
THE LAWS OF FINITE POINTED GROUPS

ROGER M. BRYANT

1. Introduction

The well-known theorem of Oates and Powell [8] states that every finite group
has a finite basis for its laws. (That is, there is a finite set of laws of which every law is
a consequence.) Here we shall examine the analogous statement for finite pointed
groups, where a pointed group is a pair (G, g) consisting of a group G together with a
distinguished element g of G.

By a law of a pointed group (G, g) we shall mean a word w of the free group on
the countable set {y,xl,x2,...} such that w always becomes equal to the identity
element of G when g is substituted for y and arbitrary elements of G are substituted
for Xj, x2,... . (For example, [y, x : ] is a law of {G,g) if g is central in G.) Included
among the laws of (G, g) are the laws of the group G, or, more precisely, those words
in xt, x2,... which are laws of G. It would seem plausible that a simple modification
of the proof of the Oates-Powell theorem would yield that every finite pointed group
has a finite basis for its laws. But, rather surprisingly, this is not so. It will be shown
in this paper that there is a finite pointed group (P, p) whose set of laws has no finite
basis.

A pointed group may be regarded as a group with an extra nullary operation; so
it is an algebra in the sense of universal algebra. Thus our investigation may be
viewed in the wider context of the finite basis question for the identities of finite
algebras. It was at one time conjectured that there is a finite basis for the identities of
every finite algebra belonging to a variety in which the congruence lattice of every
algebra is modular. (See [9] for a discussion of this conjecture and its motivation.)
But examples of Polin [11] and Oates Macdonald and Vaughan-Lee [10] show the
conjecture to be false. The pointed group (P, p) constructed below provides a further
counterexample: for note that the congruences of a pointed group are the same as the
congruences of its underlying group; these correspond to the normal subgroups of
the group and so form a modular lattice.

Detailed information concerning varieties of groups may be found in [7]. The
more general concepts relating to universal algebra and varieties of algebras are
described in [3]. It is useful to note the form that some of these concepts take for
pointed groups. As indicated above, the factor algebras of a pointed group (G, g) are
the pointed groups (G/N, gN) where N is a normal subgroup of G. The subalgebras
of {G,g) are the (H,g) where H is a subgroup of G containing g. The Cartesian
product of a family ((G;, g}): X e A) is (G, g) where G is the Cartesian product of
(G;: X e A) and g is the element of G with value gk at X for all X e A. A generating set
for a pointed group (G, g) is a subset S of G such that S u {g} generates G. If (G, g)
can be generated by a set with n or fewer elements we shall say that (G,g) is an
n-generator pointed group. A variety of pointed groups is the class of all pointed
groups in which the elements of some given set of words are all laws. Equivalently it
is a class closed under the operations of taking factor algebras, subalgebras and
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Cartesian products. We shall write var (G, g) for the variety generated by (G, g); that
is, the intersection of all varieties containing (G,g).

In the finite pointed group (P, p) constructed below there are normal subgroups
K and N of P with K < N such that K has exponent 4 and class 2, N/K is an
elementary abelian 3-group and P/N is an elementary abelian 2-group. One cannot
hope for an example with substantially simpler structure. This is because the laws of
a pointed group (G, g) have a finite basis if G is either nilpotent or metabelian, as can
be proved by modification of the proofs of the corresponding results for groups due
to Lyndon [6] and Cohen [2]. Details of the necessary modifications were given by
Khan [5]. It is also likely that the similar but much more complicated proof of
Bryant and Newman [1] for groups whose commutator subgroups are nilpotent of
class 2 can be modified to apply to pointed groups.

One further fact worthy of note is that every finite pointed group (G, g) belongs
to the variety generated by a finite pointed group (G*, g*) with a finite basis for its
laws: if G = {gl,...,gn} it is sufficient to take (G*,g*) as the product
(G,gl)x...x(G,gn) whose laws are finitely based by the Oates-Powell theorem.
Hence, by what we shall prove, there exists a finite pointed group (P*, p*) with a
finite basis for its laws such that the variety generated by (P*, p*) contains a finite
pointed group (P, p) with no finite basis for its laws.

2. The example

For each positive integer n let vn denote the word yX{yX2...yx" and wn the word
[y3, (y3)1'"]. We shall show that there is a finite pointed group (P, p) which has all the
wn as laws and such that there are pointed groups (Qn, qn), one for each n, such that
(Qn-> <7n) does not have w2n as a law but every (n — 1 )-generator subalgebra of (Qn, qn)
belongs to var(P,p). Hence, for every n, every law of (P, p) which contains fewer
than n of the variables xx, x2,... is a law of (Qn, qn), but not every law of (P, p) is a
law of {Qn, qn). It follows that there is no finite basis for the laws of (P, p).

We shall begin by constructing the pointed groups {Qn, qn)\ but first a comment
on notation. There will be several instances of a group G acting (on the right) as a
group of automorphisms of another group H. When this holds HG will denote the
corresponding semidirect product. If g e G and he / / , we shall write h9 for the image
of h under the action of g, whether or not the semidirect product HG is mentioned
explicitly.

Let n be a positive integer. Let A be an elementary abelian group of order 2" and
let W be the wreath product </?>wr/4, where </?> is a cyclic group of order 3. Let B
be the base group of W. Thus B is an elementary abelian 3-group with basis
{/?": a e A} and W is a semidirect product, W = BA.

The number of maximal subgroups of A is 2" — 1. Let r = 2 " " 1 - ! and let the
maximal subgroups of A be Mo, Ml 5. . . , M2r. For each i,

so B/[B, M,] has order 9. Note that [B, M,]M, is a normal subgroup of W. Let
Wt = W/[B, M,]M, and let ^ir. W -*• Wt be the natural homomorphism. Let
Pi = fief),, ft = /?"$,• and £i = a^i where a is any element of A\Mi. Then
W{ = </?,-, ̂ ><C,-> and W-t is isomorphic to </?,-> wr < ,̂->, a group of order 18.
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Let Zf and Z- be groups isomorphic to the quaternion group of order 8. Then
Wt can be given an action on Zf x Z- such that Zf = Z\ and such that Z, and Z- are
invariant under /?,• and ft with fa acting non-trivially on Z£ but trivially on Z- and fa
acting trivially on Z,- but non-trivially on Z-. (To see this consider the group
(Z,<jSi» wr<< ,̂> with fa acting non-trivially on Z;.) Let <(,-> and <(j> be the centres
(of order 2) of Z( and Z|, respectively, and let Q denote the group (Z,- x Z|)/<C,-Ci>-
Thus C, is a group of order 32. Let yf denote the image in C{ of some element of order
4 of Z\ and let <5,- = yf. Thus (<),•> has order 2 and is both the centre and commutator
subgroup of C,. Since Wt fixes (;(;*, Ŵ  acts on Ct. Note that yf1 = y-t and

Let C be the direct product of the groups C, (0 < i < 2r). Then W can be given
an action on C such that W acts on each C, via the homomorphism (j>t. Let D be the
subgroup of C generated by all the elements <5,-<5; (0 < » < 7 < 2r). Each 5,- is fixed
under the action of W, so W acts on C/D. Let y be the element yoy! ... y2r of C. Let
Qn be the semidirect product (C/D)W and let qn be the element {y~lD)fi of Qn. Thus
we have defined a pointed group (()„, qn).

We shall now show that w2n is not a law of (Qn, qn). Let the elements of A be
a,,..., a2n. Let p and a be the elements of CW defined by

Thus a is a value of w2n in (CVF, y"1^). It is sufficient to show that a $ D. First note
that (y"1/?)3 = y since y(i = y. Also, C is nilpotent of class 2. Hence a = [y, yT] where

T =

Since u e C we can write 0" = (ToÔ  ... a2r where a{ G Q (0 ^ i ^ 2r). We have

which is equal to j?,-^ or (ft/?;)"1, and [y,-, yf'ft<] = <5{. Hence CT,- = 5t. But
505t ...<52r ^ D. Hence o fi D as required.

Now we shall prove that the intersection of the normal subgroups [6 , M^\Mt of
W is trivial. Since the M£ have trivial intersection it is sufficient to prove that the
[£, M,] have trivial intersection. Suppose otherwise, and regard B as a right
X-module in the usual way. Then there is an irreducible submodule / which is
contained in [B, M,] for all i. The kernel of / contains some maximal subgroup M, of
A and we have / £ [£, M j n C^Mi). But B = [J5, M,] x CB(Af,.), by Theorem 5.2.3
of [4], and so we have a contradiction. Thus the intersection of the [B, M,] M{ is
trivial.

Let {R,qn) be any (n — l)-generator subalgebra of {Qn,qn). Recall that
Qn = (C/D)BA and let # be the projection homomorphism from Qn onto /I. Then
(Rx,q,,x) is an (n — 1 )-generator algebra. Since qn% = 1 it follows that /?# can be
generated by n — 1 or fewer elements. Thus, for some maximal subgroup M of
A, {R, qH) is a subalgebra of {{C/D)BM, qn).

Let S be any maximal subgroup of A which is not equal to M. Then, since
A/S n M is elementary abelian of order 4, there is one and only one maximal
subgroup T of A such that S =/= T and 5 n M = T n M. This gives a pairing of the
maximal subgroups of A not equal to M. So let us assume that the maximal
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subgroups of A are numbered Mo, Ml 5 . . . , M2r in such a way that MQ = M and
M21-1 n M = M2i n M for i = l ,2 , . . . , r .

Let £ be the subgroup of C generated by the elements <52l-i<52,- (1 ^ i ^ r). Thus
{(C/D)BM,qn) is a factor algebra of ((C/E)BM, (y~lE)P). Let No = [B,Mo]MQ

and, for i = 1,..., r, let

Ni = [B, M ^ . J M ^ . i n [B, M2l.]M2l-.

Let Fo = Co and, for t = l, . . . ,r, let F, = {C2i-l x C2l)/£,- where £, = <<52l_i<52l>.
Note that £ = £ 1 x . . . x £ r and we can regard C/E as Fo x F{ x... x Fr. For
i = 0 ,1 , . . . , r, let

Then each X,- is a normal subgroup of (C/E)BM of index at most 210x34. Since
No n N{ n ... n iVr = 1 we have Ko n Xj n ... n Kr = 1. For i = 0 ,1 , . . . , r, let O,
be the factor algebra of ((C/E)BM,(y~lE)fi) corresponding to K(. Then
((C/E)BM, (y~ *£)/?) is isomorphic to a subalgebra of fi0 xQx x ... xQr.

The number of elements in Q,- is at most 210 x 34, a number independent of n, M
and i. There are, up to isomorphism, only finitely many pointed groups with a given
finite number of elements. Let (P, p) be the product of one representative of each
isomorphism class of all the pointed groups 0^ for all choices of n, M and i. (It can
be shown that, with slightly more care in the construction, only two isomorphism
classes are required.) Thus (P,p) is a finite pointed group and, for all n, every
(n -1 )-generator subalgebra of {Qn, qn) belongs to var (P, p).

It remains only to show that, for all m, wm is a law of (P,p). To do this it is
sufficient to show that wm is a law of Q, for all choices of n, M and i. Thus, in the
notation used above, it is sufficient to show that wm is a law of ((C/E)BM, (y~'£)/?).

Let Kx,...,Km be any elements of CBM and let

9 = ( y - 1 £ r i - ( r 1 / ? r m , h = [ ( y - W , ( ( y " W i -
lt is sufficient to show that he E. For j = 1,..., m, let K} = A,-^ where A,- e Cfi and
Hj e M. Then a simple calculation shows that h = [y, yfc] where b = /?''' ... /7''"1. Since
heC we can write /i = /io/ix ... h2r where ht e Ct (0 ^ / ^ 2r). Then fi, = [y,-, yj*'], so
h,- = 5,. or /i; = 1. It is enough to show that h0 = 1 and, for i = 1,..., r, /i2l-_ t = 1 if
and only if h2i = 1.

Since M0O = 1 we have /?'°'$0
 = /?o ^or a " j - Thus

Now suppose 1 < i ^ r. Then

where /c is the number of values of 7 for which ^ e M2l-_t. Since f.i{,..., fime M and
M2l-_ j n M = M2|- n M we have

It follows that [y2l_i, y f e 1 ] = 1 if and only if [y2i, y2^
2'] = 1, as required.
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