the 5s5p 1P1 state and a 405 nm photon to the autoionizing state

5p2 1D2 [92, 93, 94] (see Figure 6.2). We show that resonant photoionization will

provide ∼20% ionization probability with nearly zero background. We will assume

that all lasers will be focused to a spot size of A=(100 µm)2 and that the atom

beam velocity v = 3000 m/s.

The 1S0 - 1P1 transition at 461 nm has an A21 coefficient of 1.9× 108 Hz. This

corresponds to a state lifetime τ = 5.3 ns and Isat = 40 mW/cm2. Assuming a spot

size of (100 µm)2 = 10−8 m2, 4 µW is needed to saturate this transition. The Rabi

frequency Ω = Γ
√
I/2Isat and for a two-state atom Γ = A21. We will approximate

the probability of finding a two-level atom in the excited state when I = Isat as

P ≈ 1/2.

Absorption of a 405 nm photon takes an atom in the excited 5s5p 1P1 to the 5p2

1D2 autoionizing state. The presence of this autoionizing state causes the ionization

cross-section of the 1P1 state with 405 nm light to be 103 to 106 times larger than

typical non-resonant photoionization cross-sections: σ = 5600 Mb (1 Mb = 10−22

m2).

We will now calculate the ionization probability a strontium atom in the ground

state via this resonant ionization path. First, we write the single atom ionization

rate from the 1P1 state as

Γ1P1−Sr+ = σΦγ = σ
I405
Eγ

(6.1)

where σ is the ionization cross-section, Φγ is the 405 nm photon flux, I405 is the

laser intensity for a beam with power P405 focused to a spot size A, and Eγ = hc/λ

is the photon energy. We calculate Γ1P1−Sr+ = 107 s−1, assuming P405 = 100 mW

and A=(100 µm)2. Next, we must consider the time that the atom beam interacts

with the ionization laser: T = l/v, where l =
√
A is the interaction length. T = 30

ns, assuming a beam velocity of 3000 m/s. The probability of photoionization from
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the 1P1 state is then

Prob1P1−Sr+ = Γ1P1−Sr+T = σ
P

Eγv
√
A
. (6.2)

Using the above assumptions, we calculate an ionization probability of 38% from the

1P1 state. We assume that the intensity of light resonant with the 1S0 - 1P1 transition

is sufficient to put atoms in the 1P1 state 50% of the time, and then estimate the

ground state ionization probability of our system to be Prob1S0−Sr+ = 10− 20%.

This resonant photoionization detection efficiency is comparable to our hot-wire

detector efficiency with potassium, rubidium, and cesium atoms. However, the

resonant photoionization method will presumably have a much lower noise floor

than the hot-wire method. Therefore, we can expect that resonant photoionization

will work for our system even if our ionization probability estimates are off by several

orders of magnitude.

6.1.2 Generating 461 and 405 nm light

Several possibilities exist for generating 461 nm light: frequency doubling 922 nm

light, a blue LED, a strontium hollow cathode lamp, and an AR-coated laser diode.

First, we discuss second harmonic generation of 461 nm light. The efficiency of

SHG of 922 nm to 461 nm varies from 0.01-75% [93, 95] depending on the effort

expended, expertise of the lab, cavity specifications, and type of crystal used. A

PPKTP crystal can achieve 1% conversion efficiency with a single pass through the

crystal when pumped with about 100 mW of 992 nm light, so no cavity would be

needed. This may yield sufficient power and would be relatively simple. The crystal

would need to be temperature tuned to 40-70 ◦C. We estimate that it is reasonable

that 100 µW of resonant 461 nm light may delivered to the beam using SHG with

a PPKTP. A prototype in our lab using a PPKTP crystal currently outputs about

10 µW of 461 nm light.

We also explored several other methods to generate 461 nm light. Blue LEDs

with center wavelengths near 460 nm provide another possibility for generating 461
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nm light. LEDs with optical powers of 1 W are available. The typical ∆λ = 25

nm, corresponding to a frequency dispersion of df = c/λ2dλ = 3 × 1013 Hz. The

linewidth of the 1S0 -1P1 transition is 30 MHz, so approximately 10−6 of the light

generated in the LED, 0.1-1 µW, may be resonant with the atom beam.

Hollow cathode lamps are typically specified as producing 10-20 mA discharge

current, however, the corresponding optical power is unknown. Typical operating

voltages are 300 V. We assume an optical output power P , and that owing to the

extended nature of the source, only 10% of the light may be delivered to the atom

beam. The doppler-broadening of the light from a hollow cathode lamp will further

reduce the effective power. We assume a temperature of 900 K and calculate a

corresponding doppler width of 1.5 GHz. The linewidth of the 1S0 -1P1 transition is

30 MHz, so approximately 2% of the light generated in the lamp may be resonant

with the atom beam. The above factors yield an efficiency of 0.002P . Hollow

cathode lamps are relatively inexpensive ($355), and require a 550 V, 20 mA power

supply (available for $2125, although we have a supply that would probably work).

Hollow cathode lamp lifetimes are warranted to 5000 mA hours. At 10 mA, the

lifetime would be 500 hours, or about 20 days of continuous operation. This can be

quickly implemented with little expertise, and may provide sufficient power.

Finally, Shimada et al. recently used a prototype AR coated diode from Nichia

to generate 40 mW at 461 nm from an ECDL [96]. Commercialization of this diode

technology would greatly simplify our strontium polarizability measurement.

6.2 Detection of metastable Sr

We now consider photoionization of the metastable 3P0 state. To our knowledge,

no autoionizing triplet states exist, so non-resonant photoionization must be used

with the metastable state. The ionization energy of the 3P0 state is 3.9 eV (318

nm). Therefore, direct photoionization of the 3P0 state would require an intense

UV source. The near-threshold photoionization cross-section of the 3P1 state is

σ3P1 ≈ 10 Mb [94]. A UV lamp may provide sufficient power at this wavelength
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to directly ionize the 3P0 state. Wang [97] used a UV LED to photoionize 3P0 Ba

atoms. We are exploring if we can use UV light to photoionize the 3P0 with sufficient

efficiency. UV LEDs with 0.5 mW available for ∼$150. High power (0.5 W) UV

LEDs are common down to 365 nm.

We also considered the possibility of using a two photon ionization process via the

5s5p 3P0 to 5s6s 3S1 at 679 nm (1.8 eV), and then an ionizing photon with λ < 590

nm (2.1 eV). To our knowledge, no published photoionization cross-sections exist

for the 5s6s 3S1 state. Therefore, we estimate that the photoionization cross-section

for the 3S1 state is similar to that of the 5s6s 1S0 state: σ1S0 = 0.4 Mb [98]. 3S1 will

also decay to 3P1 and 3P2 , so we must apply the state purification lasers at detector

as well to keep atoms in the 3S1 state.

Another possible intermediate state is 5p2 3P1. The transition between 5s5p

3P0 and 5p2 3P1 is at 474 nm (2.6 eV). The transition rate is 4 × 107 Hz [99]. A

photon with λ < 950 nm (1.31 eV) would be needed to photoionize the 5p2 3P1 state.

473 nm diodes with several 10s of mW are available from several sources, including

ThorLabs.

Yet another possible intermediate state is 5s5d 3D1 . The transition between

5s5p 3P0 and 5s5d 3D1 is at 483 nm (2.6 eV). The transition rate is 4 × 107 Hz

[99]. A photon with λ < 915 nm (1.35 eV) would be needed to photoionize the 5s5d

3D1 state. 490 nm diodes with several 10s of mW are available from several sources

(Renesas NX6414EH, CrystaLaser, ThorLabs).

6.3 Generating metastable Sr

Metastable strontium and ytterbium will be generated in an electron bombardment

region [100] and state purification will be accomplished with resonant lasers. The

electron bombardment region will populate the nsnp3P metastable triplets with 40%

efficiency. We will build diode lasers at 679 and 707 nm to optically pump metastable

strontium atoms from the 3P1 and 3P2 states into the 3P0 state. We will also build

diode lasers at 649 and 770 nm to purify the ytterbium metastable triplet. We have
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prototypes of two of these lasers (679 and 770 nm) available from experiments with

lithium and potassium atoms.
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CHAPTER 7

TENSOR POLARIZABILITY MEASUREMENT PROPOSAL

Ground-state alkali atoms are spherically symmetric, and as a result the polariz-

ability may be described by a scalar that does not depend on the direction of the

applied field. In contrast, molecules are generally not spherically symmetric and

their polarizabilities must be described by a tensor
↔
α. Knowledge of the tensor

polarizabilities of alkali dimers is currently of interest for ultracold molecules [101].

Figure 2.14 shows the two unique orientations of an alkali dimer in an electric field.

To our knowledge, only the average polarizability of this tensor has been measured

[24, 20].

M.S. Chapman first proposed to measure the tensor polarizability of Na2 by

studying interferometer contrast loss as a function of applied electric field but dis-

missed the idea in favor of applying orthogonal electric fields to two well-separated

paths of a molecule interferometer [102]. While there is significant merit to the

orthogonal field approach, a separated path molecule interferometer even for Na2

is a formidable challenge, and becomes more difficult for heavier atoms. Here, we

examine in more detail the possibility of determining the tensor components of the

molecular polarizability of alkali dimers by studying the unique contrast loss signal

in our interferometer as a function of the applied electric field.

The Stark shift of a molecule with a tensor polarizability
↔
α is given by

U = −1

2
~E
↔
α ~E. (7.1)

In general, the polarizability tensor is most easily expressed in the body coordinates

of the molecule. For a simple molecule such as an alkali dimer, the tensor is diagonal

if one chooses to use the obvious axes of symmetry: one along the bonding axis of

the molecule and two additional axes that are mutually orthogonal to the bonding
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axis. If we let the z-axis coincide with the bonding axis of the dimer we can write

the polarizability tensor as

↔
α =


α⊥ 0 0

0 α⊥ 0

0 0 α||

 (7.2)

Let the average polarizability of the molecule be defined as

α =
α|| + 2α⊥

3
(7.3)

and let the anisotropy be defined as

γ = α|| − α⊥. (7.4)

We transform the electric field from the lab coordinate system into the body

coordinate system to calculate the energy shift. From symmetry we expect that

the energy can only depend on the polar angle θ. Let the electric field in the

lab coordinate system be coincident with the lab z-axis. Following the standard

coordinate system transformation matrices [103] we find

~Ebody =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1




1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)




cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0

0 0 1




0

0

E



= E


sin(ψ) sin(θ)

cos(ψ) sin(θ)

cos(θ)

 (7.5)

We may now calculate the energy shift

U = −1

2
E2
(
α|| − γ sin2 θ

)
. (7.6)
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We assume that a uniform electric field is applied to one path of the interferometer

for a distance l. The interaction phase shift is then

φ(E, θ, v) = − 1

~v

∫
Udx

=
E2l

2~v
(
α|| − γ sin2 θ

)
(7.7)

where v is the velocity of the molecule.

The phase shift of the measured interference fringe will be an incoherent sum of

the phase shifts of molecules with a random spatial orientation. Additionally, we

must the average the phase shifts of the velocity distribution, P (v). The measured

contrast Cm and phase shift φm will be

Cm exp(iφm) =

∫ π

θ=0

∫ ∞
v=0

exp(iφ(E, θ, v))P (v) sin(θ)dθdv. (7.8)

The incoherent sum of fringes formed by molecules with different spatial orien-

tations leads to contrast loss and revivals. The revivals occur when the phase shift

corresponding to α⊥ is an integer multiple of 2π times the phase shift corresponding

to α||. The velocity distribution only leads to contrast loss. Figure 7.1 shows con-

trast loss due to these two different mechanisms for Na2 molecules and the contrast

loss due to both mechanisms combined for two different velocity distributions. Here,

the velocity distribution width is parameterized by the sharpness r = v0/σv.

A velocity distribution with a sharpness r > 20 is necessary to see the effect of

anisotropy on the contrast loss signal. Alternatively, we could apply a counter-phase

to reverse the contrast loss due to the velocity distribution at a given phase [77, 65].

We routinely observe velocity distributions sharper than 20, and even as large as 45

for Cs atoms. Significant experimental challenges include generating a bright enough

molecule beam and eliminating the atomic component of the beam. It would also

be interesting to consider the signal from a planar molecule such as benzene if a

suitable detector (such as an electron impact ionizer) could be developed.
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CHAPTER 8

CONCLUSIONS AND OUTLOOK

We began this thesis by asking: what happens to an atom in an electric field?

The work described here answered this question with unprecedented precision. We

measured the static polarizability of potassium and rubidium with 0.5% uncertainty,

and measured polarizability ratios with 0.3% precision. We measured a magic-zero

wavelength of potassium – the wavelength at which nothing happens to the atom in

the electric field – for the first time. We also developed a new atom beam velocity

measurement technique, phase choppers, to enable even more precise polarizability

measurements in the future.

Looking forward, we can realistically anticipate improved measurements of static

polarizabilities and magic-zero wavelengths in the Cronin lab. The experiments

described in this thesis form the foundation of a long program of static and dynamic

polarizability measurements in Arizona. At this time, new measurements of cesium,

strontium, and ytterbium polarizabilities appear to be of the highest importance.

We have already measured the polarizability of Cs with 0.1% precision (Figure 3.9).

We have also generated beams of Sr and Ba, as well as beams of metastable He and

Ar. Preliminary results using a hall-of-mirrors interaction region have shown a 5-10

times increase in the precision of λzero measurements.

Have we answered the question of what happens to an atom in an electric field

well enough? What will we learn by continuing to improve upon polarizability and

magic-zero wavelength measurements?

We believe that there is significant value in pursuing improved measurements of

static and dynamic polarizability. Table 1.1 showed the state-of-the-art measure-

ments and calculations of the static polarizabilities of the alkalis. Theory uncer-

tainty is currently about a factor of 2-5 better than the experiment uncertainty for

most of these atoms, but theory uncertainty is difficult to estimate and theorists
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still routinely request new benchmark measurements of polarizabilities. New ex-

periments are underway to probe parity non-conservation in Cs and Yb, and these

experiments will need higher precision measurements of polarizabilities to test the

associated atomic structure calculations. Next-generation optical clocks also need

higher precision measurements of polarizabilities to accurately correct for blackbody

radiation shifts in the clock frequencies.

Future measurements of magic-zero wavelengths will determine difficult-to-

calculate matrix elements with high precision, and may provide a sensitive way

to probe the core electron contribution to polarizabilities. The many-body physics

involved in the calculation of core electron polarizabilities has wide applications in

atomic, nuclear, and condensed matter physics.

Polarizability, magic-zero wavelength, and van der Waals potential measure-

ments of small molecules will have applications ranging from testing density func-

tional theory to nanotechnology. We are currently working on implementing an elec-

tron ionization detector and mass filter to enable these measurements with molecules

and non-alkali atoms.

Finally, it is worthwhile to reflect on the fact that when the Bederson group

started its polarizability measurement program in the early 1960s there were no

proposals to measure parity non-conservation in atomic systems (although the idea

had been considered and dismissed as impractical [7]) nor had atomic clocks been

built with such incredible precision that blackbody radiation became an important

component in the error budget. However, the Bederson group recognized the wide

applications of polarizability measurements and their utility as benchmarks for the

rapidly growing field of atomic physics. Similarly, future atomic physics experiments

may well benefit from our measurements of polarizabilities today.
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APPENDIX A

REPRINT: ABSOLUTE AND RATIO MEASUREMENTS OF THE

POLARIZABILITY OF NA, K, AND RB WITH AN ATOM

INTERFEROMETER

The following manuscript was published as a peer-reviewed article in Physical Re-

view A. The results of this article are summarized in section 2.1 and Chapter 3

provides supplementary information. The manuscript is reprinted with permission

from the American Physical Society. Original reference: W. F. Holmgren, M. C.

Revelle, V. P. A. Lonij, and A. D. Cronin, “Absolute and ratio measurements of the

polarizability of Na, K, and Rb with an atom interferometer”, Physical Review A

81, 053607, (2010). Copyright (2010) by the American Physical Society.
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Absolute and ratio measurements of the polarizability of Na, K,
and Rb with an atom interferometer

William F. Holmgren, Melissa C. Revelle, Vincent P. A. Lonij, and Alexander D. Cronin*

Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
(Received 21 January 2010; published 10 May 2010)

We measured the ground-state electric-dipole polarizability of sodium, potassium, and rubidium using a Mach-
Zehnder atom interferometer with an electric-field gradient. We find αNa = 24.11(2)stat(18)sys × 10−24cm3, αK =
43.06(14)(33), and αRb = 47.24(12)(42). Since these measurements were all performed in the same apparatus
and subject to the same systematic errors, we can present polarizability ratios with 0.3% uncertainty. We find
αRb/αNa = 1.959(5), αK/αNa = 1.786(6), and αRb/αK = 1.097(5). We combine our ratio measurements with the
higher-precision measurement of sodium polarizability by Ekstrom et al. [Phys. Rev. A 51, 3883 (1995)] to find
αK = 43.06(21) and αRb = 47.24(21).

DOI: 10.1103/PhysRevA.81.053607 PACS number(s): 03.75.Dg, 32.10.Dk

I. INTRODUCTION

Precision measurements of polarizability serve as bench-
mark tests for methods used to model atoms and molecules
[1,2]. Accurate calculations of van der Waals interactions,
state lifetimes, branching ratios, indices of refraction, and
polarizabilities all rely on sophisticated many-body theories
with relativistic corrections, and all of these quantities can
be expressed in terms of atomic-dipole matrix elements.
Polarizability measurements, such as the ones presented here,
are some of the best ways to test these calculations.

Over 35 years ago, Molof et al. [3] measured ground-state
alkali-metal and metastable noble-gas polarizabilities with an
uncertainty of 2% using beam deflection and the E-H gradient-
balance technique. More recently, atom interferometers were
used to measure the polarizability of lithium [4] and sodium
[5] with an uncertainty of 0.7% and 0.35%, respectively.
Near-field molecule interferometry was used to measure the
polarizability of C60 and C70 with 6% uncertainty [6], and
guided Bose-Einstein-condensate (BEC) interferometry was
used to measure the dynamic polarizability of rubidium with
7% uncertainty [7]. A fountain experiment was used to mea-
sure the polarizability of cesium with 0.14% uncertainty [8].
The measurements of potassium and rubidium polarizability
made by Molof et al. remained the most precise until now.

In this article, we present absolute and ratio measurements
of the ground-state electric-dipole polarizability of sodium,
potassium, and rubidium using a Mach-Zehnder atom inter-
ferometer with an electric-field gradient. The uncertainty of
each absolute measurement is less than 1.0% and the precision
of each ratio measurement is 0.3%. Our interferometer is
constructed with nanogratings that diffract all types of atoms
and molecules and enable us to measure the polarizabilities of
different atomic species in the same apparatus. The systematic
errors are nearly the same for the different atomic species
and cancel when calculating polarizability ratios. Finally, we
combine our polarizability ratios with the absolute measure-
ment of sodium polarizability by Ekstrom et al. [5] to provide
measurements of potassium and rubidium polarizabilities with
0.5% uncertainty.

*cronin@physics.arizona.edu

A unique feature of this work compared to references [4,5]
is that we use an electric-field gradient region rather than a
septum electrode. In addition, we use a less collimated beam
to increase the flux and reduce the systematic error caused by
velocity-selective detection of atoms in the interferometer.

II. APPARATUS

Our apparatus is described in detail elsewhere [9,10]. In
brief, we use three 100-nm period nanogratings to diffract a
supersonic beam of sodium, potassium, or rubidium atoms
and form multiple Mach-Zehnder interferometers (see Fig. 1).
An atom diffracted by the first and second gratings may be
found with a sinusoidal probability distribution at the plane
of the third grating. The third grating acts as a mask of
this interference pattern and also diffracts the interferometer
output. We measure the flux as a function of grating position
to determine the phase and contrast of the fringe pattern. We
detect 105 atoms/s with a typical contrast of 30% using a
hot-wire detector 0.5-m beyond the third grating.

We measure the output of the two interferometers formed
by first-order diffraction from the first and second nanogratings
(see Fig. 1). Although other interferometers are present, they
do not contribute to the measured phase shift because they
either are not white-light interferometers, have fringes with a
periodicity different than that of the third grating, or are simply
not incident upon the detector. The interferometers formed by
second-order diffraction from the first grating [11] contribute
less than 1% of the detected signal and cause an error in our
polarizability measurements of less than 0.01%.

Before the second grating, the path separation in the
interferometer is

s = λdB

dg
z = h

mvdg
z (1)

where λdB = h/mv is the de Broglie wavelength of an atom
with mass m and velocity v, dg is the grating period, and
z is the propagation distance from the first grating. We
adjust the beam velocity for each atomic species such that
s ≈ 50 µm in the interaction region, where the beam width of
each diffraction order is approximately 80 µm. We designed
the beam parameters to be similar for each atomic species

1050-2947/2010/81(5)/053607(7) 053607-1 ©2010 The American Physical Society
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1G 2G 3G

Hot-wire
detector

z

x

Collimating
slits

Lg

HV

FIG. 1. Nanogratings 1G, 2G, and 3G form multiple Mach-
Zehnder interferometers (two are shown). An atom passing through
the interaction region acquires a phase φ1, φ0, and φ−1 along each path.
The third grating acts as a mask for the 100-nm period interference
fringes and also diffracts the interferometer output. The hot-wire
detector is centered on the zeroth-order path. The distance between
two gratings is Lg = 940 mm. The vertical (transverse) scale is
exaggerated 104 times. The Earth rotation rate "E modifies the
measured phase shift.

in order to minimize systematic errors in measurements of
polarizability ratios.

As in previous work [4–6], we place an interaction region
between the first and second gratings to induce a differential
phase shift in the interferometer. The phase shift is proportional
to the atomic polarizability. Unlike references [4,5], we use an
electric-field gradient region rather than a septum electrode as
an interaction region. We use an electric-field gradient because
the septum electrode would require fully separated diffraction
orders and this is more difficult with heavier atoms such as
potassium and rubidium.

The geometry of our interaction region is depicted in Fig. 2.
The interaction region consists of a cylindrical electrode and
a grounded plane. This geometry is the familiar “two-wire”
configuration [12] rotated by 90◦ so that the height of the
cylinder electrode is perpendicular, rather than parallel, to

L

λ
z

x

a

D

b
atom beam paths

y

O

10 kV

x-sx
x+s

FIG. 2. Cross section of the interaction region (not to scale).
The high-voltage electrode of diameter D = 12.66 mm is fixed at
a distance a = 1.998 mm from the ground plane by precision spacers
(not shown). The effective line charge λ is located a distance b from
the ground plane, as discussed in the text. The ground plane is of
length L = 90 mm. The high-voltage electrode and ground plane are
50-mm long in the y direction, while the beam height is only 1 mm.
The zeroth order beam is a distance x from the ground plane and
the ±first-order beams are a distance x ± s from the ground plane.
Electric-field lines are shown in gray. The beam propagates along the
z axis. O is the origin for the electric-field calculations.

the beam paths. Our electrode orientation yields a relatively
small fringe displacement (200 nm) compared to the standard
electrode orientation for Stark deflections (200 µm) [3,13–17],
but the sensitivity of atom interferometry allows us to
make precise measurements of such small deflections. Two
advantages of our electrode orientation are that the phase shift
is homogeneous across the height of the atom beam and that
there are no fringing fields entering and exiting the interaction
region.

We apply a voltage of 0–12 kV to the cylindrical electrode
to create the electric-field gradient. Our electrode geometry is
easily analyzed via the method of images [18]. The boundary
conditions of our geometry, with cylindrical symmetry and an
infinite ground plane, correspond exactly to the geometry in
which an infinitely long line charge λ is fixed a distance b
from the ground plane. The equipotential surfaces are circles
of increasing radius centered at an increasing distance from
the ground plane. We identify one of these equipotential
surfaces as our electrode at a voltage V with radius R and
located a distance a from the ground plane to determine the
corresponding effective line charge λ and its position b:

λ = 2πε0V ln−1
(

a + R + b

a + R − b

)
, (2)

b = a
√

1 + 2R/a. (3)

The resulting electric field is given by

E(x,z) = λ

πε0

{ [
x − b

(x − b)2 + z2
− x + b

(x + b)2 + z2

]
x̂

+
[

z

(x − b)2 + z2
− z

(x + b)2 + z2

]
ẑ
}
. (4)

The potential energy of an atom in an electric field is
given by the Stark shift UStark = − 1

2αE2. We use the WKB
approximation to find the phase φα(x,v) acquired by an atom
along a path a distance x from the ground plane with velocity
v and polarizability α:

φα(x,v) = α

2h̄v

∫ ∞

−∞
E2

(x,z)dz. (5)

For our atom beam UStark ≈ 10−7eV and Ukinetic ≈ 0.1eV, so
the WKB approximation is valid. The integral of E2 along the
path of the atom may be performed using complex analysis
and yields an acquired phase of

φα(x,v) = λ2α

πε2
0h̄v

(
b

b2 − x2

)
. (6)

We induce a polarizability phase φα of up to 2500 rad along
one path.

We will now discuss how the phase and contrast of the
measured fringe pattern depends on the polarizability phase
φα(x,v). First, we define the phase difference between the
paths of the two detected interferometers:

φα,1(x,v) = φα(x + s,v) − φα(x,v),
(7)

φα,−1(x,v) = φα(x,v) − φα(x − s,v).

We studied phase differences φα,1 of up to 18 rad. Next, we per-
form an incoherent sum of the fringe patterns formed by atoms
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of multiple velocities traversing multiple interferometers. The
resulting fringe pattern is described by

Csum(x)eiφsum(x) = C0e
iφ0

∑

j=−1,1

Pj

∫ ∞

0
P (v)eiφα,j (x,v)dv,

(8)

where Csum is the real-valued contrast of the fringe pattern,
φsum is the phase of the fringe pattern, C0 and φ0 are the
initial contrast and phase of the interferometer, j denotes the
interferometer number (upper or lower diamond in Fig. 1),
Pj = 0.5 is the probability of an atom being found in
interferometer j , and P (v) is the velocity distribution of the
beam. In our experiment, the phase shift φsum is reduced by
as much as 4% by performing the sum described in Eq. (8)
compared to a simple weighted average of phases, and the
contrast is reduced by more than 50%.

The Sagnac phase must also be accounted for in our exper-
iment and modifies Eq. (8) [19,20]. Because the Sagnac phase
is dispersive, ignoring it would lead to an error in polarizability
of up to 1%. The Sagnac phase in our interferometer is given
by

φSag(v) = 4πLg
2$

dgv
, (9)

where Lg is the distance between adjacent nanogratings and $
is the rotation rate of the Earth projected into the plane of the
interferometer. At our latitude, the Sagnac phase is as much
as 4.8 rad for our rubidium beam. The reference phase φref
and contrast Cref of the interferometer are determined by the
Sagnac phase in the absence of an electric field:

Crefe
iφref = C0e

iφ0
∑

j=−1,1

Pj

∫ ∞

0
P (v)eiφSag(v)dv. (10)

We find the total phase and contrast of the interferometer in
the presence of an electric field by adding the Sagnac phase to
the polarizability phase shift before conducting the incoherent
sum shown in Eq. (8). This procedure yields

Ctotal(x)eiφtotal(x)

= C0e
iφ0

∑

j=−1,1

Pj

∫ ∞

0
P (v)ei[φα,j (x,v)+φSag(v)]dv. (11)

Finally, the measured phase shift and relative contrast are

φmeasured(x) = φtotal(x) − φref, (12)

Cmeasured(x) = Ctotal(x)/Cref . (13)

As an alternative point of view, we may describe the
measured phase shift in terms of a classical electrostatic force
on the individual atomic dipoles instead of the quantum-
mechanical phases acquired by an atom in the electric field.
In the classical-mechanics picture, a neutral atom in an
electric field experiences a force F = −∇UStark = αE∇E.
The deflection of the interferometer paths will cause the same
displacement of the observed fringes as the phase-shift analysis
discussed above.

III. VELOCITY MEASUREMENT

The velocity determines both the amount of time an atom
interacts with the electric field and the spatial separation
s of the paths inside the electric-field gradient. Therefore,
an accurate determination of the beam velocity and the
velocity distribution is essential for a precise polarizability
measurement.

We determine the velocity of the atom beam by analyzing
the far-field diffraction pattern from the first grating. The
velocity distribution of the beam is modeled by

P (v)dv = Av3 exp
[
−(v − v0)2/(

2σ 2
v

)]
dv, (14)

where v is the velocity, v0 is the flow velocity, σv describes the
velocity distribution, and A is a normalization factor [21]. In
the limit of a supersonic beam, v0/σv # 1, the normalization
factor can be written as A = [

√
2πv0σv(v0

2 + 3σv
2)]−1. The

location of the nth diffraction order at the detector plane is
given by

xn = λdB

dg
nzdet = hn

mvdg
zdet, (15)

where the propagation distance z is equal to the distance
from the first grating to the detector, zdet. We use m = mavg,
which is the average mass of the atomic species, rather
than calculating and adding the diffraction patterns for each
isotope. A reanalysis of a subset of our data shows that this
approximation yields a small difference in velocity (<0.02%)
and polarizability (<0.05%) when isotopes are taken into
account. Next, we rearrange Eq. (15) to find

v(xn) = zdethn

mdgxn

(16)

and use this to transform P (v)dv to P (x)dx. Finally, we
sum over all diffraction orders, each weighted by cn, and add
the zeroth-order peak to obtain the diffraction pattern for an
infinitesimally thin beam and detector:

P (x)dx =
{

c0δ(x − 0) +
∑

n%=0

cnA

(
zdethn

mdg

)4

x5

× exp

[

−
(

zdethn

mdgx
− v0

)2 / (
2σ 2

v

)
] }

dx. (17)

The observed diffraction pattern (see Fig. 3) is a convolution of
the spatial probability distribution given by Eq. (17) with the
collimated beam and detector shapes. Two narrow collimating
slits of width 20 and 10 µm separated by 890 mm determine the
beam shape. We model the detector wire as a square aperture
with width 70 µm. We fit the observed diffraction pattern to the
convolution described above to find the flow velocity v0. With
four diffraction scans, we can determine v0 with a statistical
precision of 0.1%.

The diffraction orders are sufficiently close together, the
beam is sufficiently broad, and the detector is sufficiently
thick that we cannot use diffraction data alone to deter-
mine the velocity distribution σv with enough precision
for the polarizability measurements. Instead, as discussed
later, we find the velocity distribution parameter σv from

053607-3



102

HOLMGREN, REVELLE, LONIJ, AND CRONIN PHYSICAL REVIEW A 81, 053607 (2010)

µ

σ

σ

σ

FIG. 3. (Color online) Diffraction of Rb, K, and Na atoms from
the same nanograting. Best-fit flow velocity v0 and velocity distribu-
tion σv withstatistical errors are shown. As discussed in the text, the
velocity distribution is found from contrast-loss measurements.

the contrast loss measurements. We then fix σv when fit-
ting the diffraction patterns to find the final flow velocity
v0.

IV. PHASE AND CONTRAST MEASUREMENT

After recording several diffraction scans to measure the flow
velocity, we center the detector on the zeroth-order diffraction
peak, replace the narrow collimating slits with wider ones (35
and 45 µm), and insert the second and third gratings into the
beamline to form the interferometer. We use a wider beam for
our interferometer than Ekstrom et al. [5] for two reasons.
First, wide collimating slits allow more flux to reach the
detector. Second, wide slits minimize the velocity-selective
detection of interference fringes caused by the dispersive
nature of diffraction. We calculate that the flow velocity of
the atoms detected from the interferometers when the detector
wire is centered on the beam is about 0.25% faster than the
flow velocity of the entire beam. We use the adjusted flow
velocity when determining the polarizability, yielding a 0.5%
correction to the polarizability. The correction to the velocity
distribution parameter σv is negligible. If we had used small
slits with the detector on the centerline, this correction and
the uncertainty in this correction would have been three times
larger.

Next, we calibrate the position of the interaction region
by eclipsing the beam with the cylindrical electrode and then
moving the interaction region out of the beam path as we record
the average flux through the interferometer and the position of
the interaction region. We use the position at which the flux is
50% of the maximum to locate the center of the beam a distance

α

σ

FIG. 4. (Color online) Phase shift and relative contrast vs.
electrode position x. The best-fit polarizability and the statistical error
for one data set are shown. We only fit the phase shift measurements
with relative contrast greater than 75%. Residuals for the fit data
points (circles) are shown with error bars. For reference, residuals for
the unfit data points (filled diamonds) are also shown. The contrast
loss determines v0/σv .

a from the ground plane. We then move the interaction region
across the beam in steps of 100 µm and measure the phase shift
[Eq. (12)] and contrast loss [Eq. (13)] at each position. Figure 4
shows the measured phase shift and contrast loss for a typical
data set.

We determine the flow velocity, velocity distribution, and
polarizability from the diffraction, contrast loss, and phase
shift data, respectively. In Sec. III, we discussed how we find
the flow velocity v0. In Sec. II, we discussed how the contrast
of the measured fringe pattern is reduced by performing an
incoherent sum of the fringes formed by atoms of multiple
velocities. We fit the contrast loss data to determine v0/σv

with an uncertainty of 10%. The primary source of error in this
measurement of σv comes from vibration-induced fluctuations
in the reference contrast. We then refit the diffraction data,
holding σv fixed, to find the best-fit flow velocity v0. This
procedure yields a small correction to v0 of less than 0.2%.
Finally, we use v0 and σv as inputs to the polarizability fit of
the phase data. We exclude data points in which the relative
contrast is less than 75% to minimize the uncertainty in the
polarizability due to uncertainty in σv .

After fitting all the data, we apply small corrections to
the polarizability due to beam thickness and isotope ratios.
To account for beam thickness, we modify Eq. (11) to
include an integral over the beam width. The correction to
the polarizability due to beam thickness is +0.04(2)% for
each atomic species. To account for isotope ratios we modify
Eqs. (11) and (17) to include weighted sums over isotopes.
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α
α

α

FIG. 5. (Color online) Multiple measurements of the polariz-
ability of sodium (circles), potassium (triangles), and rubidium
(diamonds). The mean polarizabilities are denoted by filled markers
and lines. The error bars represent the standard error of the mean.
Units are 10−24 cm3. Final results are shown in Table I.

The correction to the polarizability from taking into account
the isotope ratios is +0.04% for αK and +0.02% for αRb.

The result of each data set is shown in Fig. 5. Each point
on the plot represents one hour of data. We report the mean
polarizability from all of our data in Table I. The reported
statistical error is the standard error of the mean and is
dominated by the reproducibility of the experiment rather than
the statistical phase error of a typical data set. The systematic
errors are discussed later.

Since we performed all measurements in the same apparatus
under similar beam conditions and without changing any
parameters that contribute to systematic error in the polar-
izability, we can report polarizability ratios with uncertainties
dominated by the statistical precision of our measurements. We
show our measured polarizability ratios in Table II. Figure 6
shows a summary of measurements [3,13] and calculations
[2,22–33] of the polarizability ratios of sodium, potassium,
and rubidium, including this work. We added the reported
uncertainties for each atom in quadrature to calculate the
uncertainty in polarizability ratios for previous work [3,13].

TABLE I. Measured absolute and recommended atomic polar-
izabilities in units of 10−24 cm3. Our recommended polarizability
values are based on our ratio measurements (see Table II) combined
with the sodium polarizability measurement from reference [5].

αabs (stat.)(sys.) αrec(tot.)

Na 24.11(2)(18) 24.11(8)
K 43.06(14)(33) 43.06(21)
Rb 47.24(12)(42) 47.24(21)

TABLE II. Measured atomic polarizability ratios with statistical
uncertainties. Also included are several polarizability ratios from ab
initio and semi-empirical calculations. See Fig. 6 for more previous
calculations and measurements of polarizability ratios.

αratio (stat. unc.)

Atoms This work Ref. [2] Ref. [30] Ref. [31]

Rb:Na 1.959(5) 1.959(5) 1.946 1.939
K:Na 1.786(6) 1.785(6) 1.779 1.781
Rb:K 1.097(5) 1.098(5) 1.094 1.089

If the reported uncertainties have systematic errors that would
have canceled in ratio measurements, then this calculation will
lead to an overestimate of the ratio uncertainties.

We calculate our recommended measurements of potassium
and rubidium polarizability by combining our polarizability-
ratio measurements with the sodium-polarizability measure-
ment by Ekstrom et al. [5]. To calculate the total uncertainty of
the recommended polarizabilities of potassium and rubidium,
we add the total uncertainty of the Ekstrom et al. sodium
measurement in quadrature with the statistical uncertainty
of our appropriate polarizability ratio. Our recommended
polarizability values and their total uncertainties are shown in
Table I. Given the 0.8% uncertainty of our direct measurement
of αNa, the agreement between our measurement and that of
Ekstrom et al. at the level of 0.04% is coincidental.

Table III shows a summary of the error budget. Most of the
highly significant parameters in the error budget are related to
the flow velocity v0 or velocity distribution parameter σv . The

α
α

α
α

α
α

FIG. 6. (Color online) Previously calculated (unfilled) and mea-
sured (filled) alkali-metal polarizability ratios. References are de-
noted by the abbreviated name of the first author, the publication
year, and the reference number. Calculations in references [2,33]
incorporate state-lifetime measurements.
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TABLE III. Systematic error budget for a single-sodium mea-
surement. The potassium and rubidium systematic error budgets are
similar.

Source Value (unc.) Error in α (%)

First grating (1G)-detector 2372.4(5.1) mm 0.43
distance zdet

Velocity (beam-shape model) 3023(4) m/s 0.25
Detector displacement x1 135.00(3) µm 0.05
Detector translation ‖ 50 mrad 0.30
Velocity distribution σv 149(14) m/s 0.20
δv/v of interfering atoms 0.20(5)% 0.10
Spacer thickness a 1.998(2) mm 0.20
Electrode diameter 2R 12.663(25) mm 0.10
Electrode voltage V 10670(16) V 0.30
Electrode orientation (x,y,z) (20,0.1,20) mrad 0.05
1G-int. region distance zint 802.6(2.0) mm 0.25
Grating period dg 100.0(1) nm 0.10
Molecule fraction 0(1)% 0.10
Grating tilt and g 0.0(1) mrad 0.01
Beam thickness (phase avg.) 80(20) µm 0.02
Total Systematic Error 0.80

most significant parameter in the error budget is the distance
from the first grating to the detector, zdet, due to its effect on
our measurement of v0. The details of the beam shape modify
the best-fit flow velocity as well. We measure the displacement
of our detector translation stage using a Heidenhain MT-2571
length gauge with a linear encoder and fractional uncertainty
of 0.02%. If the detector translation along the x axis is not
perpendicular to the beam path along the z axis, then we would
also report an incorrect velocity. We previously discussed how
the velocity-selective detection of interfering atoms modifies
v0 and adds uncertainty in the polarizability. The effect of the
velocity distribution on the measured phase becomes larger as
the phase shift increases and the contrast decreases. Therefore,
to minimize the uncertainty due to the velocity distribution, we
ignore phase data points for which the relative contrast is less
than 75%. This procedure yields an uncertainty of 0.20% in
the polarizability for a 10% uncertainty in σv . Uncertainty in
the distance from the first grating to the interaction region,
zint, causes uncertainty in the diffracted path separation s in
the interaction region. Uncertainty in the electrode spacing
a, radius R, and applied voltage V causes uncertainty in
the strength of the electric field. Uncertainty in the electrode
orientation about the x, y, and z axes yields a small uncertainty
in the polarizability, as well.

The possibility of a small fraction of molecules in the beam
contributes an additional source of error. The diffraction scans

for the conditions under which we run the interferometer
do not have sufficient resolution to determine the molecule
fraction of the beam. By reducing the velocity of the beam
and thus increasing the diffraction angle, we found that
molecules contribute less than 1% of the flux. To calculate the
corresponding uncertainty in our polarizability measurements
we include a sum over two additional molecule interferometers
in Eq. (11). We use the molecular polarizabilities measured
by Tarnovsky et al. [14] in our calculations to find that the
uncertainty in atomic polarizabilities due to the presence of
molecules is less than 0.10%.

An additional source of error comes from the possible tilt
of the entire interferometer board with respect to gravity. If the
interferometer is tilted with respect to gravity by an angle θ , a
dispersive phase shift of

φgrav(v) =
2πL2

g

dgv2
g sin θ (18)

will result. This phase shift must be added to the total
phase shift and the reference phase in the same way as the
Sagnac phase. We estimate that θ < 0.1 mrad and that the
corresponding uncertainty in the polarizability is less than
0.01%.

V. CONCLUSIONS AND OUTLOOK

We measured both the absolute and relative polarizabilities
of sodium, potassium, and rubidium using an atom inter-
ferometer with an electric-field gradient. Furthermore, we
used our ratio measurements and the more-precise Ekstrom
et al. measurement of sodium polarizability [5] to report
higher-precision measurements of potassium and rubidium
polarizability. These measurements provide benchmark tests
of atomic theory calculations. Our ground-state polarizabil-
ity measurements may be combined with transition Stark-
shift measurements [34–37] to yield improved knowledge
of excited-state polarizabilities and additional dipole matrix
elements [33,38].

We are upgrading our apparatus to produce and detect
beams of alkaline-earth-metal atoms. We are investigating new
interaction region geometries and new ways to measure the
flow velocity and velocity distribution of the atoms detected
in the interferometer. We are also using diffraction from a
nanograting to study ratios of van der Waals potentials for
sodium, potassium, and rubidium [39].
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Phys. 129, 044304 (2008).
[18] R. K. Wangsness, Electromagnetic Fields, 2nd ed. (John Wiley

& Sons, New York, 1986).
[19] A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman,

R. A. Rubenstein, and D. E. Pritchard, Phys. Rev. Lett. 78, 760
(1997).

[20] M. Jacquey, A. Miffre, G. Trénec, M. Büchner, J. Vigué, and
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Abstract. We describe a new method to measure atom beam velocity in an
atom interferometer using phase choppers. Phase choppers are analogous to
mechanical chopping discs, but rather than being transmitted or blocked by
mechanical choppers, an atom receives different differential phase shifts (e.g.
zero or ⇡ radians) from phase choppers. Phase choppers yield 0.1% uncertainty
measurements of beam velocity in our interferometer with 20 min of data and
enable new measurements of polarizability with unprecedented precision.
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1. Introduction

More accurate methods for measuring atomic velocity are needed to support high-precision
atom interferometry experiments. For example, atom beam velocity is the leading source of
uncertainty in several measurements of atomic and molecular polarizabilities [1–4]. This is
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because phase shifts to atomic de Broglie waves depend on the time of flight for atoms
propagating through an interaction region. Additionally, improved measurements of beam
velocity can increase the accuracy of space-domain matter-wave inertial sensors [5, 6]. In this
paper, we describe a novel and highly accurate method to measure the flow velocity and velocity
distribution of atoms in an atom beam interferometer.

Many techniques exist to measure atom beam velocities, but few provide the 0.1% accuracy
we demonstrate here using a new method. For comparison and background, we review a handful
of velocity measurement techniques. First, two spinning mechanical choppers (slotted disks)
separated by a distance L and blocking the beam at frequency f can transmit atoms with
velocity v = nL f , where n is an integer. Molecular beam velocity has been measured using
this technique with 0.2% uncertainty [7, 8], but this requires moving parts inside a vacuum
system and can cause unacceptable vibrations. Another approach uses the small gravitational
free fall of an atom beam through separated apertures at different heights to define the velocity of
transmitted atoms with 1% uncertainty [9]. Doppler shifts of an atomic transition observed with
a resonant laser enable measurements of velocity with 0.8% uncertainty [3]. Similar uncertainty
(0.8%) was obtained with Bragg diffraction from standing waves of light by analyzing rocking
curves [3]. Atom diffraction using a nanograting has been used by our group to measure beam
velocity with 0.3% uncertainty [1]. Finally, pulsed beams and time-resolved detection were
recently used to achieve 0.03% uncertainty velocity measurements of pulsed metastable helium
beams [10], but this technique is less applicable to continuous beams of ground state atoms.

Our new velocity measurement technique uses phase choppers to measure the velocity
of atoms in an interferometer. Phase choppers do not block any atoms, do not require resolved
diffraction, have no moving parts, work for continuous or pulsed beams, and work well for many
types of atoms and molecules. Phase choppers are similar to the phase shifters described in [11]
and their utility for measuring beam velocity was first proposed in [12]. This paper develops a
significantly more thorough analysis of atom beam velocity measurements using phase choppers
and we demonstrate velocity measurements with 0.1% uncertainty. We tested phase choppers
with supersonic beams of Li, Na, K and Cs, and we use the velocity measurements as inputs to
atomic polarizability measurements. To demonstrate the utility of phase choppers for precision
measurements, we present consistent measurements of Cs polarizability with 0.1% precision
using beams that had different velocities (spanning 925–1680 m s�1).

2. Phase choppers theory

The principle behind phase choppers is similar to that behind mechanical choppers. An atom
with velocity v will travel a distance L from the first chopper to the second chopper in a
time ⌧ = L/v, corresponding to a fundamental chopping frequency f0 = v/L . Mechanical
choppers simply block or transmit atoms, leading to a maximum in the transmitted flux when the
chopping frequency is any integer multiple of f0. In the method we present in this paper, phase
choppers are switched on and off by a function generator to periodically apply phase shifts to
atomic de Broglie waves in an interferometer. We will explain how this leads to a maximum
in the interferometer contrast, instead of the flux, when the chopping frequency satisfies
f = n f 0. Additionally, the ability to control wavefunction phase, rather than amplitude, allows
atoms to contribute to the interference fringes in unique ways and provides new measurement
possibilities, as we describe next.

To explain how phase choppers enable velocity measurements, we will describe how the
atom interference pattern changes when the phase choppers are switched on and off at several
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Figure 1. Atoms with different starting times will acquire 0, +⇡ (red) or �⇡
(blue) phase shifts as they pass through choppers 1 and 2, depending on their
velocity v and the chopping frequency f . The time it takes an atom with velocity
v to travel the distance L between the choppers is ⌧ and f0 = 1/⌧ . We measure
the average of the sinusoidal probability distributions formed by each atom
interfering with itself, shown at the right. The reference interference pattern with
the choppers off is shown in blue and the resulting interference patterns with the
choppers on are shown in red.

particular frequencies. Before turning on the phase choppers, the atom interference pattern is
given by hN i(1 + C0 sin(kx + �0)), where hN i is the average flux, C0 is the reference contrast and
�0 is the reference phase. This interference pattern represents a sum of the sinusoidal probability
distributions of each detected atom (see [13, 14] for additional information). Depending on its
start time and velocity and the chopping frequency, an atom will pass through the choppers
in one of four possible pairs of conditions (off–off, on–off, off–on or on–on) and produce a
probability distribution phase-shifted by an amount equal to the sum of the differential phase
shifts applied by each phase chopper. For clarity, we specify the differential phase shift from
chopper 1 to be ⇡ , the differential phase shift from chopper 2 to be �⇡ , and the duty cycle to
be 50%; however, we stress that phase choppers still enable velocity measurements when using
other phase shifts and duty cycles. We now describe what happens to the interference pattern
created by atoms with a single velocity v when the choppers are switched at four particular
frequencies (see figure 1):

• f ⌧ f
0

. Atoms experience the off–off (0 net differential phase shift) or on–on (0 net
differential phase shift) pairs of conditions with equal likelihood, and all atoms emerge
with 0 net phase shift. The contrast and phase of the detected ensemble remain unchanged.
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• f = f
0

/4. Atoms experience each of the four possible pairs of conditions, off–off (0),
on–off (⇡ ), off–on (�⇡ ) and on–on (0), with equal likelihood. Therefore, half of the
ensemble will acquire a 0 net differential phase shift, and half will acquire a ⇡ net
differential phase shift. The ensemble contrast is 0 and phase is indeterminate. Contrast
minima repeat at frequencies f = (2n + 1) f0/4, where n is an integer.

• f = f
0

/2. Atoms experience on–off (⇡ ) and off–on (�⇡ ) pairs of conditions with equal
likelihood. The ensemble contrast remains unchanged, but the phase shifts by ⇡ (modulo
2⇡ ). Contrast revivals with ⇡ phase shifts repeat at frequencies f = (2n + 1) f0/2.

• f = f
0

. Once again, all atoms experience the off–off (0) or on–on (0) states. The ensemble
contrast and phase remain unchanged. Contrast revivals with no phase shift repeat at
frequencies f = n f0.

These simple cases show how by finding the value of f0 one can find the velocity of an
atom beam through the relation v = L f 0. The contrast revivals and minima that occur at large
n provide a way of leveraging small changes in velocity into large changes in revival/minima
frequency. In practice, we find the velocity of our atom beam by measuring the contrast at many
frequencies and fitting the contrast data to a model discussed below. Figure 3 shows fitted data
from a typical chopper frequency scan using a more rigorous model that we develop next. The
major corrections to the simple model include methods to account for velocity distribution,
velocity-dependent phase shifts from the choppers, application of non-⇡ average phase shifts,
and velocity-dependent phase shifts due to the Sagnac effect.

The contrast and phase of the measured interference pattern are given by an average of the
fringe patterns formed by atoms with different start times, t , and velocities, v, weighted by the
velocity probability distribution P(v):

C( f )ei�( f ) = C0ei�0
f

Z 1/ f

t=0

Z 1

v=0
P(v)ei(�1(v,t)+�2(v,t+L/v)) dt dv, (1)

where C( f ) and �( f ) are the contrast and phase of the measured fringe pattern, and �1(v, t)
and �2(v, t) are the differential phase shifts applied by choppers 1 and 2.

The nonzero width of the velocity distribution of the atom beam modifies the chopper
revivals in two ways. Firstly, different velocity classes correspond to different fundamental
frequencies f0 and this causes a decay of the contrast revival envelope. Secondly, the differential
phase shift acquired by an atom passing through a chopper is velocity dependent, and therefore
it is impossible to apply the same differential phase shift to all atoms. This phase dispersion
decreases the contrast at f = (2n + 1) f0/2 revivals and increases the contrast at f = n f0

revivals.
We model the velocity distribution of the supersonic atom beam used in our interferometer

by

P(v, v0, r)dv = Av3e� r

2
2 (v/v0�1)2

dv, (2)

where v is the velocity, v0 is the flow velocity, r describes the sharpness of the velocity
distribution and A is a normalization factor [7]. For sharp velocity distributions, r � 1, the
normalization factor can be written as A = (

p
2⇡v4

0(r
�1 + 3r

�3))�1. In the next section, we
describe how we build and operate the phase choppers and fit the measured contrast versus
chopping frequency to find v0 and r (see figure 3).
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Figure 2. Nanogratings 1G, 2G and 3G form a Mach–Zehnder interferometer.
Two phase choppers (c1 and c2) are placed a distance L = 1270.68(25) mm
apart. A voltage V (t) applied across the choppers creates an electric field (dashed
lines). Atoms with velocity v passing through choppers 1 and 2 acquire net
differential phase shifts �1(t) + �2(t + L/v). The Earth rotation rate �E modifies
the measured contrast and phase via the Sagnac effect, especially for slow beams.
A hot-wire detector counts the atoms. Diagram not to scale.

3. Experimental design

Before describing in detail how the phase choppers enable velocity measurements, we briefly
review our atom interferometer and the construction of the phase choppers. We use three
100 nm period nanogratings to diffract a supersonic beam of atoms and create a Mach–Zehnder
interferometer (see figure 2). An atom diffracted by the first and second gratings will be found
with a sinusoidal probability distribution at the plane of the third grating. The third grating acts
as a mask of this interference pattern. We measure the flux as a function of grating position
to determine the phase and contrast of the fringe pattern. The gratings are each separated by
940 mm. We detect hN i ⇡ 105 atoms s�1 with a typical contrast of C0 ⇡ 25% using a hot-wire
detector 0.5 m beyond the third grating. See [1, 13, 14] for additional information.

We implemented phase choppers with electric field gradients switched on and off at a
frequency f ranging from 0 to 30 kHz. We create the electric field gradient by periodically
applying a voltage V (t) of 1–5 kV to a D = 1.57 mm diameter copper wire at a distance
a = 1 mm from a grounded aluminum strip. See [11], figure 3 for a schematic of the phase
chopper. The high voltage is switched on and off in less than 200 ns with a DEI PVX-4130 pulse
generator controlled by an SRS DS345 function generator. We place chopper 1 at a distance of
approximately 300 mm after the first grating (and chopper 2 at a similar distance before the
third grating). We measured the chopper 1 to chopper 2 distance as L = 1270.68(25) mm. Two
translation stages allow us to move the choppers perpendicular to the beam.

An atom with velocity v passing through the 1 mm gap in phase chopper i will acquire a
differential phase shift

�
i

(v, t) = c

↵V (t)2

v

s(v)(2x0i

+ s(v))

(b2 � x

2
0i

)(b2 � (x0i

+ s(v))2)
, (3)

where c = 8⇡2
b/h ln�2((a + D/2 + b)/(a + D/2 � b)), ↵ is the atomic polarizability, v is the

velocity of the atom, x0 is the beam position relative to the ground plane, m is the mass of
the atom, b = a

p
1 + D/a, s(v) = hLgc/mvdg is the path separation at the chopper, dg is the
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Figure 3. Phase chopper data (circles) and corresponding best-fit functions (red
curves) for (a) a cesium atom beam with a 70% helium, 30% argon carrier gas
and (b) a potassium atom beam with a 100% helium carrier gas and using �1 and
�2 as free parameters in the least-squares fit rather than fixed at the measured
values �

iDC. f0 for each data set is labeled. We fit the contrast (black) to find
the flow velocity v0 and velocity ratio r . The statistical error for each contrast
measurement is shown in fit residuals. The measured phase (blue) is also shown,
but is not fit. Each point is derived from 5 s of data.

New Journal of Physics 13 (2011) 115007 (http://www.njp.org/)



113

7

grating period, Lgc is the distance from the first grating to chopper 1 or from the third grating to
chopper 2, and h is Planck’s constant. Classically, one may describe the differential phase shift
by a transverse deflection in an electric field where the force is given by F = ↵ErE. See [1]
for a full derivation of the acquired phase with a similar electrode geometry.

While equation (3) is useful for designing the chopper geometry for an expected atom
beam velocity, we cannot use it directly to measure beam velocity. Doing so would require not
only more accurate knowledge of the chopper geometry, but also knowledge of polarizability—
the very quantity that we would like to eventually measure. Instead, we empirically tune the
choppers to induce ⇡ and �⇡ differential phase shifts by adjusting the voltage V applied to
both choppers and the position x0 of each chopper individually. We refer to the actual induced
differential phase shift as �

iDC, where i is the chopper number. For 0.1% uncertainty velocity
measurements, we can tolerate phase differences (�

iDC � ⇡)/⇡ as large as 5%, provided that
the uncertainty in the measured phase shift is less than 0.5%.

After tuning and accurately measuring the chopper 1 and chopper 2 DC differential phase
shifts �

iDC, we are nearly ready to substitute them into equation (1) and measure contrast versus
frequency to find velocity. First, however, we must make a correction to undo the effect of the
velocity spread on the measurement of �

iDC. The proper phase shift to input into equation (1)
for velocity measurements is �

i0, defined by

C

iDCei�
iDC = C0

Z 1

v=0
P(v, v0, r)ei�

i0(v0/v)2
dv. (4)

Using the parameter �
i0 and the fact that s(v) ⌧ x0, equation (3) can now be well approximated

by

�
i

(v, t) ⇡ �
i0

⇣v0

v

⌘2
✓

V (t)

VDC

◆2

. (5)

Note that the 1/v2 dispersion comes from the fact that s(v) in equation (3) is inversely
proportional to v. In the limit of a very sharp velocity distribution, r ! 1 and �

i0 ! �
iDC.

Ignoring this correction and assuming �
i0 = �DC results in an error in v0 of 0.1% for beams with

r = 10, and 0.01% for beams with r = 40.
We proceed to measure the contrast and phase of the interference pattern at a series of

chopping frequencies. We perform a least-squares fit of measured contrast using equation (1).
Because �

i

depends on P(v) through equations (4) and (5), we must numerically solve
equation (4) for each iteration of the fit routine. The measured phase �( f ) provides a
consistency check of the results of the contrast fit, but by itself is a less sensitive measure of
velocity.

4. Results and errors

Figure 3(a) shows a chopper frequency scan from a beam with a slow v0 and sharp r , and
figure 3(b) shows a chopper frequency scan from a beam with a fast v0 and broad r . We perform
a least-squares fit of the contrast data to equation (1) to find v0 and r . The error budget of
the measurement is shown in table 1 and each parameter is discussed below. We estimate the
uncertainty in v0 and r due to each parameter by performing fits of the data at a parameter’s
central value and +/� its uncertainty. We also tested the stability of the least-squares fits with
respect to uncertainty in each parameter by halving and doubling the uncertainties.
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Table 1. Error budget for a typical velocity measurement with phase choppers.
Parameter Value (Unc.) Uncertainty in v0 (%)

Stat error in v 0.04
L 1270.68(25) mm 0.02
�1DC/⇡ 1.000(5) 0.01
�2DC/⇡ 1.000(5) 0.01
Beam width 100(30) µm 0.04
Initial contrast C0 25(2)% 0.04
Transit time 2 µs 0.005
Switching time 200 ns 0.001
Duty cycle 50.0(3)% 0.005
Sagnac phase shift 1.46(2) rad 0.005
Molecules 10(10)% 0.02

Total 0.08

We measured the distance between the two choppers, L , by inserting the ends of a
calibrated tape measure between the wire and ground plane of each chopper. We subdivided the
millimeter markings on the tape measure by analyzing high-resolution digital photographs of
the tape measure inserted into each chopper. We took care to take the pictures with the chopper
wire centered in the frame and from normal incidence to the ground plane. Thermal expansion
may change the distance between choppers by no more than 150 µm (0.01%), significantly less
than the measurement uncertainty in L .

Adding the Sagnac phase shift from the Earth’s rotation into the analysis also yields
small corrections to the best fit v0 and r . The corrections to v0 and r can be as large as
0.2 and 4%, respectively, for slower beams with smaller r . Holmgren et al [1] explains how
we incorporate the Sagnac phase shift in our interferometer model. The uncertainty in this
correction is negligible.

We add a correction to the phase chopper model to account for the nonzero width of the
atom beam and additional interferometers formed by other diffraction orders. We model this
correction by making �

i

(v, t) (equation (3)) a function of x0 as well and then introducing an
additional average over beam width (x0) in equation (1). For the widest beams, the correction to
v0 and r is less than 0.1%, and the uncertainty in v0 due to the beam width is less than 0.04%.

Despite accounting for the averaging of fringe patterns from the velocity distribution and
beam width, the measured reference contrast is systematically 1–2% larger than the best-fit
contrast parameter C0. Fixing C0 at its measured value in a least-squares fit of the chopper
frequency scan typically results in an unrealistically small r , which then requires slightly slower
v0 to fit the data well. We estimate the uncertainty from this parameter by taking the full
difference in fitted v0 when using the two different initial contrasts. Future work is needed
to discover the source of this uncertainty.

The voltage switching time and the transit time for atoms through the choppers introduce
additional mechanisms by which the phase shifts may be different than desired. The switching
time can be thought of as making the phase shifts depicted in figure 1 have fuzzy edges in time,
while the finite extent of the electric field causes fuzzy edges in space. Both these corrections
are negligible at our level of precision (see table 1).
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Alkali dimer molecules slightly influence the chopper data as well. The rotationally
averaged alkali dimer polarizabilities are slightly less than twice the atomic polarizabilities [15],
but the de Broglie wavelength, and hence path separation s(v), for the dimers is half as large.
Therefore, dimers acquire slightly smaller differential phase shifts than atoms. We estimate
the number of alkali dimers in the atom beam in three ways. Firstly, we examine the far-field
diffraction pattern from the first grating when the diffraction angle (determined by the atoms’
mass and velocity) is sufficiently large to observe resolved diffraction orders. Molecules produce
diffraction peaks at 1/2 the diffraction angle of atoms and we can determine the fraction of
molecules in the beam by comparing diffraction order intensities between atoms and molecules.
Secondly, although we cannot use a measurement of the DC phase shift, �

iDC, to determine
atomic polarizabilities, as discussed in section 3, we can use it to estimate the number of
molecules in the beam. Molecule fractions greater than 10% would produce DC phase shifts
inconsistent with what we expect from the phase choppers at a given position and voltage.
Finally, the quality of the least-squares fit to the chopper data noticeably decreases when the
molecule fraction rises above 10%.

We tested phase chopper velocity measurements against less precise velocity
measurements using diffraction from a nanograting. We found no discrepancy between the
two methods. However, as described in [1], we must account for a small difference between
the velocity distribution of the entire beam (as measured by diffraction) and the velocity
distribution of the atoms detected in the interferometer (as measured by phase choppers). The
difference exists because the dispersive nature of the nanogratings, combined with detector size
and beam width, leads to a velocity distribution in the atom interferometer that depends on
the position of the detector. For precision measurements, it is preferable to directly measure
the velocities of atoms that contribute to the detected interference pattern and thus avoid
the correction (0.25% in v0) and its associated uncertainty (0.1%). In this respect, phase
choppers are better than nanograting diffraction for measuring beam velocity in an atom
interferometer.

We also tested the phase choppers by measuring the static ground state polarizability of
cesium using beams with three very different flow velocities on three different days. Each day
we alternated between measurements of beam velocity and polarizability every hour to account
for small changes in velocity (<0.5%) over the course of a day due to instability in beam
source temperature. The statistical error of each measurement of velocity was less than 0.1%.
To measure polarizability, we used a third electric field gradient region that will be described in
a future publication. We find the cesium polarizability (stat. unc.) to be 59.84(4), 59.71(7) and
59.85(8) Å3 at flow velocities of 925, 1345 and 1680 m s�1. These polarizability measurements
are subject to a systematic correction due to the third gradient region, but the consistency of
the polarizability measurements provides strong evidence that our velocity measurements using
phase choppers are reproducible at the 0.1% level.

Finally, we have also modeled and tested the phase choppers in the �1DC = +⇡ and
�2DC = +⇡ mode. In the limit of an infinitely sharp velocity distribution (r ! 1), there is
no difference between the +⇡ , +⇡ configuration and the +⇡ , �⇡ configuration. However, the
finite velocity spread and the fact that �

iDC never exactly equals ±⇡ results in the +⇡ , �⇡
configuration yielding slightly more precise results than the +⇡ , +⇡ configuration.
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5. Conclusion

We used phase choppers to measure the velocity of atoms in an atom interferometer with 0.1%
uncertainty. Phase choppers work for continuous or pulsed beams, do not require resolved
diffraction, have no moving parts, and work well for many types of atoms and molecules.
These velocity measurements enable high-precision absolute and ratio measurements of atomic
polarizabilities. This work was supported by NSF Award no. 0969348.
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Light at a magic-zero wavelength causes a zero energy shift for an atom. We measured the longest

magic-zero wavelength for ground state potassium atoms to be !zero ¼ 768:9712ð15Þ nm, and we show

how this measurement provides an improved experimental benchmark for atomic structure calculations.

This !zero measurement determines the ratio of the potassium atom D1 and D2 line strengths with record

precision. It also demonstrates a new application for atom interferometry, and we discuss how decoher-

ence will fundamentally limit future measurements of magic-zero wavelengths.

DOI: 10.1103/PhysRevLett.109.243004 PACS numbers: 32.10.Dk, 03.75.Dg, 32.70.Cs

The light-induced energy shift of an atom depends on the
light wavelength, and there exist magic-zero wavelengths
for which the energy shift vanishes [1,2]. A magic-zero
wavelength (!zero) is found between atomic resonances,
where the light is red-detuned from one resonance and
blue-detuned from another. Opposing contributions from
these resonances produce a root in the energy shift spectrum
at !zero. In this Letter, we report a measurement of a magic-
zero wavelength made with an atom interferometer.

LeBlanc and Thywissen [1] referred to !zero as tune-out
wavelengths and discussed their utility for multispecies
atom traps. Since then, various !zero have been used in
experiments to study entropy exchange [3], quantum in-
formation processing [4], and diffraction of matter waves
from an ultracold atom crystal [5]. However, the light used
in experiments [3–5] to minimize energy shifts can be
hundreds of picometers different than the !zero values
calculated in Refs. [1,2] due to impure optical polarization.
LeBlanc and Thywissen predicted a !zero for each alkali
atom with 10 pm precision based on the wavelengths of
their principal (D1 and D2) transitions. More recently,
Arora, Safronova, and Clark [2] predicted magic-zero
wavelengths by using state-of-the-art atomic theory calcu-
lations of dipole matrix elements for several transitions in
each atom, including core electron excitations. For the
!zero we measured, Arora, Safronova, and Clark stated a
theoretical uncertainty of 3 pm. In comparison, our mea-
surement has an uncertainty of 1.5 pm. Because calcula-
tions of dipole matrix elements similar to those used in
Ref. [2] are needed to calculate static polarizabilities, state
lifetimes, line strengths, van der Waals potentials, and
magic wavelengths [6–8], we are motivated to explore
how measurements of magic-zero wavelengths can serve
as new benchmark tests of atomic structure calculations.

In this Letter, we present a measurement of the magic-
zero wavelength for potassium between the 770 (D1) and
767 nm (D2) transitions. Our measurement of !zero ¼
768:9712ð14Þstatð6Þsys is a novel test of atomic structure
calculations and provides the most precise determination

yet of the ratio of the D1 and D2 line strengths S1 and S2.
We find the ratio

R ¼ S2
S1

¼ jh4sjjDjj4p3=2ij2
jh4sjjDjj4p1=2ij2

¼ 2:0005ð40Þ: (1)

The ratio of degeneracies for the excited states would make
R ¼ 2; however, relativistic corrections slightly reduce the
predicted ratio to R ¼ 1:9987 [9]. Our measurement is
consistent with the prediction in Ref. [2], and our mea-
surement uncertainty is half as much as the theoretical
uncertainty quoted in Ref. [2].
Most measurements of static and dynamic polarizabil-

ities [10–14] are limited by uncertainty in the electric field
strength and uncertainty in the time an atom interacts with
the field. However, our measurement of the wavelength at
which the polarizability is zero is not subject to uncertainty
from these factors. Instead, we will discuss systematic
errors in !zero measurements caused by laser spectra and
statistical limitations caused by contrast loss and small
(mrad=pm) phase shifts near !zero.
The longest magic-zero wavelengths for alkali atoms are

determined mostly by the transition energies @!1 and @!2

and the ratio R of the line strengths. We use the sum-over-
states approach to describe the dynamic polarizability
"ð!Þ near these two transitions by

"ð!Þ ¼ 1

3@ S1! !1

!2
1 $!2 þ R

!2

!2
2 $!2

"
þ A; (2)

where A accounts for contributions from core excitations,
higher energy valence transitions, and core-valence cou-
pling [6,15]. At the longest magic-zero wavelength of
potassium, A is 0.02% of the nearly equal and opposite
contributions from the principal transitions to the polar-
izability and A changes !zero by 0.15(1) pm [9]. Therefore,
the uncertainty in this magic-zero wavelength calculation
is nearly entirely determined by uncertainty in the ratio of
the line strengths, R.
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The line strengths S1 and S2, and thus R, can also be
determined from state lifetimemeasurements. To our knowl-
edge, the most precise independent measurements of the
4p1=2 and 4p3=2 state lifetimes were performed by Volz
and Schmoranzer using beam-gas-laser spectroscopy [16].
They reported lifetime uncertainties of 0.25% and a similar
uncertainty forR (which leads to a 2 pmuncertainty in!zero).
In comparison, our measurement of R has an uncertainty of
0.20%. State lifetimes can also be derived frommolecular or
photoassociation spectroscopy [17,18].However, these spec-
troscopy experiments [17,18] do not distinguish between
the 4p1=2 and 4p3=2 state lifetimes (they depend on an
average), so they cannot be used to determine R or !zero.

To measure the magic-zero wavelength, we focused
500 mW of laser light asymmetrically on the paths of our
three grating Mach-Zehnder atom interferometer [19–21].
Atom waves propagating along each interferometer path
acquired a phase shift "ð!Þ proportional to the dynamic
polarizability #ð!Þ at the laser frequency !. We found the
laser frequency !zero ¼ 2$c=!zero at which the dynamic
polarizability vanishes by measuring the phase shift as a
function of laser wavelength.

The phase shift "0ð!Þ along one interferometer path is
given by

"0ð!Þ ¼ #ð!Þ
2%0c@v Z 1

$1
Iðx; zÞdz; (3)

where v % 1600 m=s is the atom velocity, Iðx; zÞ is the
laser beam intensity (assumed to be monochromatic for
now), x is the transverse coordinate in the plane of the
interferometer, and z is the longitudinal coordinate. The
laser beam intensity was 400 W=cm2 (500 mW focused to
a beam waist of % 200 &m). We measure the differential
phase shift "ð!Þ for two components of the atomic wave
functions that are separated by 60 &m in our atom inter-
ferometer. Figure 1 shows the differential phase shift and
contrast of the interferometer as the laser wavelength is
scanned 5 nm across the D1 and D2 lines.

Equation (3) is useful for understanding the origin of the
phase shift, similar to"ð!Þ shown in Refs. [11,13]. But our
measurements of !zero do not depend on precise knowledge
of the atom beam velocity or the focused laser beam
irradiance. Changes in these parameters would affect
only the magnitude of the phase shift, not the zero crossing.
Therefore, we reduce Eq. (3) to simply

"ð!Þ ¼ b#ð!Þ; (4)

where b is a parameter proportional to the laser beam
intensity and the interaction time. To precisely measure
!zero, we studied phase shifts within 100 pm of !zero, as
shown in Fig. 2. The laser power changed with wavelength
and drifted over time, so we monitored the power incident
on the atom beam and normalized the measured phase
shifts. We reproduced this 1 h experiment 35 times over
a period of 5 d. We fit these data to Eqs. (2) and (4), with R

and b as the only free parameters. The precision with
which we can determine !zero is determined by the slope
d"=d!. This slope is typically 1 mrad=pm, and our phase
uncertainty from shot noise is '" % 1 mrad with 5 min of
data.
Our reported measurement of the magic-zero wave-

length is the average of 35 individual measurements of

FIG. 1 (color online). Measurements of the interferometer
(a) phase shift " and (b) contrast C as a function of laser
wavelength. The measured phase shifts are normalized by the
laser power at that wavelength. The reference contrast C0 is
shown as black circles.

FIG. 2 (color online). Measurements of phase shift and laser
wavelength. Each point represents 5 min of data. The fit uses
Eqs. (2) and (4) described in the text, with free parameters R and
b. R determines !zero.
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!zero after discarding the highest and lowest 10% of the
measurements. The reported statistical error (1.4 pm) is
twice the standard error of the mean of the trimmed data
set. Figure 3 shows the 35 !zero measurements and the
trimmed mean. Table I shows a summary of the error
budget, and we discuss systematic errors associated with
the laser system below.

We generated 2 Wof laser light using a master oscillator
power amplifier system [22,23]. We used a Littrow
extended cavity diode laser with wavelength-dependent
pointing compensation [24] to keep the seed light well
coupled into a tapered amplifier over a 5 nm tuning range.
A Bristol Instruments 621B wavelength meter calibrated
against a saturated absorption signal in a vapor cell mea-
sured the vacuum wavelength of the seed laser with an
uncertainty of 0.3 pm.

After spatial filtering with a single mode fiber, 1% of the
power was in a broadband spectral component from spon-
taneous emission in the tapered amplifier [25]. To quantify
the uncertainty in !zero caused by this broadband compo-
nent, we characterized the laser spectrum with a grating
spectrometer, and we accounted for the laser spectrum by
modifying Eq. (3) with an additional integral over the
frequency-dependent laser intensity. We calculated that
the broadband light introduces an uncertainty of 0.5 pm
to our measurement of !zero.

We also measured the crossing angle between the laser
and atom beams and applied a 0.56(5) pm correction to
!zero due to the Doppler shift. We note that our measure-
ment was performed on an atom beam with a natural
abundance of potassium isotopes. If we assume that R is
the same for 39K and 41K, then the measured !zero is
predicted to be 0.03 pm less than the 39K !zero. Finally,
we calculated that, at the intensity we are using, the hyper-
polarizability of the ground state causes a shift for !zero on

the order of 0.001 pm. This is negligible in our current
experiment but suggests an interesting opportunity for
future measurements of intensity-dependent shifts in !zero

due to higher order effects.
Contrast loss due to several factors analogous to inho-

mogeneous broadening limits the precision with which
!zero can be measured. Averaging over the width of the
atom beam and accounting for þ1 and "1 diffraction
orders from the first nanograting explains most of the
observed contrast loss in Fig. 1(b) [19]. The velocity spread
of the atom beam ("v # v0=15) slightly reduced the
observable contrast as well. The small contrast loss due
to light at !zero can be explained by unintended elliptical
polarization of the laser beam. Circular polarization causes
different Zeeman substates (mF) to acquire different phase
shifts even at !zero. Averaging over all eight jF;mFi states in
our experiment reduces the contrast but introduces little
error to !zero thanks to the equal (thermally distributed)
populations of all mF in our atom beam. We allow for a
conservative 0.1 pm uncertainty in !zero due to unaccounted-
for effects such as quadratic Zeeman shifts or optical pump-
ing compounded with the light polarization.
Because of the contrast loss from all these mechanisms,

if we could optimize our experiment just by increasing the
laser power without bound, we would choose only 10 times
more power. Furthermore, this would result in only 5 times
better sensitivity, approaching 50 pm=

ffiffiffiffiffiffi
Hz

p
. If we had

power to spare, one way to maintain higher contrast would
be to use a triangular mask for a large area light beam. This
would cause the differential phase shift to be independent
of position in the atom beam.
Next, we explore how photon scattering, analogous to

homogeneous broadening, imposes a fundamental limit on
the precision with which any magic-zero wavelength can
be measured, even in different types of experiments. Atom
interferometers are, in principle, ideal tools for studying
the small energy shifts that result from light near !zero.
However, magic-zero wavelengths may also be measured
with other methods. For example, atom loss rates in an
optical dipole trap would increase near !zero. A Bose-
Einstein condensate imprinted by a light beam redder
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FIG. 3 (color online). The 35 separate !zero measurements
(solid blue) and the trimmed mean (open red). We assumed
that the statistical errors of all measurements were the same, and
we report twice the standard error of the trimmed mean as the
final statistical error.

TABLE I. Magic-zero wavelength error budget.

Source of error !zero error (pm)

Laser wavelength 0.3
Broadband light 0.5
Polarization 0.1
Doppler shift 0.05

Total systematic error 0.6
Total statistical error 1.4

Total error 1.5
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(or bluer) than the magic-zero wavelength may produce
light (or dark) solitons. Studying vortex excitation proba-
bility from a laser stir stick [26] may provide another way
to measure !zero in Bose-Einstein condensate systems.
Atoms can diffract from an optical lattice near (but not
at) !zero, and atom beam deflections can be induced by
light detuned from !zero [12]. But all of these methods
essentially rely on changes to the center of mass motion for
atoms or, equivalently, changes to the de Broglie wave that
represents this motion. Atomic clocks provide similar (pic-
ometer) precision for measurements of the magic wave-
lengths (!magic) that depend on the differential light shift
for two states [7,8], but, because clocks are affected by
shifts in both ground and excited states, they are less ideal
for measurement of magic-zero wavelengths (!zero) dis-
cussed here. Furthermore, all of these proposed experi-
ments are limited by decoherence or heating due to
photon scattering.

To quantify this fundamental limitation due to decoher-
ence in our experiment, let !i be the detuning from reso-
nance i,"i be the Rabi frequency, and T be the time that an
atom is exposed to the laser beam. In the large detuning
limit (!2

i ! "2
i ), the slope d"=d! is proportional toP

iT"
2
i =!

2
i , whereas the phase uncertainty increases expo-

nentially with the same factor [27]. This indicates that a
more powerful laser or a longer interaction time offers
diminishing returns for the experimental sensitivity to
!zero. To minimize the shot noise limited uncertainty in
!zero, we should increase the pulse area (IT) until we obtain
a contrast reduction of C=C0 ¼ e#1.

Our experiment could be significantly improved by
increasing the atom interferometer path separation so the
laser can be entirely focused (with homogeneous irradiance)
on one interferometer path. The elliptical polarization could
be reduced by a factor of 105 by passing the laser beam
through a high quality polarizer immediately before it crosses
the atom beam, and the broadband light component could be
reduced by using a different type of laser or filtering the light
with a grating and aperture. In this more ideal situation,
decoherence is the only remaining source of contrast loss.
We calculated a maximum achievable slope d"=d! of

d"

d!
$ 1

2#
Ps; (5)

where Ps is the probability that an atom scatters one or more
photons and # is the excited state decay rate. With optimized
contrast loss due to scattering (Ps ¼ 1# e#1), the slope
becomes as large as d"=d! ¼ 40 rad=pm. In this way,
future measurements of magic-zero wavelengths can be
madewith very high precision, possibly with accuracy limited
by a shot noise sensitivity better than picometers per

ffiffiffiffiffiffi
Hz

p

with current technology. Perhaps this can be achieved in an
ultracold atom interferometer [11]; however, such experi-
ments typically would measure the magic-zero wavelength
of a particular jF;mFi state and therefore may be more

sensitive to uncertainties in the laser polarization and mag-
netic fields.
As an outlook, the !zero measurement presented here

provides a foundation for a new set of experimental bench-
marks that can be used to test atomic structure calculations.
Future measurements of several other magic-zero wave-
lengths in potassium and other atoms can be accomplished
with similar techniques. For example, in potassium atoms,
two additional magic-zero wavelengths occur near the 4s to
5pj transitions. One magic-zero wavelength near 405.96
(4) nm is between the 4s# 4p and 4s# 5p transitions,
while the other magic-zero wavelength near 404.72(4) nm
is between the 4s# 5p1=2 and 4s# 5p3=2 transitions.
Therefore, measurements of two other !zero combined with
the one reported here could be used to specify ratios of four
line strengths. However, #core [the largest component of the
semiempirical parameter A in Eq. (2)] more strongly affects
!zero near 405 nm [9]. Therefore, new !zero measurements
will also provide benchmark tests for the contributions from
core electrons to polarizabilities. Magic-zero wavelength
measurements in heavier atoms, where the fine-structure
splitting is larger, will bemore sensitive to both core-electron
contributions and relativistic corrections to the line strength
ratio R. Measurements of hyperpolarizability may also be
accomplished by measuring energy shifts at magic-zero
wavelengths that depend on intensity squared (i.e., E4).
In summary, we measured the longest magic-zero wave-

length of potassium with 1.5 pm uncertainty. The measured
phase shifts and resulting precision in !zero could be
increased by 3 orders of magnitude in future work by
focusing a laser beam entirely on one path of the atom
interferometer, more accurate measurements of the laser
spectrum, andmore careful control of the laser polarization.
We thank M. S. Safronova and B. P. Anderson for

enlightening discussions and J. D. Ronan and J. O.
Kessler for help starting this experiment. This work is
supported by NSF Grant No. 0969348 and a NIST PMG.
W. F. H. thanks the Arizona TRIF and R. T. thanks NSF
GRFP Grant No. DGE-1143953 for additional support.
Note added.—Recently, we became aware of a recent

!zero measurement in rubidium [28].
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The Journal of Chemical Physics 94, 6857 (1991).

[39] W. D. Knight, K. Clemenger, W. A. de Heer, and W. A. Saunders, Phys. Rev.
B 31, 2539 (1985).

[40] G. Tikhonov, V. Kasperovich, K. Wong, and V. V. Kresin, Phys. Rev. A 64,
063202 (2001).

[41] A. Dalgarno, Advances in Physics 11, 281 (1962).

[42] E.-A. Reinsch and W. Meyer, Phys. Rev. A 14, 915 (1976).

[43] W. Müller, J. Flesch, and W. Meyer, J. Chem. Phys. 80, 3297 (1984).

[44] A. Derevianko, W. R. Johnson, M. S. Safronova, and J. F. Babb, Phys. Rev.
Lett. 82, 3589 (1999).

[45] M. S. Safronova, W. R. Johnson, and A. Derevianko, Phys. Rev. A 60, 4476
(1999).

[46] I. S. Lim, P. Schwerdtfeger, B. Metz, and H. Stoll, J. Chem. Phys. 122, 104103
(2005).

[47] M. S. Safronova, B. Arora, and C. W. Clark, Phys. Rev. A 73, 022505 (2006).

[48] L.-Y. Tang, Z.-C. Yan, T.-Y. Shi, and J. Mitroy, Phys. Rev. A 81, 042521
(2010).

[49] B. Arora, M. S. Safronova, and C. W. Clark, Phys. Rev. A 76, 052516 (2007).

[50] B. Arora and B. K. Sahoo, Phys. Rev. A 86, 033416 (2012).



129

[51] N. F. Ramsey, Molecular Beams (Oxford University Press, 1956).

[52] P. Berman, ed., Atom Interferometry (Academic Press, San Diego, 1997).
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