Skip to content

wil-j-wil/unifying-prob-time-freq

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unifying probabilistic models for time-frequency analysis

https://arxiv.org/abs/1811.02489

Paper accepted to International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019.

In our paper we show equivalence between probabilistic time-frequency models (e.g. the probabilistic phase vocoder) and Spectral Mixture Gaussian processes. Therefore this code serves 3 novel purposes:

  • Providing an easy way to construct more complex probabilistic time-frequency models by swapping in different kernel functions.

  • Converting Spectral Mixture GPs to state space form so we can apply Kalman smoothing for efficient inference that scales linearly in the number of time steps.

  • Hyperparameter tuning in spectral mixture GPs via a maximum likelihood approach in the frequency domain (Bayesian spectrum analysis).

matlab/ folder contains the code and example scripts.

matlab/experiments/ folder allows you to rerun the missing data synthesis experiments from the paper and produce the plots.

matlab/prob_filterbank folder contains Richard Turner's standard probabilistic time-frequency analysis code.

Reference:

@inproceedings{wilkinson2019unifying,
       title = {Unifying probabilistic models for time-frequency analysis},
      author = {Wilkinson, William J. and Andersen, Michael Riis and Reiss, Joshua D. and Stowell, Dan and Solin, Arno},
        year = {2019},
   booktitle = {International Conference on Acoustics, Speech and Signal Processing (ICASSP)}
}

About

Unifying probabilistic models for time-frequency analysis. Spectral Mixture Gaussian processes in state space form.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages