Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unifying probabilistic models for time-frequency analysis

https://arxiv.org/abs/1811.02489

Paper accepted to International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019.

In our paper we show equivalence between probabilistic time-frequency models (e.g. the probabilistic phase vocoder) and Spectral Mixture Gaussian processes. Therefore this code serves 3 novel purposes:

  • Providing an easy way to construct more complex probabilistic time-frequency models by swapping in different kernel functions.

  • Converting Spectral Mixture GPs to state space form so we can apply Kalman smoothing for efficient inference that scales linearly in the number of time steps.

  • Hyperparameter tuning in spectral mixture GPs via a maximum likelihood approach in the frequency domain (Bayesian spectrum analysis).

matlab/ folder contains the code and example scripts.

matlab/experiments/ folder allows you to rerun the missing data synthesis experiments from the paper and produce the plots.

matlab/prob_filterbank folder contains Richard Turner's standard probabilistic time-frequency analysis code.

Reference:

@inproceedings{wilkinson2019unifying,
       title = {Unifying probabilistic models for time-frequency analysis},
      author = {Wilkinson, William J. and Andersen, Michael Riis and Reiss, Joshua D. and Stowell, Dan and Solin, Arno},
        year = {2019},
   booktitle = {International Conference on Acoustics, Speech and Signal Processing (ICASSP)}
}

About

Unifying probabilistic models for time-frequency analysis. Spectral Mixture Gaussian processes in state space form.

Resources

License

Releases

No releases published

Packages

No packages published

Languages